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Abstract

Any set of C2 planar boundary data (two points with associated velocities and acceleration vectors)
can be interpolated by a PH curve of degree 9. In the generic case there are four such curves
[5]. In this paper we give a detailed description and a qualitative analysis of these solutions. In
particular we label the four solutions and compare their fairness from the point of view of possible
application. For this purpose we consider the Hermite data taken from an analytical curve and
study the behavior of the solutions for decreasing step-size h. This allows us to identify explicitly
the solution which – for sufficiently small step-size – matches the shape of the curve with a high
precision (the approximation order is 6). Consequently we are able to develop a highly robust,
fast and precise algorithm converting analytical curves or curves described in G-code into a C2

continuous PH spline curve of degree 9.

Key words: Pythagorean Hodograph curves, CNC machining, tool path design, approximation
order, Taylor expansion

1 Introduction

Traditionally, the tool paths for CNC machining are described by so–called G–code [16], which
interpolates discrete tool positions along linear and circular segments. Standard real–time
CNC interpolators, which evaluate the precise tool positions according to a given frequency,
rely almost exclusively on the G-code. This approach is geometrically simple and the tool
speed can be easily controlled along the line and circle segments.

On the other hand, this technique may also cause some complications. For example, shapes are
designed in CAD systems using various free–form shapes, which must then be approximated
by G code. This may lead to problems with inaccuracies and also increases the data volume.
In addition, the use of circular and linear segments can ensure only the speed continuity,

1 Corresponding author. E-mail: zbynek.sir@jku.at, tel.: +43 (0) 732-2468-9178, fax: +43 (0)
732-2468-9142, www.ag.jku.at.



Table 1
Hermite interpolation of planar data by PH curves.

data degree maximum number of solutions
and computational effort

available results

G1 3 2 solutions, quadratic equation
(Walton and Meek [21])

One of the solutions has approximation or-
der 4 at generic points (Walton and Meek
[21]).

C1 5 4 solutions, quadratic equations
(Farouki and Neff [8])

The best solution can be identified via its
rotation index (Moon et al. [18]). One of
the solutions has approximation order 4 (Fe-
ichtinger [11]).

G2 5 System of two degree 6 equa-
tions (Farouki et al. [5])

none.

G2[C1] 7 8 solutions, quartic equations
(Jüttler [14])

One of the solutions has approximation or-
der 6 at generic points [14]. Inflections re-
duce the approximation order.

C2 9 4 solutions, quadratic equations
(Farouki et al. [5])

The best solution can be found by “visual
inspection of the curves and their control
points” (Farouki et al. [5]).
One of the solutions has approximation or-
der 6 (this paper).

but the acceleration will always be discontinuous, therefore limiting the possible speed of the
machinery.

Based on spline curves, various free-form curve interpolators for CNC machining have been
proposed, e.g. [13,15,19,22,23]. As a major inconvenience, the arc length along these curves
has to be approximated by using numerical integration.

An elegant technique for addressing this issue has been proposed by Farouki and Sakkalis,
see [3] and the references cited therein. They introduced the class of Pythagorean Hodograph
(PH) curves, which are distinguished by having a polynomial arc length function and rational
offset curves. Therefore these curves provide an elegant solution of various difficult problems
occurring in applications, in particular in the context of CNC machining. Various aspects of
applications were studied by Farouki and several co-authors, see e.g. [6,7,10,20].

An essential step of the application of PH curves is their construction from certain input data.
Due to the special algebraic properties of PH curves, all constructions – which are linear in
the case of standard Bézier curves – become nonlinear in the PH case. In particular, the
applicability of global constructions, such as global spline interpolation [4] and least–squares
fitting [9], is limited, since they lead to large systems of nonlinear equations.

Local techniques seem to be more promising. Various constructions of planar PH curves
matching given Hermite boundary data were developed, see table 1. For more references the
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reader is referred to [3], which also includes the case of spatial curves.

This paper is devoted to the case of C2 boundary data, which has also been addressed in [5],
as a tool for design of rational CAM profiles. The authors describe the system of complex
equations, which is to be solved in order to construct the PH Hermite interpolants, and show,
that in general there are four such PH interpolants. After recalling some basic facts about
PH curves (Section 2) and C2 Hermite interpolation (Section 3), we discuss in Section 4 the
explicit labeling of the four PH interpolants. The results are used for a qualitative analysis
(Section 5). Finally, we apply the previous results and formulate algorithms for converting
piecewise analytical curves and curves designed in G-code into piecewise PH curves (Section
6).

2 Preliminaries

The hodograph of a planar polynomial curve p(t) = [x(t), y(t)]> of degree n is the curve
h(t) = [x′(t), y′(t)]> of degree n− 1, where ′ denotes the first derivative. Recall that a Bézier
curve is called Pythagorean Hodograph (PH) if the length of its tangent vector depends in
a (piecewise) polynomial way on the parameter. In particular p(t) = [x(t), y(t)]> is called
planar PH curve if there exists a polynomial σ(t) such that

x′(t)2 + y′(t)2 = σ2(t). (1)

Solutions of eq. (1) (also called Pythagorean triplets) in unique factorization domains (which
includes the ring of polynomials) were characterized by Kubota [17].

According to Farouki [2], this result can be formulated using complex numbers (see also
[1] for a more general framework). Any vector u = [v, w]> is identified with the complex
number u = v + iw, and any planar polynomial curve p(t) = [x(t), y(t)]> is identified with
the complex–valued function p(t) = x(t) + iy(t).

The PH curves are characterized as follows.

Lemma 1 Let p(t) = x(t) + iy(t) be a planar polynomial curve, such that gcd(x′(t), y′(t)) is
a square of a polynomial 1 . Then p(t) is PH if and only if there exists a complex polynomial
w(t) such that the hodograph h(t) = x′(t) + iy′(t) satisfies h(t) = w(t)2. The arc length
function of the PH curve is a polynomial obtained by integrating |w(t)|2.

Consequently, the construction of a PH curve essentially reduces to the construction of a
suitable curve w(t). This curve will be called the preimage. Clearly, two complex preimages
w(t), w̃(t) correspond to the same hodograph if and only if

w(t) = ±w̃(t). (2)

1 This includes the generic case gcd(x′(t), y′(t)) = 1.
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Since two curves p(t), p̃(t) have the same hodograph if and only if they differ only by
translation, a planar PH curve p(t) is fully determined by the preimage w(t) and by the
location of its starting point p(0).

3 Construction of C2 interpolants

We construct a planar PH curve p(t) which matches given C2 Hermite boundary data. More
precisely, the curve is to interpolate the end points P0, P1, the velocity vectors V0, V1 and
the acceleration vectors A0, A1 at t = 0 and t = 1, respectively. We consider all this data as
complex numbers.

The position of P0 can be matched by a suitable choice of the integration constant. The
remaining 5 conditions (over C) must be satisfied by choosing the control points of the
preimage w(t). Consequently, the degree of w(t) has to be 4. This choice leads to a PH curve
of degree 2 · 4 + 1 = 9.

We shall use the Bernstein-Bézier representation [12] of the hodograph h(t) = p′(t) and the
preimage w(t):

h(t) =
8
∑

i=0

hiB
8
i (t), w(t) =

4
∑

i=0

wiB
4
i (t) t ∈ [0, 1] (3)

with control points hi,wi ∈ C and Bernstein polynomials Bn
j (t) =

(

n

j

)

tj(1 − t)n−j. The
interpolation conditions lead to the equations

h0 = V0, h8 = V1, 8(h1 − h0) = A0, 8(h8 − h7) = A1, and
1

9

8
∑

i=0

hi = (P1 − P0),

which have to be satisfied by the control points of the hodograph. After expressing them in
terms of the control points of the preimage curve, one arrives at the following non–linear
system of equations:

w2
0 = V0, w2

4 = V1, (4)

8w0(w1 − w0) = A0, 8w4(w4 − w3) = A1, and (5)

1
9
w0

2 + 1
21

w0w2 + 1
9
w0w1 + 1

63
w0w3 + 1

315
w0w4 + 2

35
w2

2 + 2
21

w2w1 + 2
21

w2w3

+ 1
21

w2w4 + 4
63

w1
2 + 16

315
w1w3 + 1

63
w1w4 + 4

63
w3

2 + 1
9
w3w4 + 1

9
w4

2 = (P1 − P0).
(6)

Using (4) and (5), the last equation can be rewritten as

(12w2 + 10w1 + 5w0 + 5w4 + 10w3)
2 =

2520(P1 − P0) − 435(V1 + V0) + 45
2
(A1 − A0)

−(60w2
1 − 60w0w3 − 60w1w4 + 60w2

3 − 42w0w4 − 72w1w3).

(7)

If V0 = 0, then w0 = 0 and (5) implies A0 = 0. Similarly, V1 = 0 implies A1 = 0. These
cases, which correspond to singular points at the segment end points, will be excluded in the
remainder of this paper.
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Fig. 1. Four PH interpolants of degree 9 to given C2 Hermite data.

If both V0 and V1 are nonzero, we obtain from (4) two different solutions for w0 and two for
w4 (step 1). The linear equations (5) can then be solved for w1 and w3 (step 2). Finally the
quadratic equation (7) has two solutions for w2 (step 3). Therefore the system (4)-(7) has in
general 8 different solutions for the preimage control points wi.

On the other hand, due to (2), always two of the computed preimages give the same PH curve.
Hence, we may pick one of the two solutions for w0 and obtain 4 preimages by considering
two solutions for w4 and two solutions for w2.

Note, that for one or both choices of w4, the right-hand side of (7) may vanish and therefore
the two solutions for w2 may be identical. If this is the case, the two corresponding PH
interpolants may coincide. We summarize the results in the following theorem.

Theorem 2 The system of quadratic equations (4), (5), (7) leads to 4 planar PH curves

p(t) =
∫

h(t)dt + P0 (8)

(cf. (3)) of degree 9 interpolating the given positions P0, P1, the non–vanishing velocity
vectors V0, V1 and the acceleration vectors A0, A1 at t = 0 and t = 1, respectively. For
special configurations of the data, one or two pairs of these PH curves may coincide.

Note that the equations (4), (5), (7) characterize all interpolating PH curves p(t) = x(t)+iy(t)
of degree 9 satisfying the assumption that gcd(x′, y′) is a square (which includes the case
gcd(x′, y′) = 1), see Lemma 1.

As an example, we consider the Hermite data

P0 = (0, 0)>, V0 = (1, 0)>, A0 = (0, 1)>, P1 = (1, 1)>, V1 = (1, 0)>, A1 = (0, 1)>, (9)

which lead to four different PH interpolants shown on the Fig. 1. While the first solution has
a reasonable shape, the other solutions are not useful, due to one or two small loops.

Remark 3 Note that additional solutions of degree 9 may exist. They can be generated by
integrating a hodograph of the form

h(t) = f(t)w2(t), (10)
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Fig. 2. Spurious interpolants for k = 3 (left) and k = 2 (right).

where w(t) is a complex polynomial of degree k (k = 0, 1, 2, 3) and f(t) is a real polynomial
of degree 8 − 2k. These curves have the same number of degrees of freedom than the curves
discussed in Theorem 2, which covers the case k = 4.

However, construction of these ”spurious” interpolants is much more difficult, since the re-
sulting non–linear systems of equations are rather complicated and do not always have real
solutions. Also, according to our experiences, they have less desirable shape properties - e.g.
on Fig. 2 we show two interpolants to Hermite data (9) for k = 3 and k = 2, both having
cusps. Note, that for k = 1 the PH curve cannot describe inflected curves and for k = 0 it is
reduced to a straight line. Therefore the spurious interpolants may not be of much use.

4 Labeling the solutions

As observed in the the example, the four PH interpolants are not of the same quality: only
the first one is free of loops and has a reasonable shape. Before we proceed to the qualitative
study of the four interpolants it is necessary to label them in a suitable way.

One would expect this labeling to be invariant with respect to Euclidean transformations
and scaling of the data and to depend smoothly on the input data. However, it turns out that
the four PH interpolants can not be labeled in an continuous way for all possible input data.
In order to demonstrate this fact, consider the first interpolant of the Hermite data (9) - see
first figure of Fig. 3. We change smoothly the input data by rotating the tangent vector at
the point P0 = [1, 1]> counterclockwise. At the same time we modify smoothly the PH curve
such that it interpolates the changing data. After one revolution we arrive at the fourth PH
interpolant of the original data (last figure of Fig. 3).

As demonstrated by this example, the labeling cannot be smooth for all input data. This is
due to the fact, that the solutions differ only by choosing one of two possible complex square
roots in equations (4) and (7).

In order to obtain a geometrically invariant labeling, we consider the four PH Hermite in-
terpolants of the Hermite data in a certain canonical position. More precisely, we assume
that

P0 = (0, 0)> = 0 + i 0 and V0 = (1, 0)> = 1 + i 0. (11)
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Fig. 3. A family of the PH interpolants for smoothly changing Hermite data. The end
point velocity vectors have been scaled by 1/6.

Any input data can be transformed into the canonical position by a unique similarity trans-
formation Φ, which is composed of a translation, a rotation and a scaling. Clearly, a similarity
transformation preserves the PH property, since the length of all vectors is multiplied with
a constant factor. Transforming the labeled interpolants back by the inverse transformation
Φ−1 yields an invariant labeling of the interpolants to the original data.

In the canonical position (11), the first equation (4) has two solutions w0 = ±1. Due to (2),
we can pick one of the solutions, w0 = 1. Then the four different solutions correspond to
the choice of different complex square roots while computing w4 by solving (4), and w2 by
solving (7). We will label these four solutions depending on whether these square roots are
chosen to have a positive or a negative real part.

For example, if =(V1) 6= 0 or <(V1) > 0, the solutions of the second equation (4) are

<(w4) = ±

√

√

√

√

√

<(V1)2 + =(V1)2 + <(V1)

2
, =(w4) =

=(V1)

2<(w4)
, (12)

where
√· denotes the real square root (step 1). We may choose the sign of the real part(12),

which corresponds to defining w4 as the complex square root of V1 with positive or negative
real part.

Next, the equations (5) correspond to a systems of linear equations for the real and imaginary
parts of w1,w3, which can be easily solved (step 2).

Finally the solutions of the equation (7) are expressed by taking square roots of its right-hand
side (step 3), similarly to (12). Once again, one may choose a positive or negative sign when
computing the real part. The labeling will fail if the right–hand side of (7) is a non–positive
real number.
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Table 2
Labeling the solutions

solutions p1(t) p2(t) p3(t) p4(t)

sign of <(w4) (needed in step 1) + + − −

sign of <(5w0 + 10w1 + 12w2 + 10w3 + 5w4) (needed in step 3) + − + −

The four PH curves solving the interpolation problem will be labeled as described in Table 2.

Remark 4 If V1 or the right-hand side of the equation (7) is a negative real number, than
the labeling fails. In this situation, both square roots are imaginary numbers and the labeling
have to become discontinuous. For this reason, we do not label the solutions in this case. If
the labeling exists, then it depends smoothly on the input data.

5 Asymptotic behavior of the interpolants

In order to gain some insight into the quality of the solutions, we will now study the asymp-
totic behavior of the four solutions of the C2 Hermite interpolation algorithm. More precisely,
we assume that the C2 Hermite data are taken from a small segment of an analytical curve,
and we investigate the asymptotic behavior of the solutions for decreasing step-size.

We assume that the curve is given by its Taylor expansion in the canonical position (11),

C(T ) = (T +
∞
∑

i=2

xi

i!
T i,

∞
∑

i=2

yi

i!
T i)> (13)

with arbitrary coefficients x2, x3, . . . and y2, y3, . . ..

For any step–size h, we pick the segment c(t) = C(ht), t ∈ [0, 1]. This segment has the
expansion

c(t) = (th +
∞
∑

i=2

xi

i!
tihi,

∞
∑

i=2

yi

i!
tihi)>. (14)

Now we interpolate the C2 Hermite boundary data at the points c(0) = C(0) and c(1) =
C(h). Depending on the interval size h, the four different PH curves interpolating the data
behave as described in the following Theorem.

Theorem 5 The four interpolating PH curves have the Taylor expansions shown in Table 3.
Among them, only the first solution p1 matches the shape of the original curve c. In addition,
it can be shown that

max
t∈[0,1]

||c(t) − p1(t)|| = O(h6),

i.e., the approximation order of this solution is equal to six.

Proof. We derive Taylor expansions of the Hermite boundary data at t = 0 and t = 1 of the
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Table 3
Taylor expansions of the four solutions

solution leading terms of the Taylor expansion

p1(t)

(

th + O(h2)

1

2
t2y2h2 + O(h3)

)

p2(t)

(

(196t9 − 882t8 + 1512t7 − 1176t6 + 336t5 + 42t4 − 28t3 + t)h + O(h2)

(98t9 − 441t8 + 756t7 − 595t6 + 189t5 − 7t3 + 1

2
t2)y2h2 + O(h3)

)

p3(t)

(

(36t9 − 144t8 + 208t7 − 128t6 + 36t5 − 16t4 + 8t3 + t)h + O(h2)

(30t9 − 123t8 + 182t7 −
335

3
t6 + 23t5 − 4t4 + 11

3
t3 + 1

2
t2)y2h2 + O(h3)

)

p4(t)

(

(36t9 − 180t8 + 352t7 − 320t6 + 108t5 + 20t4 − 16t3 + t)h + O(h2)

(6t9 − 33t8 + 74t7 −
245

3
t6 + 41t5 − 4t4 −

7

3
t3 + 1

2
t2)y2h2 + O(h3)

)

curve (14):

P0 =







0

0





 , V0 =







h

0





 , A0 =







x2h
2

y2h
2





 , P1 =







h + 1
2
x2h

2 + 1
6
x3h

3 + . . .

1
2
y2h

2 + 1
6
y3h

3 + . . .





 (15)

and

V1 =







h + x2h
2 + 1

2
x3h

3 + . . .

y2h
2 + 1

2
y3h

3 + . . .





 , A1 =







x2h
2 + x3h

3 + . . .

y2h
2 + y3h

3 + . . .





 . (16)

By comparing the coefficients in equations (4)-(7) with the help of a suitable computer algebra
tool, we derive expansions of the control points wi of the four solutions. For example, in the
case of the first solutions p1 we obtain:

w0 =







√
h

0





 , w1 =
√

h







1 + x2

8
h

y2

8
h





 , w2 =
√

h







1 + x2

4
h +

2x3−x2

2
+y2

2

48
h2 + . . .

y2

4
h + y3−y2x2

24
h2 + . . .





 (17)

and

w3 =
√

h







1 + 3x2

8
h +

2x3+x2

2
−y2

2

16
h2 + . . .

3y2

8
h + y3−y2x2

8
h2 + . . .





 , w4 =
√

h







1 + x2

2
h +

2x3−x2

2
+y2

2

8
h2 + . . .

y2

2
h + y3−y2x2

4
h2 + . . .





 (18)

In order to check that the labeling procedure does not fail (as described in Remark 4), it is
sufficient to verify, that the real part of V1, and of the right-hand side of (7) are positive for
sufficiently small h. This is obvious for V1 from (16). The right-hand side of (7) depends of
the sign choice for w4. If ”+” is chosen, then it has the Taylor expansion







1764 h + 882 x2h
2 +

1008x3+63y2

2
−63x2

2

4
h3 + O (h4)

882 y2h
2 + 504y3−63y2x2

2
h3 + O (h4)





 . (19)
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Fig. 4. Asymptotical shapes of the four solutions (top row) and of their hodographs (bot-
tom row). The units of the coordinate axes are chosen as as h (horizontal axis) and 1
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If ”−” is chosen, then it has the Taylor expansion







1296 h + 648 x2h
2 + (168 x3 − 12 y2

2 + 12 x2
2) h3 + O (h4)

648 y2h
2 + (168 y3 + 24 y2x2) h3 + O (h4)





 . (20)

In both cases, the leading term of the real part is positive. Consequently, the labeling of the
solutions is correct for sufficiently small step–size h.

Using the expansions for the control points wi, we obtain the Taylor expansions of the
hodographs and of the PH interpolants, as listed in the Table 3. By considering the higher
order terms, it can be shown that the first six coefficients of c(t) and of p1(t) are identical. 2

The leading terms of the expansions shown in Table 3 define the asymptotic shapes of the
four PH interpolants, which are shown on the Figure 4, upper row. For sufficiently small
step–size h, the curves will become more and more similar to these shapes. They match very
nicely the four Hermite interpolants in Figure 1. Note that the loops degenerate to cusps in
the limit.

While the shape of the first solution p1 is free of singularities and reproduces the shape of
the curve c, the remaining three solutions have shapes involving one or two cusps, as can be
clearly seen from their hodographs (second row).

This fact has an important consequence for applications: In any algorithm based on subdivi-
sion, the solution p1 must be used. Interpolation by the other solutions would not improve
under subdivision. On the contrary, it would produce more and more points with very low
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Fig. 5. Approximate conversion of an analytical curve via C2 Hermite interpolation by
PH curves, obtained after splitting the parameter domain into 1, 2, 4 and 8 segments.

parametric speed and high acceleration.

6 Conversion algorithms

As an application of the results, we discuss the conversion of arbitrary curves into PH form,
and the rounding of curves described by G–code.

6.1 Analytical curves

The result described in Theorem 5 allows us to design an algorithm for the conversion of
any analytical curve into a piecewise PH curve. Suppose, that the parameter domain of the
analytical curve is [0, 1]. We split this interval into 2n subintervals [ i

2n , i+1
2n ], i = 0..(2n − 1).

For each subinterval, we construct the PH Hermite interpolant p1 and obtain a C2 continuous
PH spline curve of degree 9. If the error from the original analytical curve is not sufficiently
small, we continue the subdivision. Due to the Proposition 5, the error will converge to 0 as
O
(

1
64n

)

under subdivision.

The heigh rate of convergence is demonstrated by the following example. The figure 5 shows
the segment of the analytical curve c(t) = (3t, sin(11.7t))>, t ∈ [0, 1]. We construct the PH
Hermite interpolant for the whole segment and the piecewise PH interpolants obtained after
splitting the parameter into 2, 4 and 8 subintervals.

This method can easily be adapted to the case of piecewise analytical curves (such as any
type of NURBS curves), where the curve should first be split into its analytical segments.
Also, it can be modified to use an adaptive subdivision, by splitting only those segments

11



where the error is still too large.

6.2 Rounding G-code curves

Many CNC controllers use G-code for the tool path description. The curves representing the
tool path are composed of straight line segments and circular arcs. An important advantage
of this description is the possibility to control the speed of the moving tool along the path,
since the arc–length is known exactly. The main disadvantage is impossibility to obtain a
motion with continuous acceleration.

In order to avoid these discontinuities we propose to smooth the G-code curve, by replacing
the C1 joints between segments by small pieces of PH curves. They are obtained by C2

Hermite interpolation of data taken at two segments close to the joint.

Suppose that we have two neighboring segments, l(s) and r(s), both parameterized by the
arc-length and having a joint at s = s0. For a fixed h > 0 we consider the restricted segments

l(s), s ∈ [s0 − h, s0] and r(s), s ∈ [s0, s0 + h]. (21)

We may re-parameterize the union of these two restricted segments over the interval t ∈ [0, 1]
by setting s = 2th − h + s0. Finally, we construct the PH curve p1(t) which interpolates the
Hermite data

P0 = l(0), V0 = l′(0), A0 = l′′(0), P1 = r(1), V1 = r′(1), A1 = r′′(1). (22)

The error generated by this procedure is analyzed in the following proposition.

Proposition 6 Let p1 be the first PH interpolant of the C2 Hermite data, (22). Then

max







max
t∈[0, 1

2
]
||l(t) − p1(t)||, max

t∈[ 1

2
,1]
||r(t) − p1(t)||







= O(h2). (23)

Proof. The proof is again based on the Taylor expansion with respect to h. As the interpo-
lation construction is invariant under Euclidean transformations, we may suppose that the
two segments l(s) and r(s) are two circular segments with radii Rl and Rr and centers [Rr, 0]
and [Rl, 0], having joint for s = 0 at [0, 0],

l(s) =







Rl sin
(

s
Rl

)

Rl − Rl cos
(

s
Rl

)





 and r(s) =







Rr sin
(

s
Rr

)

Rr − Rr cos
(

s
Rr

)





 . (24)

The joints linear/circular or circular/linear are included as the limit cases Rl → ∞ and
Rr → ∞, respectively.
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After the re-parameterization s = 2th − h, we obtain the Taylor expansions

P0 =







−h + 1
6R2

l

h3 + . . .

1
2Rl

h2 + . . .





 , V0 =







2h − 1
R2

l

h3 + . . .

− 2
Rl

h2 + . . .





 , A0 =







4
R2

l

h3 + . . .

4
Rl

h2 + . . .





 (25)

and

P1 =







h − 1
6R2

r

h3 + . . .

1
2Rr

h2 + . . .





 , V1 =







2h − 1
R2

r

h3 + . . .

2
Rr

h2 + . . .





 , A1 =







− 4
R2

r

h3 + . . .

4
Rr

h2 + . . .





 . (26)

of the Hermite data (22). Similarly the proof of the Theorem 5, we generate Taylor expansions
of the preimage, of the hodograph and of the PH interpolant p1. Finally we obtain the
expansions of the errors

||l(t) − p1(t)|| =
1

2

∣

∣

∣

∣

1

Rl

− 1

Rr

∣

∣

∣

∣

(1 − 2t)(2 − t)t3h2 + . . . and

||r(t) − p1(t)|| =
1

2

∣

∣

∣

∣

1

Rl

− 1

Rr

∣

∣

∣

∣

(2t − 1)(1 + t)(1 − t)3h2 + . . . ,
(27)

which conclude the proof. Note that if Rl = Rr holds, then the joint becomes analytic and
the approximation order of the error will be 6. 2

By analyzing the leading terms of (27), one gets

max
t∈[0, 1

2
]

(1 − 2t)(2 − t)t3

2
= max

t∈[ 1

2
,1]

(2t − 1)(1 + t)(1 − t)3

2
=

36

125

√
10 − 9

10
≈ 0.0107 (28)

While it is rather difficult to obtain an explicit bound for the interpolation error due to the
influence of the higher order terms of the Taylor expansions (27), it would be highly useful to
have an a priori error bound. We propose the following bound obtained by majoring certain
coefficients in the Taylor expansion (27).

Conjecture 7 If h < 1
2
π min(|Rl|, |Rr|), then the error of replacing the segment joint by the

first PH interpolant to the points at arc-length distance h from the joint is bounded by

0.016
∣

∣

∣

∣

1

Rl

− 1

Rr

∣

∣

∣

∣

h2 +
0.004 h6

(|Rl| + |Rr|)5 . (29)

Experiments with about 30, 000 various input data Rl, Rl and h confirmed correctness of
this bound and showed it to be very conservative (the real error was always in between this
bound and its half). The h6 term is necessary only for the cases when Rl ≈ Rr and can be
omitted otherwise.

This formula allows to smooth a G-code curve with a prescribed precision in a very efficient
way. We demonstrate this by an example.
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Fig. 6. A G-code curve and its acceleration vectors scaled by 1/20 (upper left figure), and
two smoothing PH curves together along with the acceleration vectors (lower figures). The
three curves are also shown in the upper right figure, where the error between the original
curve and their approximations has been amplified by a factor 20, in order to make it
visible.

Consider the curve shown in the first figure Fig. 6, which represents a curve composed of two
circular segments (with radii 1 and 0.4) and one linear segment. The vectors of instantaneous
acceleration corresponding to a constant speed motion are shown (scaled by 1/20). Note the
discontinuous acceleration at the joints.

The plots in the second row show the two smoothened curves, along with the acceleration
distribution. They were obtained by interpolating the circular/linear segments respectively
at distance h = 0.15 and 0.3 from the joints. Note the high precision of the interpolation.
Using (29), the maximal error is bounded by 0.0022 for h = 0.3 and by 0.00054 for h = 0.15.
The shape of the interpolants can be seen in the upper right figure, where the distance of the
PH curve from G-code curve is amplified by a factor 20.

As demonstrated by this example, there is a tradeoff between the error of the modified tool
path (i.e., the deviation from the original G-code curve, which increases with h) and the
smoothness of the acceleration (which also increases with h). In addition, one may observe a
Gibbs–type phenomenon in the distribution of the acceleration (similar to the Fourier series
of a discontinuous function).
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7 Conclusion

We have discussed the problem of C2 Hermite interpolation with Pythagorean hodograph
curves. It has been shown, that this problem can be efficiently 2 be solved using curves of
degree 9, and that the best solution has approximation order 6. Based on these results, we
formulated algorithms for converting arbitrary curves into PH spline form, and for rounding
G-code curves.

By comparing the techniques which are available for the different cases of boundary data (see
Table 1), one may conclude that the use of geometric data (tangent directions and curvatures)
instead of analytic ones (velocities and accelerations) does not produce any real advantage.
Clearly, the degree of the resulting curves is much lower: It is 5 for G2 data, and 7 for mixed
G2[C1] data, instead of 9 for C2 data. However, the computation of the solution becomes
more complicated, and solutions do not always exist. Moreover, the approximation order of
the ‘best’ solution depends on the shape of the given curve (cf. [14], where a reduction of
the approximation order has been observed at inflections), while it remains the same for all
points in the case of analytic data.

I general, it can be shown, that the Ck Hermite interpolation always leads to three quadratic
equations over C and can be solved by PH curves of degree 4k + 1.
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