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1 Institute of Applied Geometry, Johannes Kepler University, A-4040 Linz, Austria
martin.aigner@jku.at, Bert.Juettler@jku.at,

2 RISC–Linz/RICAM, Johannes Kepler University, A-4040 Linz, Austria
szibolya@risc.uni-linz.ac.at

3 RICAM, Austrian Academy of Sciences, A-4040 Linz, Austria
josef.schicho@oeaw.ac.at

Summary. We address the following problem: given a curve in parametric form,
compute the implicit representation of another one that approximates the paramet-
ric curve on a certain domain of interest. We study this problem from the numerical
point of view: what happens with the output curve if the input curve is slightly
changed? It is shown that for any approximate parameterization of the given curve,
the curve obtained by an approximate implicitization with a given precision is con-
tained within a certain perturbation region.

1 Introduction

In geometric modeling and computer aided design, various different represen-
tations for curves and surfaces exist, such as implicitly defined curves and
surfaces, parametric representations by (piecewise) rational functions, proce-
durally defined surfaces, or triangular meshes. The duality of implicit and
parametric representations makes each of them especially well suited for cer-
tain applications.

In order to exploit the potential benefits of both representations, one has
to be able to transform one representation into the other. Theoretically, the
conversion from an implicit representation to a parametric one (implicitiza-
tion) is always possible, whereas the reverse conversion (parameterization) is
generally impossible. This paper focuses on implicitization.

Various symbolic-computation-based methods for implicitization have been
introduced, based on Gröbner bases [AGR95, Buc88], resultants [Bus01,
MM02], moving curves and surfaces [ZSCC03, SSQK94], residue calculus
[EM04] or on other methods [GV97, CD04]. These techniques produce an
exact implicit representation.

In applications, the input curve (or surface) is often not given exactly, but
it may be contaminated by numerical errors. In this situation, using approxi-
mate techniques may be more appropriate [Che03, CGKW01, Dok01, DT03,
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SJS04]. Also, these techniques are able to deal with the more complicated
data needed for industrial applications [S+0x].

This paper studies the effects caused by using an approximate impliciti-
zation. More precisely, we address the following problem: Given a parametric
representation p = p(u), u ∈ [0, 1], of a planar curve segment with domain
[0, 1]. Let V(p) = p([0, 1]) be the point set defined by the curve. Consider the
zero set Cf of an approximate implicitization f of the parametric curve, where
the coefficients of the residuum f ◦ p are bounded by a positive constant ε.
How close is it to the given curve? As an answer, we derive an upper bound
for the one-sided Hausdorff distance of V(p) and Cf . The bound is valid for
all approximate implicitizations f , where the residuum can be bounded by ε.

Our approach is based on earlier results of [SS04], who introduced a condi-
tion number that allows to estimate the distance of the two coefficient vectors
of two approximate implicitizations. For curves (and similarly surfaces) with a
high condition number, the computation of the coefficients of an approximate
implicitization is not numerically stable, no matter which numerical method
for implicitization is chosen.

Unfortunately, even if the coefficients can be computed in a numerically
stable way, it is not guaranteed that the zero sets of two approximate im-
plicitizations are close in a geometric sense. However, one can estimate the
one-sided Hausdorff distance of zero sets of an exact and a perturbed equation,
using a result by [AJK04]. This leads to a constant expressing the robustness
of an implicit representation.

Combining these two robustness results allows to examine the suitability
of a given rational parametric curve for approximate implicitization. A curve
could be said to be “well behaved”, if

(1) the computation of the coefficients of an approximate implicitization is
numerically stable, and

(2) the resulting implicit representation is geometrically robust with respect
to small perturbations of its coefficients.

For the sake of simplicity, the results in this paper are presented in the case
of planar curves. In principle, they can be generalized to hypersurfaces in any
dimension (such surfaces in three-dimensional space), but the computations
are especially simple in the planar situation.

The paper is organized as follows. After introducing some notations in the
next section, we consider the stability of the implicitization in Section 3. In
Section 4 we give a distance bound between a parametrically and an implicitly
given curve. Section 5 collects the obtained results which enable us to show,
that for any approximate parameterization pδ of p, the curve obtained by any
approximate implicitization with precision ε lies within a certain perturbation
region. Finally we conclude the paper.



Implicitization and Distance Bounds 3

2 Preliminaries

Throughout this paper, we shall use three spaces P , I , and R of polynomials,
where the letters stand for parameterization, implicitization, and residuals
respectively.

Consider two positive integers n, d, and let P be the set of triples of polyno-

mials of degree less or equal than n in the variable u over R. These polynomials
will be described by their coefficient vectors with respect to the Bernstein basis
with respect to the parameter domain [0, 1].

The elements of P define rational parametric curves of degree less or equal
than d in homogeneous coordinates,

p(u) := (p0(u), p1(u), p2(u)) =
n

∑

i=0

bi

(

n

i

)

ui(1 − u)n−i, u ∈ [0, 1], (1)

where the corresponding Cartesian coordinates are ( p1

p0
, p2

p0
).

Let I be the set of all homogeneous polynomials of degree d in the variables
x0, x1, x2 over R. These functions serve to represent a (possibly approximate)
implicitization of a given curve p, by an algebraic curve segment C of order d

C = { (x1, x2) | (x1, x2) ∈ Ω ⊂ R
2 ∧ f(1, x1, x2) = 0}. (2)

Such an algebraic curve is defined in a certain planar domain Ω ⊂ R
2 by the

zero contour of a bivariate polynomial f ∈ I of degree d. This polynomial is
given by its homogeneous monomial representation

f(x0, x1, x2) :=
∑

i,j,k∈N, i+j+k=d

bijk xi
0x

j
1x

k
2 (3)

with certain coefficients bijk . Sometimes we will also use the inhomogeneous
representation f(1, x1, x2). If no confusion can arise, we shall write f(x1, x2)
instead. Alternatively, one can use a Bernstein-Bézier representation with re-
spect to a suitable domain triangle, see [FHK02].

Finally, we denote by R the set of polynomials of degree less or equal than
nd in the variable u over R. Again, these polynomials will be described by
their coefficient vectors with respect to the Bernstein basis with respect to
the parameter domain [0, 1].

Clearly, the sets P, I, R are linear spaces with a finite dimension, which
can be identified with R

m, where m is the corresponding dimension. Then, the
usual inner product in R

m defines an inner product in P , I , and R respectively.
The associated norm is defined by ‖x‖ :=

√

〈x, x〉. In order to simplify the
notation, any element of R and I will be identified with its coefficient vector
with respect to the corresponding basis.

Finally, we define the evaluation map

eval : I × P → R by (f,p) 7→ eval(f,p) = f ◦ p.

Note that the evaluation map is linear in its first argument, but non–linear in
the second one.
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3 Condition number of the implicitization

Following earlier results of [SS04], we define the condition number of the curve
implicitization problem, and we give an algorithm for computing it.

3.1 Definition and computation of the condition number

Assume that p ∈ P , ‖p‖ = 1, f ∈ I , and f ◦ p = 0.
For any h ∈ I , p ∈ P we get

eval(h,p) = Mp · h (4)

where Mp is a matrix depending on the coefficients of p of size d̄ × n̄, where

d̄ =

(

dn + 2 − 1

dn

)

, and n̄ =

(

d + 2

d

)

. (5)

Using a singular value decomposition, the matrix Mp can be factorized as

U · Σ · V t, (6)

where Σ ∈ R
d̄×n̄ is a diagonal matrix containing the singular values σ1 ≥

σ2 ≥ · · · ≥ σn̄ ≥ 0, and U ∈ R
d̄×d̄, V ∈ R

n̄×n̄ are orthogonal matrices. We
have the following result:

Proposition 1. Let f and p as above, and assume additionally that ‖f‖ = 1.
Then the following are true.

1. The smallest singular value of Mp is zero.

2. The coefficient vector of the polynomial f is a right singular vector to the

smallest singular value σn̄ = 0.
3. The right singular vector belonging to the least but one singular value σn̄−1,

where n̄ =
(

d+2
d

)

, minimizes the function g 7→ ||eval(g,p)|| in the unit

sphere of f⊥, where f⊥ := {J ∈ I |〈f, J〉I = 0}.

If σn̄−1 = 0, then there are several linearly independent equations h with
eval(h,p) = 0. If σn̄−1 is small, we are close to such a case. Hence, in some
sense, the reciprocal of σn̄−1 is a numerical measurement of the uniqueness of
the implicitization.

Let us now drop the assumption on p that there exist f such that f ◦p = 0.
We still keep the assumption ‖p‖ = 1. We define the condition number K as
the inverse of the formally second smallest singular value of Mp,

K =
1

σn̄−1
. (7)

With “formally second smallest singular value”, we mean that we take multi-
plicities into account. For instance, if 0 is a multiple singular value, then the
condition number is infinity.



Implicitization and Distance Bounds 5

Note, that the condition number K depends not just on p, but also on
the (estimated) degree d of f . If ‖p‖ 6= 1, then the condition number always
refers the condition number of the normed equation.

Remark 1. In order to compute K, the implicit equation of the parametrically
given curve is not needed. The computation of the formally second smallest
singular value is easier than the computation of the implicit equation, at least
numerically. Singular values are numerically stable, whereas the implicitiza-
tion problem can be very badly conditioned.

Remark 2. If the last singular value of Mp is sufficiently small, then there exist
an f of degree d such that eval(f,p) is small. Namely, f is the right singular
vector belonging to the smallest singular value.

Here is an algorithm for computing the condition number.

Algorithm 1 (“Condition Number”)
Input: A triple of polynomials p = (p0, p1, p2) of total degree n in the param-
eter u, such that ‖p‖ = 1, and an d ∈ Z.
Output: Condition number K of the implicitization problem.

1. Initialize Mp by a zero matrix.
for each bi in the basis BI of I , i = 1, . . . , n̄

a) substitute p into bi,
b) expand the result in the basis BR of R
c) append the column to Mp

(Now we have constructed the matrix Mp)
2. Compute the singular value decomposition of the matrix Mp.

3. The condition number is K = 1/σn̄−1, where n̄ =
(

d+2
d

)

3.2 Examples

The planar algebraic curves shown in Table 1 will serve as test examples. We
considered segments of four well known curves. First we computed an approx-
imate parametric representation and then an approximative implicitization.
Both representations are given in the Table. In addition, the domain triangle
has been specified, and it is also shown in the figures. Although the compu-
tations are done in Bernstein-Bézier-representation, the parametric represen-
tation is given with respect to the monomial basis, since many coefficients
vanish and a basis transformation is relatively simple [Far91].

Using Algorithm 1 above we compute the condition number of the four
curves. The condition number of the implicitization problem depends not only
on the parametric form, but also on the estimate of the degree of the implicit
form. From classical algebraic geometry it is known that any degree n polyno-
mial or rational parametric curve can be represented using a degree n algebraic
equation. However, if the implicitization is only done approximatively, a lower
degree than n may be sufficient in order to gain a result of a desired accuracy.
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Table 1. The four examples. From top to bottom, the table shows name,
approximative parametric representation, approximative im-
plicit representation and domain triangle.
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curve degree σn̄ K

cardioid 3 0.22976 · 10−5 0.43523 · 106

tacnode 2 0.07907 12.687

trifolium 4 0.40345 · 10−3 2478.62

bicorn 4 0.50253 · 10−8 0.19899 · 109

Table 2. Condition numbers of the implicitization.

Example 1. Table 2 contains the singular value σn̄, the condition number K
and the degree of the implicit representation of each curve. In the case of
the tacnode and the trifolium we can say that the implicitization problem is
well-conditioned.

4 Distance between implicit and parametric curves

This Section is dedicated to the computation of the distance between a para-
metric and an implicitly given curve. For quantifying the distance between
the two curves we use the concept of the Hausdorff distance.

Since we use a triangular Bernstein-Bézier-representation, the implicit
curve is tied to its domain triangle. In the remainder of this paper we as-
sume that this triangle is chosen in such way, that the whole parametric curve
is contained in it.

In order to avoid some technical difficulties which may arise if the para-
metric curve hits the boundary of the triangular domain 4, we consider the
distance between V(p) and

C∗ := C ∪ ∂4. (8)

More precisely, we consider the distance

HD4(V(p), C∗) = sup
y∈V(p)∩4

inf
x∈C∗∩4

||x − y||. (9)

We call this distance the one–sided Hausdorff distance4 of V(p) and C∗ with
respect to the domain triangle 4. For the effect of replacing C by C∗, see
Figure 3.

Lemma 1. Let C ⊂ 4 ⊂ R
2 be an algebraic curve which is defined by the

homogeneous polynomial f of degree d and C∗ := C ∪ ∂4. We assume that

the gradient field ∇f(1, ., .) of the inhomogeneous polynomial does not vanish

in 4. Furthermore a curve V(p) ⊂ 4 is given by its parametric representation

p = p(u), u ∈ [0, 1]. If

4 The symmetric version is max(HD4(V(p), C∗), HD4(C∗,V(p))).
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c ≤ || ∇f(1, ., .)|(x1,x2)
||R2 ∀ (x1, x2) ∈ 4 and ||eval(f,p)|| ≤ ε

and

p0(u) ≥ N ∀u ∈ [0, 1]

hold, where c, ε and N are certain positive constants, then the one–sided

Hausdorff distance can be bounded by

HD4(V(p), C∗) ≤
ε

c Nd
. (10)

Proof. The proof is a consequence of the mean value theorem, which is ap-
plied to the integral curves of the gradient field emanating from the parametric
curve and hitting the implicit curve or the boundary of the triangle. More pre-
cisely, we consider the integral curve γ(t) := (x1(t), x2(t)) of the normalized
gradient field V = ∇f̄/||∇f̄ || of f̄(x1, x2) = f(1, x1, x2). We choose the start-
ing point γ(0) of the integral curve γ(t) to lie on the parametric curve p. In
the absence of points with a vanishing gradient in the domain of interest, γ(t)
hits the implicit curve or the boundary of the triangle in γ(s) for some s ∈ R.
Since the curve is parameterized by its arc length,

‖γ(s) − γ(0)‖ ≤ s.

Let F (t) be the restriction of f̄ to γ(t):

F (t) := f̄(x1(t), x2(t)).

Applying the mean value theorem we obtain

∃ξ ∈]0, s[:
F (s) − F (0)

s − 0
= F ′(ξ)

Due to F ′(t) = γ̇(t) · ∇f̄
∣

∣

γ(t)
= ‖∇f̄

∣

∣

γ(t)
‖ we obtain

|F (s) − F (0)|

|s − 0|
= |F ′(ξ)| = ‖∇f̄

∣

∣

γ(ξ)
‖, hence s =

|F (s)|

‖∇f̄(γ(ξ))‖
=

|f̄(γ(s))|

‖∇f̄(γ(ξ))‖

Finally, we observe that the values

f

(

1,
p1(u)

p0(u)
,
p2(u)

p0(u)

)

, u ∈ [0, 1], (11)

of the values of the inhomogeneous implicit representation along the paramet-
ric curve are bounded by ε/Nd, which completes the proof. 2

The next step is the computation of the constants c and N which are needed in
Lemma 1. One can see that for curves that have singular points in the domain
of interest, (10) is not defined, since the gradient vanishes. Consequently, such
cases have to be excluded. More precisely, vanishing gradients correspond to
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Fig. 1. Bounding the minimal norm of the gradient.

singular points (including isolated points) of the original curve or of other
iso-value curves (“algebraic offsets”).

In the regular case, a lower bound for the minimal gradient can be com-
puted. The essential ingredient of this algorithm is the convex hull property
of Bernstein–Bézier representations. Clearly, this algorithm gives only a con-
servative lower bound on ||∇f(1, ., .)||. The result can be made more accurate
by splitting the domain into smaller triangles.

Algorithm 2
Input: control points cijk of a bivariate polynomial.
Output: lower bound for the minimal gradient

1. Compute the partial derivatives of f(1, x1, x2) with respect to x1 and x2.
2. Describe them in Bernstein–Bézier form with respect to the domain tri-

angle.
3. Combine the corresponding coefficients of the derivative patches together

to vector-valued control points dijk ∈ R
2

4. Compute the minimal distance from the origin to the convex hull of the
dijk , see Figure 1.

5. This distance serves as constant c in Lemma 1.

Remark 3. The procedure can be generalized to the surface case. While the
algorithms for the three-dimensional convex hull computations are more in-
volved and need special data structures for the storage of the data points
[GO04], the time complexity is still the same as in the planar case.

Remark 4. The constant N can be chosen as the minimum value of the 0–th
components of the control points in (1), provided that all of them are positive.
More precisely, the so–called ‘weights’ of the rational curve have to be positive,
and N can be chosen as the minimum weight.
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5 Distance bound for approximate implicitization

Based on the previous result, we derive an upper bound on the one–sided
Hausdorff distance between the parametric curve and any approximate im-
plicitization which has a certain accuracy.

5.1 Estimating the implicitization error

In order to estimate the Haussdorff distance of a parametric and an approxi-
mate implicit curve we use a known result [SS04] that allows to estimate the
error in the coefficient vector in terms of the condition number K.

Lemma 2. Let p be a triple of polynomials of parametric degree n, with

‖p‖ = 1. Furthermore, let f1, f2 ∈ I be polynomials of degree d with ‖f1‖ =
‖f2‖ = 1 such that ‖eval(f1,p)‖ ≤ ε and ‖eval(f2,p)‖ ≤ ε. Then we have one

of the following:

‖f1 − f2‖ ≤ K · 4 · ε, ‖f1 + f2‖ ≤ K · 4 · ε,

where K is the condition number of p.

Proof. The complete proof (of a more general result) is given in [SS04]. Here
we restrict ourselves to a sketch of the proof. Let f3 be such that ‖f3‖ = 1
and ‖eval(f3,p)‖ is minimal. It follows that ‖eval(f3,p)‖ ≤ ‖eval(f1,p)‖ ≤ ε.
In first order approximation we have, that

r1 := f1 − f3, and r2 := f3 − f2,

are in f⊥
3 . In order to estimate ‖ri‖, i = 1, 2, we get

‖ri‖ = K · ‖eval(ri,p)‖ ≤ K · ε.

It follows, that

‖f1 − f2‖ ≤ ‖f1 − f3‖ + ‖f3 − f2‖ ≤ K · 2 · ε.

If we take terms of higher order into account, then we get the inequality
‖f1 − f2‖ ≤ 4 · K · ε, see [SS04]. 2

5.2 Bounding the minimal gradient

From the previous Section we can conclude that the output of the implicitiza-
tion process is no longer an exact polynomial, but that its coefficients can only
be specified up to a certain tolerance. This means that the possible outputs
of the implicitization process form a whole set of curves.

We denote the set of defining polynomials of the implicitized curves by
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d

d

c

x2
ijk

ijk
x1

Fig. 2. Bounding the minimal norm of the gradient of a perturbed
polynomial. The rectangles represent the areas where all pos-
sible control points lie in.

Fε := {f | ‖eval(f,p)‖ ≤ ε, ‖f‖ = 1}.

The corresponding coefficients of all f ∈ Fε lie in certain intervals. The length
of these intervals can be bounded using Lemma 2.

On the other hand, Lemma 1 allows us to bound the Hausdorff distance
between a parametric and an algebraic curve. In order to get a distance bound
between a parametric and an arbitrary f ∈ Fε we need to compute a lower
bound for the minimal gradient for all possible f ∈ Fε. This bound is given
by

G := min
f∈Fε

min
(x1,x2)∈Ω

‖ ∇f(1, ., .)|(x1,x2)
‖.

In order to compute this bound the same technique as in Section 4 can be
applied. One has to replace the exact control points by intervals. Hence, stan-
dard techniques for interval arithmetics have to be applied for computing the
dijk . These are no longer points in R

2, but rectangles containing all possible
positions of the control points. Consequently, one has to compute the convex
hull of these rectangles in order to gain a lower bound for the minimal gradi-
ent, cf. Figure 2. For further informations on interval arithmetics and related
techniques see [SLMW03] and the references cited therein.

Algorithm 3 (“Minimal Gradient”)
Input: parametric representation p of a curve, ε > 0
Output: G

1. Compute K using Algorithm “Condition Number”.
2. Compute the bound given in Lemma 2 and an approximate implicitization

f for p.
3. Generate intervals using the coefficients of f as center and adding/ sub-

tracting the bound derived in the previous step.
4. Determine the derivative patches of f(1, x1, x2) in x1 and x2 direction and

describe them in Bernstein–Bézier (with interval coefficients !) form with
respect to the domain triangle.
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curve K G position err.

cardioid 0.43523 · 106 0 ∞

bicorn 0.19899 · 109 0 ∞

trifolium 2478.62 0 ∞

tacnode 12.687 0.17537 0.98718 · 10−5

Table 3. Geometric robustness and position bound

5. For all pairs of corresponding coefficients of the derivative patches, gener-
ate the Cartesian product of the intervals.

6. Collect the vertices of all these rectangles and determine their convex hull.
7. The shortest distance from the origin to this convex hull serves as G. (If

the convex hull contains the origin, then G = 0)

5.3 Perturbation regions of parametric curves

In this Section we combine the results of the previous parts and determine
an upper bound for the Hausdorff distance between an exact parametric and
approximatively computed implicit curve.

Theorem 1. Let p with ‖p‖ be a triple of polynomials of degree less or equal

than n, and let V(p) ⊂ 4 be the curve defined by p. If the bound G computed

by Algorithm 3 is nonzero, then for any algebraic curve segment C ⊂ 4 defined

by an f ∈ Fε of degree d,

HD4(V(p), C∗) ≤
ε

GNd
,

where the constant N is defined as in Lemma 1.

Proof. The proof is an immediate consequence of the previous two lemmas. 2

The bound given in Theorem 1 defines two offset curves to p that enclose
a perturbation region within the triangle. For any approximate parameter-
ization p of a curve and for any approximate implicitization with a given
precision ε the obtained curve C lies within this perturbation region.

Clearly, the result of this Theorem is only meaningful for points that are
further away from the boundary than ε

GNd . This is due to the fact, that we
do not only measure the distance to the implicitly defined curve, but also to
the boundary of the triangle, see Figure 3.

Example 2. In Table 3 we determine for each of the four examples the bound
provided in Theorem 1. Using Algorithm 3 we compute a lower bound G for
the minimal gradient. In the examples we set ε = 10−6.

In the first two cases the high condition number K reflects the fact that the
implicitization process is very unstable. Consequently, the coefficient bounds
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Fig. 3. For each point that lies on p and in the grey shaded triangle
exists within a certain bound r := ε/(GNd) a point on the
implicit curve C.

are very poor and the bound for the minimal gradient yields zero. No predic-
tion for the position error of the obtained implicit curve can be made.

For the trifolium the implicitization is robust but the obtained implicit
representation is unstable with respect to small errors in the coefficients. Again
the geometric robustness is poor and the position bound is infinity.

In the last example the implicitization as well as the obtained implicit
representation are stable under numerical perturbations; the geometrical ro-
bustness is good. Knowing the precision of the implicitization process we are
able to predict the maximal displacement of the implicit curve.

6 Conclusion

Schicho and Szilágyi [SS04] have analyzed the robustness of approximate im-
plicitizations with respect to the resulting coefficients. On the other hand,
Aigner et al. [AJK04] treated the geometric robustness of implicit represen-
tations if some error in the coefficient vector is allowed. In the present paper,
we combined these results, in order to predict the geometric stability of ap-
proximate implicitization. More precisely, given a parametric representation,
we may derive an error estimate for the obtained coefficients of the implicit
curve. With this result we can compute a bound such that any approximate
implicitization lies within a certain neighborhood of the original parametric
curve. The width of this vicinity is determined by the bound. While we have
presented the results for curves, they can be generalized immediately to the
case of general hypersurfaces.

Acknowledgments.

The first and the third author have been supported by the European Commis-
sion through RTD project IST 2001-35512, entitled “Intersection algorithms



14 M. Aigner et al.

for geometry based IT-applications using approximate algebraic methods“.
The second author has been supported by Austrian Science Fund (FWF) in
the frame of the Special Research Area SFB 013 “Numerical and Symbolic
Scientific Computing”, subproject 03.

References

[AGR95] C. Alonso, J. Gutierrez, and T. Recio. An implicitization algorithm with
fewer variables. Comp. Aided Geom. Design, 12:251–258, 1995.
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