
Hybrid Curve Fitting

Martin Aigner and Bert Jüttler

Institute of Applied Geometry
Johannes Kepler University, Linz, Austria

www.ag.jku.at

Abstract

We consider a parameterized family of closed planar curves and introduce an
evolution process for identifying a member of the family that approximates a given
unorganized point cloud {pi}i=1,...,N . The evolution is driven by the normal velocities
at the closest (or foot) points (fi) to the data points, which are found by approxi-
mating the corresponding difference vectors pi − fi in the least–squares sense. In the
particular case of parametrically defined curves, this process is shown to be equiva-
lent to normal (or tangent) distance minimization, see [3, 19]. Moreover, it can be
generalized to very general representations of curves. These include hybrid curves,
which are a collection of parametrically and implicitly defined curve segments, pieced
together with certain degrees of geometric continuity.

1 Introduction

Fitting a parameterized curve to a given set of unorganized points is an important problem
in fields such as geometric modeling and computer vision. Due to the influence of the
parameterization, this leads to a non–linear optimization problem. Different approaches
for dealing with the effects of this non–linearity have been developed, such as ‘parameter
correction’ or the use of quasi–Newton methods [2, 6, 11, 12, 13, 15, 17, 19]. Clearly the
choice of a good initial solution is of outmost importance for the success of the optimization.
Geometrically motivated optimization strategies [13, 14, 15, 19], where the initial solution
is replaced by an initial curve and the formulation of the problem uses some geometric
insights, may lead to more robust techniques.

Due to the iterative nature of the techniques for non–linear optimization, it is natural
to view the intermediate results as a time–dependent curve which tries to adapt itself to the
target shape defined by the unorganized point data [14, 19]. This is related to the concept
of ‘active curves’ used for image segmentation in Computer Vision [18], and to so–called
Level Set methods [9, 10], where shapes are defined by time–dependent discretizations of
(approximations to) the signed distance function.

This paper is organized as follows. First we introduce a framework for fitting a member
of a given family of planar curves to unorganized point data, by defining an evolution
process which generates a time–dependent curve. For instance, the family of planar curves
may consist of “hybrid objects” obtained by combining simple shapes (such as circular arcs)
with free–form curves, see Figure 1 for a first example. In the case of parametric curves,
the evolution is equivalent to the method of normal (or tangent) distance minimization
[3, 19], as shown in Section 3. Section 4 discusses the generalization to other classes of
curves. Finally we conclude the paper.

1

Figure 1: Fitting a hybrid object (consisting of a circular arc and a B-spline curve)
to a point cloud. Left: initial configuration. Center and right: after 5
and 20 iterations. The figure shows the entire circle, but only the bold
segment belongs to the model.

2 The framework

We introduce the abstract notion of a parameterized family of closed planar curves and
describe the evolution of such a family, via least–squares approximation of normal veloci-
ties.

2.1 Parameterized families of closed curves

We consider a parameterized family of closed planar curves (s, u) 7→ cs(u). It depends on
two types of parameters: a single curve parameter u and a vector of shape parameters s.

For each curve of the family, the curve parameter u varies within the parameter domain
I = S

1, which can be identified with an interval Î = [a, b] with identified boundaries. The
vector s = (s1, . . . , sn) contains a system of shape parameters which specify the geometry of
the curve. The shape parameters are allowed to vary within a certain feasible set Ω ⊂ R

n.
We assume that cs(u) depends continuously on s and u, and that it is differentiable

for all (s, u) ∈ Ω × S
1, except for finitely many values W = {w1, . . . , wk} of the curve

parameter u, which will be called the vertex parameters. Still, for these values of u, it
is assumed to be differentiable with respect to the shape parameters s. In addition, it is
assumed that

c′
s
(u) =

∂

∂u
cs(u) 6= (0, 0) (1)

holds for all (s, u) ∈ Ω × I0, where I0 = I \ W . Consequently, each curve cs(u) of the
family has a well–defined tangent at all points, except for the vertex parameters1 cs(wj),
j = 1, . . . , k.

Example 1 Consider the family of closed planar B-spline curve of degree d with a certain
periodic knot vector, where the knots have at most multiplicity d − 1. The knot vector
is assumed to be fixed, while the control points may vary. In this situation, the shape
parameters are the components of all control points, which can be collected in a single
vector s of dimension 2m + 2, where m + 1 is the number of control points. The set of
vertex parameters W = {w1, . . . , wk} consists of all knots with multiplicity d− 1. The set
Ω contains all control points which lead to curves that are regular everywhere, except at
the vertices. While an exact description of the set Ω is generally hard to obtain, simple
conditions for subsets can be derived easily. See also section 3.

1These vertices should not be confused with points of stationary curvature.

2

Example 2 For a certain domain D ⊂ R
2 we consider all algebraic curves (i.e., the zero

level sets of polynomials) of degree d which possess exactly one closed loop within D with-
out singular points, and no other points. The shape parameters are the coefficients of
the defining polynomial, and the set Ω contains all coefficients that correspond to curves
satisfying these criteria. Again, an exact description of Ω is hard to obtain, but simple
descriptions for subsets are available. In this example, the curve parameterizations cannot
be constructed explicitly. Nevertheless, they exist, since one may choose arc length pa-
rameterizations scaled to a suitable common parameter domain2. As we shall see later, an
explicit description is not needed for the fitting. The set of vertex parameters is empty.

Remark 3 The feasible set Ω will not be analyzed in this paper; we will simply assume
that the distribution of the data guarantees the regularity of the resulting curve. As for
the existing methods of curve fitting, one may use variational techniques [4], whenever this
assumption is violated.

2.2 Fitting by evolution

Consider a given unorganized set of data points {pj}j=1..N and a given parameterized family
of closed planar curves with shape parameters s = (s1, . . . , sn), where n << N . We define
an evolution process in order to identify a curve among the family which approximates
these data.

Now, the shape parameters s = s(t) = (s1(t), · · · , sn(t)) depend smoothly on an evo-

lution parameter t, which be identified with the time. This leads to a smoothly varying
one-parameter family of curves. For t → ∞, the evolution produces a stationary value
s0 = limt→∞ s(t) which defines the approximating curve.

At a regular point cs(t)(u0) (i.e., u0 6∈ W), the normal velocity of the curve equals

v(u0) =

n∑

i=1

∂cs(u0)

∂si

ṡi(t)

∣
∣
∣
∣
∣
s=s(t)

· ~ns(t)(u0), (2)

where ~ns(u0) is the normal vector of the curve at u = u0, and the dot denotes the derivative
with respect to t. Note that the normal velocity depends linearly on the time derivatives
of the shape parameters.

The evolution is governed by a system of ordinary differential equations of the form
ṡ = F (s). In order to derive this system, we consider – for a certain time t and associated
shape parameters s = s(t) – the closest point(s), or foot point(s) 3, fj = cs(uj) on the
curve which can be associated with each data point pj. Clearly, the parameter uj of this
point depends on the shape parameters s. In order to move the curve closer to the data,
the closest points are expected to travel with the normal velocity

dj := (pj − fj) · ~ns(uj) (3)

Clearly, this normal velocity is defined only for regular points, uj 6∈ W . If one of the closest
points fj falls into a vertex, uj ∈ W , then its velocity

~vvertex(uj) =

n∑

i=1

∂cs(uj)

∂si

ṡi(t)

∣
∣
∣
∣
∣
s=s(t)

, (4)

2Strictly speaking, one would need to define a suitable starting point for these arc length parameter-
izations, e.g., the point where one of the coordinates attains its minimum value. In order to make sure
that this choice is feasible, one may consider only algebraic curves where this point is unique.

3In each time step, robust and efficient techniques for computing the closest points (foot points) of the
data on the current curve are needed, cf. [1, 7, 16]

3

PSfrag replacements

pj

cs(uj) = fj
PSfrag replacements

pj

cs(uj) = fj

Figure 2: Left: Fitting a curve to a point cloud by evolution. Dashed/solid line
is before/after displacement. Right: Difficulties with sharp corners (see
conclusion)

which depends again linearly on the ṡi, is expected to be equal to the difference pj − fj.
Generally, both conditions cannot be satisfied exactly for all points, since the points

depend on the shape parameters s, and n << N . Instead, we choose the time derivatives ṡ
of the shape parameters such that both conditions are satisfied in the least–squares sense,

ṡ = arg min
ṡ

∑

j=1,...,N
uj 6∈W

(v(uj) − dj)
2 +

∑

j=1,...,N
uj∈W

‖~vvertex(uj) − (pj − fj)‖
2 + R. (5)

The regularization term R is added in order to guarantee a unique solution. For instance,
one may choose a Tikhonov regularization, R = ω ‖ṡ‖2, with a small positive weight ω > 0,
cf. [8]. Due to the linear influence of the time derivatives ṡi in (2) and (4), Eq. (5) leads
to a system of linear equations

M(s) ṡ = r(s) or, equivalently, ṡ = M(s)−1 r(s). (6)

with a symmetric positive definite matrix M , which defines the evolution of the curve. In
order to trace the evolving one parameter–family of curves, we use explicit Euler steps4 for
numerically solving (6). In each time step, instead of computing the inverse matrix M−1,
we find the values of the time derivatives ṡ by solving the linear system.

Remark 4 The evolution by (normal) velocities defined by the closest points works rea-
sonably well if the current curve is already relatively close to the data. Otherwise, some
regions of the curve (without closest points) may simply be ignored by the evolution, since
the Tikhonov regularization tends to ‘freeze’ the previous position.

In order to address this problem, one may use a two–step evolution process (see [20]),
as follows. As a preprocessing, one generates the unsigned distance field U of the given
points. For instance, this can be done efficiently by using graphics hardware [5]. In the
first step of the evolution, one defines an equally spaced set of ‘sensor points’ along the
curve and defines the normal velocities (resp. velocities in the case of vertices) at these
points based on the unsigned distance field, v = ∇U · ~n. This evolution drives the curve
close to the data. The use of ‘sensor’ points corresponds to defining the force by numerical
integration along the curve. In the second step, one may replace the sensor points by
closest points, and use the previously described (normal) velocities.

4Instead, one may use (e.g.) higher order Runge–Kutta methods for tracing the solutions of (6).
However, since the stationary state reached in the limit t → ∞ is more interesting than the path that
leads to this solution, the simple explicit Euler method suffices.

4

Example 5 (Continuation of Example 2) In the case of algebraic curves,

Cs(t) := {x ∈ D | qs(t)(x) = 0 }, (7)

where the shape parameters s are the time –dependent coefficients of the time–dependent
polynomial qs(t), the normal velocity at a point of the zero contour equals −q̇s(t)/‖∇qs(t)‖,
where ~ns = ∇qs(t)/‖∇qs(t)‖. Problem (5) leads to

ṡ = arg min
ṡ

∑

j=1,...,N

(−
q̇s(t)(fj)

‖∇qs(t)(fj)‖
− dj)

2 + R. (8)

This least–squares problem leads to a linear system for the time derivatives of the shape
parameters. The parameterization of the curve is not needed; it suffices to know the closest
points (foot points) fj which are associated with the data. Note that – especially in the case
of polynomials of higher degree – the regularization should include terms that guarantee
that the scalar field defined by qs(t) approximates the signed distance field of the curve, at
least within the neighborhood of the curve. Otherwise, unwanted branches and singular
points are likely to occur. This simultaneously serves to normalize the coefficients of the
curve. See [20] for details.

3 Parametric curves

In this section we analyze the case of a family of closed B-spline curves. It is shown that
the evolution process described in Section 2.2 indeed produces a curve approximating the
data, and that the explicit Euler is closely related to the technique of normal (tangent)
distance minimization [3, 19].

3.1 Fitting by evolution

We consider a time–dependent family of closed planar B-spline curves of degree d,

cs(t)(u) =
m∑

i=0

φi(u)bi(t), (9)

see Example 1. The B-splines φi are defined with respect to a periodic knot vector, and
the control points bi = bi(t) which are represented as column vectors in R

2 depend on
the time t. For the sake of simplicity we exclude the case of knots with multiplicity
d − 1. The vector of shape parameters contains the components of all control points,
s = (b0,x, b0,y, b1,x, b1,y, . . . , bm,x, bm,y). The velocity of a fixed curve point cs(t)(u0) is the
time derivative of (9), which will be indicated by a dot.

We apply the framework of Section 2.2 to this situation. Problem (5) leads to

ṡ = arg min
ṡ

N∑

j=1





(
m∑

i=0

φi(uj)ḃi(t) − pj + fj

)>

~ns(t)(uj)





2

︸ ︷︷ ︸

=:F

, (10)

where fj = cs(t)(uj) is the closest point of pj on the curve, and ~ns(u) is the unit normal
vector at cs(u), which is obtained by a counterclockwise rotation of 90◦ from the unit
tangent vector.5

5In order to facilitate the theoretical analysis, the regularization term has been omitted. However, this
may cause degeneracies in practice, as described later.

5

Differentiating F with respect to the time derivatives of the control points leads to the
system of 2m + 2 linear equations

N∑

j=1

m∑

i=0

φi(uj) φk(uj) ~nj ~n>
j ḃi =

N∑

j=1

(pj − fj) φk(uj), k = 0, . . . , m, (11)

where ~nj = ~ns(uj). This can be rewritten in the matrix form

N∑

j=1

[
φi(uj) φk(uj) ~nj ~n>

j

]

i,k=0..m

[

ḃi

]

i=0..m
=

[
N∑

j=1

(pj − fj) φk(uj)

]

k=0..m

(12)

By solving this system we compute the ḃi and update the bi by an explicit Euler step.

3.2 Stationary points

We show how the evolution of parametric curves defined by (10) is related to the usual
fitting procedures for least–squares curve fitting. These techniques solve a problem of the
form

arg
b

min
b,u

N∑

j=1

∥
∥
∥
∥
∥

m∑

i=1

φi(u
∗
j)bi − pj

∥
∥
∥
∥
∥

2

, (13)

where both the control points b = (b0, . . . ,bm) and the parameter values u = (u∗
0, . . . , u

∗
N)

associated with the given data {pj}j=0,...,N are subject to the optimization.
In some cases (e.g. if the number of data points is too small, or if they lie in some

degenerated configuration) it is not possible to get a unique solution for the curve evolution,
without using a regularization.

Definition 6 For a given closed B-spline curve cs(u), consider a sequence (u∗
j)j=1..N of pa-

rameter values and the corresponding unit normals ~nj = ~ns(uj) The parameters {u∗
j}j=1..N

are said to be regular if the (2m+1)×N matrix [X1,X2, . . . ,XN] which is defined by the

2(m+1)-dimensional vectors Xj :=
[
φi(u

∗
j)
]

i=0..m
�~nj has maximal rank, where � denotes

the Kronecker product.6

Proposition 7 In a regular situation, any solution of the minimization problem (13) is a

stationary point of the differential equation (12).

Proof Let the u∗
j and b∗

i be such that they minimize (13). By differentiation it follows
that

∂

∂bk





N∑

j=1

∥
∥
∥
∥
∥

m∑

i=0

φi(u
∗
j)bi − pj

∥
∥
∥
∥
∥

2




∣
∣
∣
∣
∣
∣
bi=b∗

i

= 2
N∑

j=1

(
m∑

i=0

φi(u
∗
j)b

∗
i − pj

)

φk(u
∗
j) = 0. (14)

Consequently, since the u∗
j are also the parameters associated with the foot points of the

data pj, the right–hand side of (12) vanishes. On the other hand, the matrix of the linear
system (12) is the sum of N rank 1 matrices of the form Xj ⊗ X>

j , where ⊗ denotes the

dyadic product and Xj :=
[
φi(u

∗
j)~n

>
j

]>

i=0..n
. In a regular case, the 2(n + 1) matrices in the

sum (12) are linearly independent and therefore the matrix is regular. Consequently, the
homogenous system (12) has only the trivial solution.

6In the case of vectors (a1 . . . an)T �(b1 . . . bm)T = (a1b1, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm)T

6

3.3 Euler update vs. normal (tangent) distance minimization

In each time step, we compute the time derivatives ṡ and use them to generate an update
of the control points by an explicit Euler step with some stepsize h,

bi(t + h) = bi(t) + hḃi(t), (15)

where the derivatives ḃi are found by solving (10). We compare this Euler update with the
quasi–Newton technique of normal (or tangent) distance minimization [3, 19], which has
been proposed for solving problem (13), see also [13]. This technique iteratively updates
the control points,

bi → bi + ∆bi (16)

where the ∆bi are found by solving

[∆bi]i=0,...,m = arg min
∆bi

N∑

j=1

∥
∥
∥
∥
∥
∥

(
m∑

i=0

φi(uj)(bi + ∆bi) − pj)

)>

~ns(uj)

∥
∥
∥
∥
∥
∥

2

. (17)

After each step, new parameters uj are found by closest point computation.

Proposition 8 If h = 1, then (15) and (16) are equivalent.

Proof. Since h = 1, ∆bi = ḃi. Due to fj = cs(uj),

(
m∑

i=0

φi(uj)(bi + ∆bi) − pj)

)>

~ns(uj) =

(
m∑

i=0

φi(uj)ḃi − (pj − fj)

)>

~ns(uj),

the update (16) with ∆bi found from (17) and the update (15) with ḃi found from (10)
give equivalent results.

4 Evolution of hybrid objects

The framework described in Section 2 can be applied not only to implicitly defined curves
(see Example 5) or parametric ones (previous section), but it is also useful for hybrid

objects. These families of curves may be designed by using additional a–priori knowledge
about the target shape defined by the data, whenever such knowledge is available.

As a representative (though artificial) example, we consider a closed planar curve which
is composed of two cubic Bézier curves (B1 and B2) and two implicitly defined quadratic
curves (i.e., two conics, C1 and C2), see Figure 3, left. The quadratic bivariate polynomials
which define the conics are described by their Bernstein–Bézier representations with respect
to two basis triangles. The coefficients at the top vertices are fixed to be 1, and the
coefficients at the lower four vertices are chosen to be 0, in order to ensure that the conics
interpolate them.

The shape parameters are the control points of the parametric curves, the remaining
2 × 3 coefficients of the quadratic polynomials defining the conics, and the coordinates of
the lower two vertices of the two basis triangles (but not the top ones, which are fixed.).
In addition, we require continuity everywhere and tangent continuity between conics and
parametric curves, and use the resulting conditions to eliminate some of the shape param-
eters. (E.g., the two inner vertices of the two basis triangles are made to be equal, etc.)
Summing up, this leads to a reduced vector s consisting of 20 shape parameters.

The approximating curve is generated by the following algorithm, which is applied to
the reduced set of shape parameters.

7

PSfrag replacements

fix

C1 C2

B1 B2

Figure 3: Fitting of a hybrid curve. Initial value (left), intermediate result after 5
iterations (center) and final result after 20 iterations (right).

1. Initialization: Find initial shape parameters s(0). One may start with a user–defined
curve, or find an initial curve by picking the best curve among a set of curves obtained
by randomly sampling the shape parameters.

2. Compute the closest points of the given data points on the current curve and define
the associated normal velocities.

3. Find the derivatives ṡ(t) of the shape parameters by solving the linear system (5).

4. Choose the step size h = min(1, {C/v(uj)}j=1,...,N), where the user–defined constant
C specifies the largest tolerated displacement of a closest point on the curve, and
update the shape parameters, s(t + h) = s(t) + hṡ(t).

5. The algorithm terminates if ‖ṡ(t)‖ is below a user–defined threshold; otherwise con-
tinue with step 2.

Figure 3 shows the evolution of this hybrid curve for approximating 200 points sampled
from a heart–like shape. Note that the hybrid model automatically detects the joints
between linear and circular segments in the given data. Clearly, this is only possible by
exploiting the additional a-priori information about the target shape.

5 Concluding remarks

We introduced an abstract framework for fitting curves to unorganized data by a true
evolution process, which generalizes the technique of normal (or tangent) distance mini-
mization. This technique can deal with a large class of curve representations, which even
includes hybrid objects. This makes it possible to exploit additional a-priori information
about the geometry of the target object. In addition, one may easily extend the procedure
to other velocity fields, which may, e.g., be derived by combining information from images
with curvature information.

Future research will address the generalization to objects in 3–dimensional space and
the characterization of stationary points in the general case. Also, in the case of noisy
data, we need to study the problem of how to associated the points with the curve in more

8

detail. In the case of sharp vertices, some of the points may end up on the wrong branch,
leading to a relatively large error in the position of the vertex, see Figure 2.

Acknowledgment. The authors were supported by the Austrian Science Fund (FWF)
through the FSP S 92 “Industrial Geometry”.

References

[1] M. Aigner and B. Jüttler, Robust Computation of Foot Points on Implicitly Defined Curves, in:
Mathematical Methods for Curves and Surfaces: Tromsø 2004 (M. Dæhlen et al., eds.), Nashboro
Press, 2005, 1–10.

[2] M. Alhanaty and M. Bercovier, Curve and surface fitting and design by optimal control methods,
Computer–Aided Design 33 (2001), 167–182

[3] A. Blake and M. Isard, Active contours, Springer, 2000.

[4] H. Hagen, G. Brunnett and P. Santarelli, Variational Principles in Curve and Surface Design, Surv.
Math. Ind. 3, 1-27, 1993.

[5] K. E. Hoff et al., Fast computation of generalized Voronoi diagrams using graphics hardware, SIG-
GRAPH’99 proceedings, 277–286.

[6] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, AK Peters, Wellesley
Mass., 1996.

[7] S.-M. Hu and J. Wallner, A second order algorithm for orthogonal projection onto curves and surfaces,
Comp. Aided Geom. Des. 22 (2005), 251–260.

[8] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic
Publishers, Dordrecht, 1996.

[9] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed, algorithms based on a
Hamilton-Jacobi formulation, J. Comp. Phys. 79 (1988), 12–49.

[10] S. Osher and R. P. Fedkiw, Level set methods and dynamic implicit surfaces, Springer, 2003

[11] D. F. Rogers and N. G. Fog, Constrained B-spline curve and surface fitting, Computer Aided Design
21 (1989), 641–648.

[12] B. Sarkar and C.-H. Menq, Parameter optimization in approximating curves and surfaces to measure-
ment data, Comp. Aided Geom. Design 8 (1991), 267–280

[13] H. Pottmann and S. Leopoldseder, A concept for parametric surface fitting which avoids the
parametrization problem. Comp. Aided Geom. Design 20 (2003), 343-362.

[14] H. Pottmann, S. Leopoldseder, and M. Hofer. Approximation with active B-spline curves and surfaces.
Proc. Pacific Graphics 2002, IEEE Press, 8–25.

[15] H. Pottmann et al., Industrial geometry: recent advances and applications in CAD, Computer-Aided
Design 37 (2005), 751–766.

[16] N.J. Redding, Implicit polynomials, orthogonal distance regression and the closest point on a curve,
IEEE Trans. on Pattern Analysis and Machine Intelligence 22 (2000), 191–199.

[17] T. Speer, M. Kuppe, and J. Hoschek, Global reparametrization for curve approximation, Comput.
Aided Geom. Design 15 (1998), 869–877.

[18] M. Kass, A. Witkin and D. Terzopoulos, Snakes: active contour models. Int. J. Comp. Vision 1.4

(1987), 321–331.

[19] W. Wang, H. Pottmann and Y. Liu, Fitting B-spline curves to point clouds by squared distance
minimization. ACM Transactions on Graphics 25.2 (2006).

[20] H. Yang et al., Evolution of T-spline Level Sets with Distance Field Constraints for Geometry Recon-
struction and Image Segmentation, submitted, FSP report no. 1 (2005), available at www.ig.jku.at.

9

