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Abstract
We discuss methods for fitting implicitly defined (e.g. piecewise algebraic) curves to scattered data, which may
contain problematic regions, such as edges, cusps or vertices. As the main idea, we construct a bivariate function,
whose zero contour approximates a given set of points, and whose gradient field simultaneously approximates
an estimated normal field. The coefficients of the implicit representation are found by solving a system of linear
equations. In order to allow for problematic input data, we introduce a criterion for detecting points close to
possible singularities. Using this criterion we split the data into segments and develop methods for propagating
the orientation of the normals globally. Furthermore we present a simple fallback strategy, that can be used when
the process of orientation propagation fails. The method has been shown to work successfully

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Approximation]: Approximation of surfaces
and contours, Spline and piecewise polynomial approximation; J.6 [Computer-Aided Engineering]: ; I.3.5 [Com-
putational Geometry and Object Modelling]: Curve, surface, solid, and object representations

1. Introduction

Curves and surfaces in geometric modelling can be de-
scribed by parametric and implicit representations. Cur-
rently, most applications rely on parametric representations,
since they offer a number of advantages, such as simple sam-
pling techniques (generation of an approximating triangula-
tion for visualisation). However, parametric representations
introduce a parameterisation of the geometry, which is of-
ten artificial. For instance, in order to fit curves or surfaces
to scattered data, one has to associate certain parameter val-
ues to the data. Often, this determines the shape of the so-
lution. Using implicit representations, it is possible to avoid
this problematic parametrisation process.

In order to exploit the potential of implicit representa-
tions, methods for conversion to and from implicit represen-
tations are needed. In this paper we discuss the process of
implicitization. Various exact methods 5, 6, 7, 10, such as resul-
tants, Groebner bases, moving curves and surfaces15, have
been considered. Recently, some approximative methods4, 8

have emerged.

Our approach for implicitization uses least squares
curve/surface fitting of scattered data1, 2, 14, 16. More precisely
we minimise the squared algebraic distances14 of a set of
given points from the zero contour of an unknown bivariate

respective trivariate (piecewise) polynomial function F . In
order to be able to solve this quadratic minimisation prob-
lem for the unknown coefficients of F , an additional con-
straint has to be introduced. As an alternative to the standard
approach of a ‘normalisation’ in the coefficient space, we
use estimated normals12, 13, as additional information on the
shape of the given data.

In this paper we show how reliable estimates can be gen-
erated for curve fitting allowing problematic data (e.g. data
which may contain singular points). The first sections of this
paper discuss normal estimation, detection of problematic
points, natural segmentation of the data and the process of
normal orientation propagation. After these preparations we
present how the estimated normals are used in the task of
curve fitting.

2. Normal estimation and ambiguity criterion

As the first step of our algorithm we estimate a unit normal
np at every given point p. This is done by computing the ‘lo-
cal line of regression’ of the k closest neighbour points qi,
similar to Hoppe et al.11 and Gopi et al.9. Let cp = 1

k ∑k
i=1 qi

be their centroid, and vi = qi − cp. The deviation of the
points qi from a line with the normal vector n through cp
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equals

S(n) =
k

∑
i=1

(vi ·n>)2. (1)

In order to minimise (1) subject to ‖n‖= 1, we have to solve
the eigenvalue problem

Mn = λn where M =
i

∑
i=1

viv>i .

The matrix M is symmetric and positive semidefinite. Let
0 ≤ λ1 ≤ λ2 be the eigenvalues and e1,e2 denote the asso-
ciated eigenvectors. It is easy to see that e1 / e2 minimises /
maximises S(n), and the minimum / maximum of S(n) is
equal λ1 / λ2. In the neighbourhood of self-intersections,
cusps or sharp features, λ1 and λ2 have approximatively the
same value. Then the quality of the fit is approximatively
the same for all lines passing through cp. We use this prop-
erty to introduce a criteria that detects these features. Let
0 < C < 1 be a user defined constant. For each point p we
check whether the inequality

λ1
λ2

≤C (2)

holds or not. If a point passes this test, we define it’s type to
be 1, and set np as e1. Otherwise the type of p is set to be 0.

Recently, mor sophisticated methods for feature detection,
based on local moment analysis, have been developed by
Clarenz et. al.3.

3. Segmentation of the data

In order to construct segments of points of the same type
we now apply a simple region growing process. Segments of
type 0 will represent regions around singularities, sharp fea-
tures and other problematic parts of the input data. In figure
2 an example for the result of this process is shown, based on
the estimated normals given in figure 1. Different segments
can be distinguished by randomly assigned colours.

Starting with an arbitrary point s, we consider a fixed
number l of closest neighbours qi, i = 1, .., l. Among them
we take the subset of points that have of the same type as s.
The closest one of these points is added to the segment. For
segments already consisting of several points, we consider
the union of the l closest neighbours, that additionally have
the same type as s. Again we add the point, which has the
least distance towards the segment. The process stops, when
no such point exists. The type of a segment is then deter-
mined by the type of it’s points.

Simultaneously while building the segments we propagate
the orientation of the estimated normals np within the seg-
ments of type 1. This is simply done by checking the scalar
product of the normal of the point which is to be added and
the normal of the closest point that already belongs to the
segment. If this product is negative, then the orientation of
the normal is needs to be swapped

Figure 1: Estimated normals

Figure 2: Generating segments

3.1. Global orientation propagation

Finally we have to ensure globally correct orientations for
the segments. Segments of type 0 need not to be checked,
since no estimates np are taken into account. However these
segments can be used to guarantee a correct orientation of
their neighbour segments, as follows.

Let S∗ be a segment of type 0. For each neighbouring seg-
ment Sk we choose the closest point rk ∈ Sk as represen-
tative. These points rk can be arranged in a circular order
around the centroid c of S∗. To ensure that the correspond-
ing normals nk are oriented correctly, we consider the ro-
tated vectors n⊥

k (by 90◦), and require that the scalar prod-
ucts (rk − c) · n⊥

k have alternating signs. If the orientation
of a vector nk has to be swapped, then we apply this to all
estimates in the segment Sk. Again, a global suitable normal
field is found by a region-growing process. Figure 3 shows a
possible global orientation, for the segments of figure 2.

If the orientation of a segment, whose orientation has al-
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Figure 3: Global orientation propagation

ready been checked, is forced to change its orientation, an
error is likely. Later we describe a simple but powerful fall-
back strategy to resolve this problem, see section 4.7.

Once an initial segment has been selected, we expect the
algorithm to check all segments. If one needs to select more
than one initial segment in order to reach all segments, then
the data consists of more than one separated part. In this
case, we consider a separate process of approximative im-
plicitization for each part of the curve.

Note that the algorithm implicitly assumes that the num-
ber of neighbouring segments is always even. Otherwise the
‘alternating sign’ criterion does not work. In figure 5 such
segments occur at the midpoints of the sides of the great
square. A way to address this problem would be to intro-
duce pairs of opposite neighbours and an additional ‘phan-
tom’ segment opposing to the last free neighbour segment.

4. Approximative implicitization by piecewise
polynomials

4.1. Outline

In order to describe the shape of a given set of points by
the zero contour of a bivariate tensor-product function F , we
minimise the sum of the squared algebraic distances of the
data with respect to the zero contour of the function F . This
leads to a quadratic minimisation problem for the unknown
coefficients of F . Since the zero vector (the null function) be-
longs to the space of solutions, an additional constraint has
to be introduced. Often this constraint is chosen as a ‘nor-
malisation’ in the coefficient space14, 16.

Using a linear constraint (e.g. one coefficient is chosen
to be equal 1), the solution of the minimisation problem
is found via a system of linear equations, but the solution
is not geometrically invariant14. In the case of (geometri-
cally invariant) quadratic constraints the solution is found

as eigenvector related to the minimal eigenvalue of a certain
matrix16.

The additional constraint used by our method is geomet-
rically invariant, and computationally simple: We minimise
simultaneously the sum of the algebraic distances and the
sum of the squared differences of the estimated unit normals
and the gradients of F at the given points. The solution is
found by solving a system of linear equations. Its matrix M
is symmetric, positive definite, and - in the case of a piece-
wise polynomial approximation - sparse.

In addition, one may consider another quadratic func-
tional, called the tension term, which measures the deviation
of F from a linear function. By simultaneously minimising
the tension term and approximating the points and normals,
we may ‘flatten’ the resulting function F . This straightens
the associated implicit curve. Using this we can influence
the shape of the curve. Unwanted branches, loops but also
desired details like cusps or sharp edges may vanish.

In the following we describe how to compute the sum of
the algebraic distances, the sum of the squared differences of
the estimated normals and the gradients of F , and the tension
term effectively.

4.2. Preparations

Let pi = (pi,x, pi,y) i = 1, ..,N denote a given set points. Our
aim is to find a bivariate tensor product-spline-function,

F(x,y) = ∑
( j,k)∈A

c jkM j(x)Nk(y) ,

whose zero contour approximates the given set of points. Let
(M j(x)) j=1..m and (Nk(y))k=1..n denote the B-spline func-
tions of degree d with respect to certain user defined knot
vectors, and (c jk)( j,k)∈A be the unknown real coefficients.

In order to obtain the knot vectors, we consider a bound-
ing box of the data, and subdivide a slightly enlarged area in
quadratic cells of constant size s. This subdivision induces
an equidistant grid on the x and y axis. Adding additional d
knots at the beginning and at the end of the grid, we obtain
the knot vectors X =(ξ j) j=1..m+1 and Y=(ηk)k=1..n+1.

The domain D does not contain all cells within this grid.
Obviously it has to contain the cells containing points, which
shall be denoted by D1. Additionally we consider some
neighbouring cells, within a user defined distance from given
points. The reason for this is that the resulting curve is likely
to pass through such a cell, and otherwise might be cut away.
The union of these neighbouring cells shall be denoted by
D2. We have D = D1∪̇D2, where ∪̇ denotes the disjoint
union.

In the following we use the bijective relation between the
lower left corner of the cells and the pair of indices ( j,k)
associated with the knots. The domain D, its subsets Di, as
well as single cells can be identified with certain subsets of
K = {1, ..,m}×{1, ..,n}.
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Due to the restriction of F on D, we only need to take the
products of basis functions Mp(x)Nq(y) into account that do
not vanish on D. The indices are:

A= {(p,q)∈K|∃( j,k)∈D ∧ j−d≤p≤ j ∧ k−d≤q≤ k }

Note that, for some of these ‘active’ B-spline functions the
support may not contain any given points pi. This fact how-
ever may only occur when neighbour cells were included in
D2. In figure 4 these cells are marked by a cross.

Figure 4: Bounding box, domain D, and active B-spline
functions

In order to simplify the notation, we enumerate A. Thus
the coefficients c jk are collected in a vector~c of length h with
h = |A|. Each pair of indices ( j,k) is bijectively related to
an index s ∈ {1, . . . ,h}.

4.3. Algebraic distance

The sum of the squared algebraic distance of the data points
pi from the implicit curve F(x,y) = 0 determined by the co-
efficients~c is given by

δ(~c) =
N

∑
i=1

(F(pi))
2 =

N

∑
i=1

(

∑
( j,k)∈A

M j(xi)Nk(yi)c jk

)2

.

In matrix notation this quadratic form can be written as

δ(~c) =~c> ·D ·~c.

The matrix-elements

d jk,lm =
N

∑
i=1

M j(xi)Nk(yi)Ml(xi)Nm(yi) (3)

are supposed to be ordered (row and column wise) in the
same way as the coefficients c jk.

For any arbitrary order of the (c jk) we have that D is a
h×h symmetric, positive semi-definite matrix, since d jk,lm=
dlm, jk and δ(~c) ≥ 0. As a consequence we have to build only

the upper triangular part of D. Moreover, due to the limited
support of the B-spline basis functions, we can state that D
is sparse, since most of the products M j(x)Nk(y)Ml(x)Nm(y)
vanish identically. For a fixed pair of indices(l,m) we only
need to consider the elements d jk,lm with

( j,k) ∈ Al,m = {l −d, l +d}×{m−d,m+d}∩A.

In order to adapt the algorithm to problematic input data, we
now introduce the following weight function:

ωδ(pi) =

{

wδ
1 if type(pi) = 1,

wδ
2 if type(pi) = 0,

and change the summation in (3) as follows: We intersect the
support of M j(x)Nk(y)Ml(x)Nm(y) with the domain D

Dlm
jk = {max( j, l),min( j +d, l +d)}×

{max(k,m),min(k +d,m+d)}∩D,

and then introduce a data structure, which links the cells and
points. Let ppq

i = (xpq
i ,ypq

i ) denote the points in the cell with
indices (p,q), and let Npq be the number of them. The ele-
ments d jk,lm now can be written as

d jk,lm = ∑
(p,q)∈Dlm

jk

Npq

∑
i=1

ωδ(ppq
i )M j(x

pq
i )Nk(y

pq
i )Ml(x

pq
i )Nm(ypq

i ).

(4)
This shows how to generate D in a fast and efficient way.

4.4. Approximation of the normals

The sum of the squared differences of the estimated normals
ni and the gradient field of F evaluated at the data points pi
is given by

ν(~c) =
N

∑
i=1

ων(pi)
((

Fx(pi)−ni,x
)2

+
(
Fy(pi)−ni,y

)2
)

.

where

ων(pi) =

{

wν if type(pi) = 1,

0 if type(pi) = 0.

Again we may express ν(~c) in matrix notation

ν(~c) =~c>·G ·~c − 2~r>·~c +
N

∑
i=0

ων(pi)‖ni‖
2.

where the elements of G - using the notation from the previ-
ous section - are

g jk,lm = ∑
(p,q)∈Dlm

jk

Npq

∑
i=1

ων(ppq
i )

(
Ṁ j(x

pq
i )Nk(y

pq
i )Ṁl(x

pq
i )Nm(ypq

i )

+M j(x
pq
i )Ṅk(y

pq
i )Ml(x

pq
i )Ṅm(ypq

i )
)
.
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In order to obtain ~r, we intersect D with the support of
M j(x)Nk(y) (i.e. D jk = { j, j + d}×{k,k + d}∩D). We ar-
rive at

~r jk = ∑
(p,q)∈D jk

Npq

∑
i=1

ων(ppq
i )
(

Ṁ j(x
pq
i )Nk(y

pq
i )npq

i,x

+M j(x
pq
i )Ṅk(y

pq
i )npq

i,y

)

.

4.5. Tension

A function ‘measuring’ the deviation of a polynomial func-
tion F from a linear function is given by the quadratic func-
tional

τ(~c) =
∫∫

D

F2
xx +2F2

xy +F2
yy dx dy .

As before we use the matrix notation

ν(~c) =~c>·T ·~c.

Let D j be the interval (ξ j,ξ j+1) - respective (η j,η j+1). The
elements of T are

t jk,lm = ∑
(p,q)∈Dlm

jk
( ∫

Dp

M̈ j(x)M̈l(x)dx
∫

Dq

Nk(y)Nm(y)dy

+2
∫

Dp

Ṁ j(x)Ṁl(x)dx
∫

Dq

Ṅk(y)Ṅm(y)dy

+
∫

Dp

M j(x)Ml(x)dx
∫

Dq

N̈k(y)N̈m(y)dy
)

Due to the equidistant gridsize, all the B-spline functions
Mr(x) and Ms(x) are related by a simple linear parameter
transformation. As a consequence, the above integrals with
respect to x depend (for fixed degree d and gridsize s) only
on the difference | j − l| and on p−min{ j, l}. So, for fixed
degree d, we may compute a total of 3(d+2)(d+1)/2 differ-
ent numerical values in advance, and store them in a look-up
table. The integrals with respect to y yield the same values,
since the grids in x- and y- direction were assumed to be
equally spaced.

The effect resulting from different tension weights can be
seen in figures 5 and 6.

4.6. Approximative implicitization

As already mentioned, our aim is to solve the quadratic min-
imisation problem

δ(~c)+ν(~c)+wττ(~c) → min, (5)

in order to get an approximation for the problem δ(~c)→min.

The solution of (5) is given by

(D+G+wτT )
︸ ︷︷ ︸

M

·~c =~r, (6)

Figure 5: wτ =1·10−6

Figure 6: wτ =0

where M is a symmetric positive definite matrix. As shown
previously12 (5) is a positive, strictly convex functional if
the weights are all positive. Consequently (6) has a unique
solution.

The normals term ν(~c) has been introduced due to the
need of a ‘normalisation’ of the solution space of δ(~c) →
min. The weight wν is chosen as low as possible.

The term τ(~c) is used to influence the topology of the re-
sulting curve. It can be omitted if D2 is empty. Otherwise
neighbouring cells are considered for the domain D. In this
case, it may occur that certain coefficients c jk are influenced
only by the tension term. Hence M would be singular if τ(~c)
was omitted.

4.7. Fallback strategy for normal estimation

Clearly the process of normal estimation, segment building
and orientation propagation depends on the sampling density
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of the input data, the amount of noise and the choice of the
parameters k, l and C. Currently we choose C rather small,
consequently criterion (2) is restrictive. This results in more
points and hence larger segments of type 0. So the process of
orientation transfer is stabilised. Unintentional segments of
type 0 may occur, for example in regions of high curvature.
This is no real drawback, since we only use the estimated
normals as additional information.

We do not have to obtain estimates for all of the points.
A secure global orientation is of greater importance. This is
exploited in a simple fall-back strategy:

Whenever we detect an error in the step of orientation
propagation, we consider only the normals of the largest seg-
ment S̃ of type 1. For all other points the type is set to 0. We
then compute an initial approximative implicitization for this
input data. Numerical results show that using only a part of
the normals still leads to an acceptable approximation.

Figure 7: Initial step

However symmetries in the input data are not automati-
cally inherited by the resulting curve. This is resolved com-
paring the estimated normal vectors with the gradients of
the initial implicitization in the given data points. Using the
same orientation for this vectors, we get a reliable unit vector
field, which is used to compute the final algebraic fit.

Figure 8 is based on the same data as figure 7. Yet the
weight of the tension term is chosen intentionally to low.
The resulting curve approximates the data, but does not have
the correct topology, which is needed for the adjustment of
the estimated normals. The updated normals field is shown
in figure 9. Most of the normals of the top left segment have
a wrong orientation. Based on this data, we show the useful-
ness of the iteration process presented in the following sec-
tion. After ten additional iteration steps, we obtain the nearly
symmetric approximation, shown in figure 10.

4.8. Iteration

Clearly, the result of the approximation process is substan-
tially influenced by the reliability of the estimated normals.
In order to get better estimates, we iterate the approximation
step. After each approximation step we compute the gradi-
ents of the approximating function F in the given data points,
and use them as new estimates.

Figure 8: Initial step for a low weight wτ

Figure 9: Adjusted normals

In each step we minimise simultaneously the sum of the
algebraic distances as well as the difference of the estimated
normal vectors and the gradients. Consequently, after each
iteration step the gradients should give a better estimate of
the normals.

In order to avoid contraction of F towards the zero func-
tion (with vanishing gradients everywhere), we have to scale
the computed gradients after each step, before we can use
them as new estimates ni. We scale them such that the sum
of the squared lengths of the ni equals N.

ni =

√

N

∑N
j=0 ‖∇F(p j)‖2

∇F(pi)

Note that the matrix M of the linear system does not depend
on the estimated normals. Only the right-hand side~r has to
be updated after each adaptation of the estimates. Comput-
ing a Cholesky decomposition of M once, in each iteration
step we only have to apply back and forward substitution to
obtain the algebraic fit. The right-hand side ~r depends lin-
early on the estimates~ni, which depend again linearly on the

Figure 10: After 10 iteration steps
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previous computed coefficients of F . Summing up, the com-
putational costs of the iteration process are very low.

After the initial approximation step we get estimates for
the points that failed criterion (2). Consequently the distinc-
tion of points that have / do not have an estimated normal
can be considered as obsolete. The type of all points can be
set to 1. However, if we do this, we need to rebuild the ma-
trix M, since the matrices D and G depend on the type of
the points. Similarly, when applying the fallback strategy, M
has to be rebuilt, in order to avoid asymmetries introduced
by the choice of the initial segment. The same is true for
changes of the weights during the iteration. Consequently a
‘reweight procedure’ as proposed in 12, 16 seems to be rather
disadvantageous.

4.9. Choice of degree

An important question concerning the fitting process is the
choice of the degree d. From the following lemma we get a
lower bound on d. Note, that using a tensor product repre-
sentation favours the x- and y-directions.

Lemma 1. The zero contour c of a tensor product surface
∑d

j,k=0 c j,kx jyk of bi-degree d may have a k-fold point P, with
general k tangent directions, only if d ≥ k.

Proof Let P(a,b) be a k-fold point of c. The partial deriva-
tives of F vanish in P up to order k−1, and there exists at
least one partial derivative of order k that is not zero. The k
tangents of c in P are the lines (a+λt,b+µt), with:

k

∑
j=0

(

k
j

)

∂kF
∂xk− j∂y j

(a,b)
λk− jµ j = 0. (7)

The y-axis (x-axis) parallel is a tangent exactly if λ = 0 (µ =

0) fulfils (7). This is equivalent to ∂kF
∂yk |(a,b) = 0 ( ∂kF

∂xk |(a,b) =

0). If d < k this last condition is clearly always fulfilled. If
d ≥ k, however, the partial derivatives depend on the coeffi-
cients c jk, and hence may but need not to vanish.

Given scattered data, a lower bound for the degree can be
found as follows: A segment of type 0 having m neighbour
segments is assumed to represent a point of multiplicity m/2.

As an example figures 11 and 12 show the degree 3 and 4
polynomial approximation of four (non-axes-parallel) lines
coinciding in one point. These four lines can be interpreted
as one implicit curve which has an 4-fold point. In accor-
dance with the lemma, the degree 3 approximation clearly
fails to approximate the given data. Instead it resembles four
pairwise parallel lines, that can be interpreted as implicit
curve having four double points.

5. Bézier approximation

In order to search for an approximative implicitization in
the sense of the last section, now using a polynomial basis,
only few adaptations have to be made. The domain is now

Figure 11: Degree 3 Bézier-approximation

Figure 12: Degree 4 Bézier-approximation

a slightly enlarged bounding box D = (a,b)× (c,d) of the
input data. Due to the expected numeric stability we use the
Bernstein polynomials of degree d

M j(x) =
(d

j
)
(1−u)n− ju j with u =

b− x
b−a

,

Nk(y) =
(d

k
)
(1− v)n−kv j with v =

d − y
d − c

,

with j,k = 0, . . . ,d as basis functions. The support of the
products M j(x)Nk(y) is no longer restricted. As a direct con-
sequence the set of ‘active products’ is A = {0, . . . ,d} ×
{0, . . . ,d}. Furthermore there are no vanishing products
M j(xi)Nk(yi)Ml(xi)Nm(yi) we can omit (cp. (3) and (4)).
Consequently the resulting linear system is no longer sparse
(but still symmetric).

Figures 4 and 13 show a comparison of the behaviour of
the implicit curves for the same input data. In order to make
the differences visible, we used non-optimised weights. The
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number of coefficients is approximatively the same: In fig-
ure 4 we have 67 B-spline basis functions of degree 2, and in
the case of figure 13 we considered the 64 products of Bern-
stein polynomials of degree 7. The ‘local control’ property
of splines leads to a better approximation.

Each coefficient of D, G, and T is a sum of (integrals
of) products of the basis functions and their derivatives. Due
to the limited support of the B-spline functions the number
of evaluations of such products can be reduced. As a con-
sequence the generation of the linear system is noticeably
faster for splines.

Figure 13: Bézier-approximation

6. Conclusion

We have described a method for fitting implicitly defined
(piecewise) curves to planar scattered data, which may con-
tain problematic regions (e.g. singular points). The algo-
rithm is based on the simultaneous approximation of the
given data and estimated normal vectors, which are gener-
ated in a preprocessing step.

In order to assure a correct global orientation of these es-
timates, we consider a simple criterion rejecting unreliable
points, create a natural segmentation of the data and finally
use methods for global orientation propagation.

Using this estimates as additional information for the task
of curve fitting, we get a geometrically invariant method
for curve reconstruction. It is computationally simple, as we
only need to solve a linear system for the coefficients of the
unknown representation.

Based on the segmentation and the approximation step,
we have introduced a simple fallback strategy, in case the
orientation propagation step fails. Furthermore we have
shown how the segmentation can be used to obtain a lower
bound for the degree of the implicit curve.

Finally we described an iteration of the process. Using the

gradients of the resulting function as new, more reliable nor-
mal estimates, we may improve the approximation. In each
step we only have to rebuild the right-hand side of the linear
system.

Future research will address convergence properties of the
iteration process, methods of reliable normal estimation and
orientation propagation for surfaces, segment classification
(object recognition), and possible combination with exact
methods. First results for surfaces (Figure 14), relying on
the fallback strategy, have already demonstrated the applica-
bility of our approach.

Figure 14: Degree 2 Bézier approximation of Steiner‘s ‘Ro-
man surface’, relying on one segment of points with esti-
mated normals
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