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Abstract. The problem of approximating a given set of data points by splines
composed of Pythagorean Hodograph (PH) curves is addressed. In order to solve
this highly non-linear problem, we formulate an evolution process within the fam-
ily of PH spline curves. This process generates a one–parameter family of curves
which depends on a time–like parameter t. The best approximant is shown to be
a stationary point of this evolution. The evolution process – which is shown to
be related to the Gauss–Newton method – is described by a differential equation,
which is solved by Euler’s method.

1 Introduction

Curves with simple closed form descriptions of their parametric speed and arc–length
are useful for various applications, such as NC machining. They greatly facilitate the
control of the tool along a curved trajectory with constant (or user–defined) speed. In
addition, these curves admit a simple exact representation of their offset curves.

This motivated the investigation of the interesting class of Pythagorean Hodograph
(PH) curves, see [Far02] and the references cited therein. This class consists of (piece-
wise) polynomial curves with a (piecewise) polynomial parametric speed, see Fig. 1
for an example. Various constructions for PH curves were developed. Due to the non–
linear nature of PH curves, these are mainly based on local techniques, such as the
interpolation of Hermite boundary data [MW97,MFC01,FMJ98,ŠJ05]2.

In many situations, it is more appropriate to use global approximation techniques,
such as least–squares fitting, since this generally reduces the data volume and produces
a more compact representation. In the case of PH curves, very few global methods
are available, dealing with interpolation and least–squares fitting [FST98,FKMS01].
In the latter paper, the authors use non–linear optimization to generate a PH quintic
which interpolates two boundary points and approximates additional points, where the
parameter values assigned to them are kept constant.

Even for simple curve representations, such as polynomial spline curves, curve
fitting is a non–linear problem, due to the influence of the parameterization. Differ-
ent approaches for dealing with the effects of this non–linearity have been developed

1 supported by the Austrian Science Fund (FWF) through project P17387–N12.
2 Similar techniques for space curves exist also, see [Far02].



Fig. 1. Examples of piecewise polynomial Pythagorean hodograph curves
(black) and their piecewise rational offsets (grey). Each character is composed
of three PH quintics.

[AB01,HL93,RF89,PL03,PLH+05,SKH98,WPL06], such as ‘parameter correction’ or
the use of quasi–Newton methods. Clearly the choice of a good initial solution is of
outmost importance for the success of the optimization. Geometrically motivated op-
timization strategies [PL03,PLH02,PLH+05,WPL06], where the initial solution is re-
placed by an initial curve and the formulation of the problem uses some geometric
insights, may lead to more robust techniques.

Due to the iterative nature of the techniques for non–linear optimization, one may
view the intermediate results as a time–dependent curve which tries to adapt itself to
the target shape defined by the unorganized point data [PLH02,WPL06]. This is re-
lated to the idea of ‘active curves’ used for image segmentation in Computer Vision
[KWT87]. Recently we formulated a general framework for evolution–based fitting of
hybrid objects [AJ05].

In this work we generalize this framework and analyze its relation to the Gauss–
Newton method. In addition, we apply it to the problem of least–squares approximation
by Pythagorean hodograph spline curves.

The remainder of this paper is organized as follows. In the next two sections we
recall some basics about PH curves, and we introduce a general framework for abstract
curve fitting. Then, this framework will be applied to the special case of Pythagorean
hodograph curves, and its relation to Gauss–Newton iteration will be analyzed. Finally
we conclude the paper.

2 Pythagorean hodograph curves

The hodograph of a planar polynomial curve c(u) = [x(u), y(u)]> of degree n is the
vector h(u) = [x′(u), y′(u)]> of degree n − 1, where ′ denotes the first derivative.
Recall that a polynomial curve is called Pythagorean Hodograph (PH) if the length
of its tangent vector is a (piecewise) polynomial of the parameter u. More precisely,
c(u) = [x(u), y(u)]> is called planar PH curve if there exists a polynomial σ(u) such
that

x′(u)2 + y′(u)2 = σ2(u). (1)
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Three polynomials x′, y′ and σ satisfy equation (1) 3 if and only if there exist three
polynomials α, β, ω such that

x′ = ω(α2 − β2), y′ = ω(2αβ), σ = ω(α2 + β2), (2)

see [Kub72]. As a major advantage of PH curves, compared to ‘ordinary’ polynomial
curves, they possess a (piecewise) polynomial arc length function

s(u) =

∫ u

u0

|σ(v)| dv (3)

and (piecewise) rational offset curves (parallel curves)

od(u) = c(u) +
d

|σ(u)|
[y′(u),−x′(u)]>, (4)

where d is the (oriented) offset distance.
Throughout the remainder of this paper we will assume that ω = 1, restricting

ourselves to curves with hodographs of the form

x′(u) = α2(u) − β2(u), y′(u) = 2α(u)β(u). (5)

As to be justified by Proposition 1, these PH curves will be called regular PH curves.
They form a subset of all PH curves distinguished by the property that gcd(x′(u), y′(u))
is a square of a polynomial.4

Regular PH curves can be constructed as follows: First we choose two polynomials
[α(u), β(u)]> which define the so–called preimage curve. We generate the hodograph
using (5) and integrate the two components. This gives the parametric representation of
the PH curve.

Since two curves c(u), c̃(u) have the same hodograph if and only if they differ
only by translation, a regular planar PH curve p(u) is fully determined by the preim-
age [α(u), β(u)]> and by the location of its starting point c(0) (which is specified by
choosing the integration constant).

While the ‘ordinary’ PH curves may have cusps (namely for all parameter values of
u which are roots of ω), regular PH curves are always tangent continuous.

Proposition 1. Any regular (i.e., generated using (5)) Pythagorean hodograph curve,
where the two polynomials α(u) and β(u) defining the preimage are not both identi-
cally to zero, (α(u), β(u)) 6≡ (0, 0), has a smooth field of unit tangent vectors for all
values u ∈ R of the curve parameter. Moreover its parametric speed and arc-length are
polynomial functions, and its offsets are rational curves.

Proof. Clearly, σ(u) = α(u)2 + β(u)2 is a non-negative polynomial representing the
speed function of c(u). The absolute value can be omitted in (3) and the arc-length
function is a polynomial defined on R. Consider

q(u) =

[

α(u)2 − β(u)2

α(u)2 + β(u)2
,

2α(u)β(u)

α(u)2 + β(u)2

]>

. (6)

3 They are said to form a Pythagorean triplets in the ring of polynomials
4 This includes the generic case gcd(x′(u), y′(u)) = 1.
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Except for the roots of α(u)2 + β(u)2, the vector q(u) is a unit vector tangent to c

at c(u) and it has the same orientation as [x′(u), y′(u)]>. Moreover, any root u0 of
α(u)2 + β(u)2 has an even multiplicity 2k, since α(u)2 + β(u)2 is non-negative. Also
(u−u0)

k must divide both α(u) and β(u) and therefore (u−u0)
2k divides the numer-

ators and the denominator of (6). After eliminating all common factors of numerators
and denominators, we can therefore extend q(u) smoothly to u ∈ R and we obtain a
smooth unit vector field along c(u).

Finally we note that the offset formula (4) simplifies to

od(u) = c(u) + dq(u)⊥, (7)

and it defines a rational curve on R. ut

Remark 1. The observation formulated in Proposition 1 can be seen as another advan-
tage of PH curves, compared to the more general class of standard polynomial (Bézier)
curves. The more general curves are not necessarily tangent continuous, since cusps
may be present.

3 An abstract framework for curve fitting via evolution

We describe a general framework for the evolution-based approximation of a given data
set by a curve. Later we will apply it to the special case of PH spline curves.

3.1 Families of parametric curves and evolution of shape parameters

We consider a parameterized family of planar parametric curves (s, u) 7→ cs(u). Two
different kinds of parameters appear in the representation of the curve; the curve pa-
rameter u and a vector of shape parameters s = (s1, . . . , sn).

For instance, one may consider a family of spline curves, where the shape param-
eters are both the control points and the knots. Later, in the case of PH spline curves,
the shape parameters will be the control points defining the preimage curve and the
integration constants.

We assume that the curve parameter varies within a fixed interval I = [a, b] (the
parameter domain of the curve), and that the vector of shape parameters s is contained
in some domain Ω ⊂ R

n. For all (s, u) ∈ Ω × I the curve cs(u) shall depend contin-
uously on the parameters. We assume that the curve has a well–defined normal vector
at all points. Due to Proposition 1, this assumption is satisfied in the case of regular PH
curves.

Among the curves of this family, we identify a curve that approximates a given set
of (unordered) data points {pj}j=1..N in the least–squares sense. More precisely, we
are looking for the vector of shape parameters that defines this curve.

We let the shape parameters s depend smoothly on an evolution parameter t, s(t) =
(s1(t), . . . , sn(t)). The parameter t can be identified with the time. Starting with certain
initial values, these parameters are modified continuously in time such that a given
initial curve moves closer to the data points.
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Fig. 2. Closest points and derived (normal) velocities.

This movement will be governed by a system of differential equations of the form
ṡ = F (s). By numerically solving this system and (approximately) computing the limit
limt→∞ s(t), we obtain a curve cs(u) which has minimal distance from the data points.

During the evolution of a curve cs(t)(u), each point travels with the velocity

vs(t)(u) = ċs(t)(u) =
n
∑

i=1

∂cs(u)

∂si

ṡi(t). (8)

The dot denotes the derivative with respect to the time variable t. Since the tangential
component of the velocity (8) can be seen as a reparameterization of the curve, we
consider mainly the normal velocity

vs(t)(u) = vs(t)(u)>ns(t)(u) =

n
∑

i=1

(

∂cs(u)

∂si

ṡi(t)

)>

ns(t)(u), (9)

where ns(t)(u) denotes the unit normal of the curve in the point cs(u). Note that the
normal velocity depends linearly on the derivatives ṡi(t) of the shape parameters.

3.2 Evolution for approximation

We will derive the evolution equation by specifying suitable velocities for some points
of the curve. We assume that a set of data points {pj}j=1,...,N is given. For each point,
we consider the associated closest point fj = c(uj) of the curve,

uj = arg min
u∈[a,b]

‖pj − cs(u)‖. (10)

During the evolution, these points are expected to travel towards their associated data
points. Consequently, the normal velocity v(uj) of a curve point cs(uj) = fj should be

dj = (pj − fj)
>ns(t)(uj). (11)

If a closest point is one of the two boundary points (uj ∈ {a, b}), then we consider the
velocity (8), see Fig. 3.2.

Following (8) and (9) we can compute for each point fj the velocity or normal
velocity on the one hand and the expected velocity on the other hand. In general, the
number of data points exceeds the degrees of freedom of the curve to be fit to these data
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(N À n). Hence the conditions for the velocities in the foot points cannot be fulfilled
exactly. We choose the time derivatives of the shape parameters such that the conditions
for the velocities are satisfied in the least–squares sense,

ṡ = argmin
ṡ

= ω⊥

N
∑

j=1
uj 6∈{a,b}

(v(uj)−dj)
2+ωv

N
∑

j=1
uj∈{a,b}

‖v(uj)−(pj−fj)‖
2+ωRR, (12)

see (8), (9), (10) and (11). The non–negative weights ω⊥ 6= 0, ωv and ωR are used
to control the influence of the three different terms. In order to ensure that a unique
minimizer for the least–squares problem (12) exists, a regularization term R is added in
(12). As a possibilty one may use Tikhonov regularization, where R = ‖ṡ‖2.

As a necessary condition for a minimum, the derivatives of the right–hand side in
(12) with respect to the ṡi vanish. Since these factors enter linearly in (8) and (9), the
optimality condition yields a system of linear equations

M(s)ṡ = r(s). (13)

In general, this ODE cannot be solved exactly. Nevertheless, the vector ṡ can easily be
computed for each given vector s by solving the linear system,

ṡ = F (s) = M−1(s) r(s). (14)

Using explicit Euler-steps si → si + hṡi, with a suitable step-size h, one can trace the
evolving curves. This method for the numerical solution of the ODE corresponds to a
discretization of the evolution in time.

Remark 2. In order to reduce the computational effort needed for computing the closest
points on the curve (especially when the curve is still relatively far from the data), one
can proceed as follows. As a preprocessing step, the distance field of the target shape
is computed. This can be done efficiently using the graphics hardware, see [HKL+99].
Starting with some equally spaced sensor points on some initial shape, the velocities
(or normal velocities in the case of vertex points) can be defined with the help of the
distance field. Finally, the sensor points are replaced by the closest points, if the distance
to the data points drops below a certain threshold. Similarly, one may use velocities
derived from other data, such as images, in order to deal with applications such as
image segmentation.

3.3 Stationary points of the evolution

The solutions of the least–squares problem

arg
s

min
s

N
∑

j=1

min
uj∈[a,b]

‖pj − cs(uj)‖
2 (15)

are closely related to the evolution process defined by (14). In order to establish this
connection, we need some technical assumptions. We assume, that the curve is non–
singular (c′s(uj) 6= 0) at the closest points cs(uj) to the data points. In addition, we
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exclude certain singular cases, e.g., when the number of degrees of freedom exceeds
the number of data points when the data points lie in some degenerate position. This is
made precise in the following definition.

Definition 1. For a given curve cs(u), consider a set U = {uj}j=1..N of parameter
values such that c′s(u) 6= 0 and {a, b}∩U = ∅. The corresponding unit normal vectors
are nj = ns(uj). The set of parameters U is said to be regular if the N × n matrix

Aj,k = n>
j

∂cs(uj)

∂sk

(16)

has maximal rank.

Lemma 1. In a regular case and if all closest points are neither singular nor boundary
points, then any solution of the usual least–squares fitting (15) of a curve cs(u) is a
stationary point of the differential equation derived from the evolution process.

Proof. As a necessary condition, the first derivatives of F with respect to the curve
parameters {uj}j=1..N and the shape parameters {si}i=1..n vanish, where F is the sum
of squared errors in (15),

∂F

∂uj

= 2 (pj − cs(uj))
> ∂cs(uj)

∂uj

= 0, (17)

and
∂F

∂si

= 2

N
∑

j=1

(pj − cs(uj))
> ∂cs(uj)

∂si

= 0. (18)

On the other hand, the ODE defining the curve evolution is found by computing the first
derivatives of

N
∑

j=1

(

(vj − (pj − fj))
>

nj

)2

with respect to the derivatives of the shape parameters ṡk. This yields

2

N
∑

j=1

[

(vj − (pj − fj))
>

njn
>
j

∂cs(uj)

∂sk

]

= 0 ∀k (19)

Due to (17), the error vectors pj − fj are perpendicular to the tangent vectors, hence
(pj − fj)

>njn
>
j = (pj − fj)

>. Taking (18) into account, (19) simplifies to

N
∑

j=1

[

v>
j njn

>
j

∂cs(uj)

∂sk

]

=

N
∑

j=1





(

n
∑

i=0

∂cs(uj)

∂si

ṡi

)>

njn
>
j

∂cs(uj)

∂sk



 = 0 ∀k.

Rewriting this equation we get

n
∑

i=0

N
∑

j=1

[

(

∂cs(uj)

∂si

)>

njn
>
j

∂cs(uj)

∂sk

]

ṡi = 0 ∀k,
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or in matrix notation A>Aṡ = 0, where the components of A are defined as in (16).
This system has only the trivial solution if the matrix A>A is regular which corresponds
to rank(A)= n + 1. In a regular case this condition holds. ut

We will continue this discussion in Section 6, where we prove that the evolution is
equivalent to a Gauss–Newton step for the least–squares problem (15).

4 Evolution of PH splines

In this section we apply the general framework of the previous section to the case of PH
splines. More precisely, we will represent the preimage [α(u), β(u)] as an open integral
B-spline curve [HL93, p. 176]. Let

(u0 = u1 = . . . = uk−1, uk, uk+1, . . . , um, um+1 = um+2 = . . . = um+k) (20)

be a given knot vector and Ni,k(u), (i = 0, . . . , m) the associated B-spline functions
of order k. Then Ni,k(u) form a basis of the linear space of piecewise polynomials
of degree k − 1 on the interval [uk−1, um+1] which are Ck−2 at the points {ui, i =
k, . . . , m}. We choose the components α(u), β(u) of the preimage from this space of
functions,

α(u) =

m
∑

i=0

αiNi,k(u) and β(u) =

m
∑

i=0

βiNi,k(u). (21)

The resulting PH spline is obtained as

c(u) =

[

x0

y0

]

+

∫ u

uk−1

[

α2(ũ) − β2(ũ)
2α(ũ)β(ũ)

]

dũ =

[

x0

y0

]

+
m
∑

i=0

m
∑

j=0

[

αiαj − βiβj

2αiβj

]

Ki,j(u)

where the piecewise polynomials Ki,j(u) of degree 2k − 1 are defined as

Ki,j(u) :=

∫ u

uk−1

Ni,k(ũ)Nj,k(ũ)dũ. (22)

As shape parameters – in the sense of the previous section – we can consider the spline
end point coordinates x0, y0, the spline coefficients αi, βi and even the knots ui. In our
implementation we have kept the knot vector fixed and considered only an evolution
with respect to the following n = 2m + 4 shape parameters

s = {x0, y0, α0, . . . , αm, β0, . . . , βm}. (23)

We compute the quantities occuring in (12). The partial derivatives of c(u) with respect
to the shape parameters are

∂c(u)

dx0
= [1, 0]>,

∂c(u)

dy0
= [0, 1]>,

∂c(u)

dαi

= 2
m
∑

j=0

[αj , βj ]
>Ki,j(u) and

∂c(u)

dβi

= 2
m
∑

j=0

[−βj , αj ]
>Ki,j(u).
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The velocity (8) of any curve point c(u) equals

vs(t)(u) = [ẋ0, ẏ0]
> + 2

m
∑

i=0

m
∑

j=0

[αj α̇i − βj β̇i, βj α̇i + αj β̇i]
>Ki,j(u), (24)

which is linear in the derivatives ẋ0, ẏ0, α̇i, β̇i of shape parameters. The unit normals
are

ns(t)(u) =
c′(u)⊥

α(u)2 + β(u)2
=

m
∑

i=0

m
∑

j=0

[

2αiβj

βiβj − αiαj

]

Ni,k(u)Nj,k(u)

m
∑

i=0

m
∑

j=0

(αiαj + βiβj)Ni,k(u)Nj,k(u)

(25)

which makes it simple to evaluate the normal speed (9).
In each time step of the discretized evolution, we need to find the closest point. For

instance, this can be formulated as a polynomial root–finding problem, since

c′(u)>(c(u) − pi) = 0 (26)

is piecewise polynomial in u. For each pi we can find all solutions of (26) and com-
pare the distance of the closest one with the distance of pi to the end-points.5 Due to
Proposition 1, the normal direction is well defined at all inner points of the curve.

The length of the PH spline has the particularly simple expression

Ls(t) =

∫ um+1

uk−1

(

α(u)2 + β(u)2
)

du =

m
∑

i=0

m
∑

j=0

(αiαj + βiβj)Ki,j(um+1). (27)

Clearly, the Ki,j(um+1) are constant numbers which have to be computed only once,
and Ls(t) is a quadratic function in the shape parameters with partial derivatives

∂Ls(t)

dαi

= 2

m
∑

j=0

αjKi,j(u) and
∂Ls(t)

dβi

= 2

m
∑

j=0

βjKi,j(u). (28)

The simple expression of the length of the PH spline inspired us to use the regularization
term

R :=
(

Le − Ls(t) − L̇s(t)

)2

, (29)

which forces the curve length Ls(t) to converge to some estimated constant value Le.

5 Examples of PH splines evolution

We apply the procedure described in Section 4 to two examples. In both cases we use
piecewise PH cubics defined by piecewise linear C0 preimages. The resulting PH spline
consists of polynomial pieces of degree 3 joined with C1 continuity.

5 Note that the frequent closest point computation can be avoided during the first part of the
evolution, when the curve is still relatively far from the data, see Remark 2.
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Fig. 3. Approximation of noisy data.

In order to obtain an evolution which converges to a good PH approximation of the
input points, it is necessary to choose a suitable initial position of the evolving curve.
For instance, one might assume that the user sketches a polynomial spline curve which
is then converted to PH form via Hermite interpolation [MW97]. Alternatively, certain
(semi–) automatic estimation procedures can be developed.

In the following examples we have used a different approach. We start with a PH
spline which is in a rather poor initial position but, it consists only of a small number of
cubic segments. Therefore, only few shape parameters si are involved, and the danger
of an evolution towards a local minimum is reduced. After several evolution steps, we
raise the number of spline segments (via knot insertion) without modifying the shape of
the curve c(u). Then we continue the evolution until some stable situation is reached.
This procedure can be repeated until the maximum error is sufficiently low.

Example 1. In this example (see Figure 3), the input points were obtained from two
circular arcs with radius 1. We added additional random noise to sampled points ranging
from−0.05 to 0.05 in both x and y point coordinates. We evolved a PH spline composed
of two cubic PH segments depending on 8 shape parameters: 3 for each of piecewise
linear preimage components u, v and 2 integration constants determining the position
of the start point c(0) of the PH spline. In the initial postion, the spline degenerates into
a straight line.

Since the target shape is quite simple, no special adjustment of the evolution control
values ω⊥, ωv, ωR and Le is necessary. The length of the spline was estimated as Le =
π and the regularization term (29) was kept unchanged during the whole evolution.
Also, the weights occuring in (12) were all set to 1 and the maximal permitted change
of the curve to 0.2 during the whole evolution.6

Figure 3 shows the evolution of the spline from its initial position towards a sta-
tionary solution, which is reached after 8 steps. The maximum error is then 6.02 10−2

which corresponds to the magnitude of the noise.

Example 2. In this example (see Figure 4) the input points were taken from a more
complicated free-form curve. For this reason the evolution had to be controlled in a
more sophisticated way. Again, we started with a PH spline composed of two straight

6 At each step the step-size h ≤ 1 was estimated so that no point of the curve changes more
then 0.2. When the curve is sufficiently close to a stationary point, then h = 1.
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Fig. 4. Approximation of
points taken from a spline
curve.

line segments. The maximal permitted change was again kept equal to 0.2 through the
whole evolution. In order to match the global shape of the curve we started with a small
imposed curve length Le = 8 and with weights ω⊥ = ωv = ωR = 1. After step 30 the
global shape of the curve is already well matched and the actual curve length is already
9.89.

Through steps 31 to 45 we gradually raised Le length up to 14, the real length being
at this moment only slightly greater. At this stage of the evolution it was necessary to
fix the end points. For this purpose we relaxed the curve length condition by putting the
weight wR equal to 0.1 (while keeping the required length Le = 14) and we set the
end-point weight ωv = 100. After only three steps the end points were fixed (see Step
48). At this moment the length was 15.5 and the maximum error 0.328.

Then we started the knot insertion. For a spline composed of 4 segments we reached
a maximum error of 0.227 at step 58. Then we inserted 6 knots in the intervals where
the error was large (at the left part of the curve). The non-uniform spline composed of
10 parts converged at a stationary postion in step 73. The length equals 15.3, and the
maximum error is 1.63 10−2.
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6 Speed of convergence

We analyze the convergence speed of the PH spline evolution. More precisely, via com-
paring the evolution method with the Gauss-Newton method we show the quadratic
convergence in the zero-residual case.

Lemma 2. The Euler update of the shape parameters s for the curve evolution with
step size h is equivalent to a Gauss-Newton with the same step size h of the problem

N
∑

j=1

‖pj − cs(uj)‖
2 → min

s
where uj = arg min

u∈[a,b]
‖pj − cs(u)‖, (30)

provided that {a, b} ∩ {uj | j = 1, . . . , N} = ∅ 7 and ωR = 0.

Proof. Recall that dj := (pj − cs(uj))
>ns(uj), see (11). In order to solve

f =

N
∑

j=1

d2
j =

N
∑

j=1

‖pj − cs(uj)‖
2 → min

s
where uj = arg min

u∈[a,b]
‖pj − cs(u)‖,

one may use a Gauss-Newton iteration. The new iterate s+ = s + h∆s is found by
solving

N
∑

j=1

[dj(s) + (∇dj(s))
>∆s]2 → min

∆s
. (31)

In our case, the components8 of the gradients ∇dj are found from

2dj [∇dj ]i = [∇(d2
j )]i = [∇‖pj − cs(uj)‖

2]i =

= −2

(

∂cs(uj)

∂si

+ c′s(uj)
∂uj

∂si

)>

(pj − cs(uj)) = −2

(

∂cs(uj)

∂si

)>

(pj − cs(uj)),

where we exploited the orthogonality of the tangent vectors c′
s(uj) at the closest points

and the error vectors (pj − cs(uj)) = 0. Hence,

[∇dj ]i = −

(

∂

∂si

cs(uj)

)>

ns(uj), (32)

and Gauß-Newton reads as

N
∑

j=1

[

(pj − cs(uj))
>ns(uj) −

n
∑

i=1

(

∂

∂si

cs(uj)
>ns(uj)∆si

)

]2

→ min
∆s

. (33)

Due to (9) and (11), the time derivatives ṡi obtained from the optimization problem
(12), which defines the evolution of the curve, are equal to the Gauss–Newton updates

7 This technical assumption ensures that none of the closest points appears at the boundary. It
could be avoided by considering closed curves instead of open ones.

8 Here, [v]i denotes the i–th component of a vector v = (v1, . . . .vn)>

12



Table 1. Approximation errors during the evolution.

Step Error Step Error Step Error Step Error Step Error

1 1.02 10−1 3 3.48 10−2 5 5.52 10−3 7 6.50 10−9 9 1.10 10−30

2 6.50 10−2 4 1.67 10−2 6 4.95 10−5 8 1.37 10−16 10 2.78 10−60
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Fig. 5. Approximation of points taken from a PH spline.

∆si obtained from (33)9. Hence, for stepsize h = 1, the Euler method for the evolution
and the Gauss–Newton iteration for (30) are equivalent. ut

Gauss–Newton methods exhibit quadratic convergence, provided that the residuum
vanishes (i.e., all errors vanish for the final solution). Indeed, it can be seen as a Newton
iteration, where the second part of the expansion

∇2f =

N
∑

j=1

∇dj(∇dj)
> +

N
∑

j=1

dj∇
2dj (34)

of the Hessian has been omitted. If dj = 0, then this part vanishes.

Example 3. In order to demonstrate the speed of convergence, we consider an example
where the input points were taken from a PH spline, see Figure 5. The initial position
of the evolution has been obtained by only slightly perturbing the coefficients of the
input curve. Through the first five steps of the evolution, the curve evolved to a good
approximant - see Table 1 for approximation errors at different evolution steps. For all
remaining steps, the approximation error at any step is essentially a square of the error
at the previous step, which demonstrates the quadratic convergence of the method.

7 Concluding remarks

We developed and analyzed an evolution–based fitting procedure for Pythagorean hodo-
graph spline curves. It was shown that this problem can efficiently be dealt with, pro-
vided that a good initial solution is available. In this sense, least–squares fitting by PH
spline curves is not necessarily more complicated than the same problem for standard

9 The second and third term in (12) are not present, since no closest points at the curve bound-
aries were assumed to exist, and ωR = 0.
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curve representions. Indeed, the special properties of PH curves make it even easier
to use certain geometrically motivated regularization terms, such as the length of the
curve. Future research will be devoted to using the approximation procedure in order to
obtain more compact representation of NC tool paths (currently often specified as G-
code), where we will cooperate with one of our industrial partners, and on least–squares
approximation by surfaces with rational offsets.
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