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Abstract

We describe a new method for constructing a sequence of refined polygons, which
starts with a sequence of points and associated normals. The newly generated points are
sampled from circles which approximate adjacent points and the corresponding normals.
By iterating the refinement procedure, we get a limit curve interpolating the data. We
show that the limit curve is G1, and that it reproduces circles. The method is invariant
with respect to group of Euclidean similarities (including rigid transformations and scal-
ing). We also discuss an experimental setup for a G2 construction and various possible
extensions of the method.
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1 Introduction

During the last years, iterative techniques for generating curve and surfaces have attracted a
lot of attention, and they are now frequently being used in Computer Graphics and related
areas. The classical linear schemes produce affinely invariant classes of curves and surfaces
[2, 13]. They are often obtained by generalizing the subdivision algorithms for certain spline
functions, including trigonometric ones [8]. These techniques also include Hermite subdivision
schemes [7], dealing with points with associated derivatives, see [3] and the references cited
therein. Recently, several non-linear schemes have emerged, but these schemes – which seem
to be promising – are much harder to analyze [1, 4, 12].

On the other hand, various circle–based and circle–preserving techniques for generating
curves are available [5, 9, 10, 11]. Due to its technical importance, the reproduction of circular
shapes is a desirable feature of constructions for planar curves.

We present a novel non–linear subdivision technique, which is able to reproduce circles.
Starting with a sequence of points and associated normals, we compute a circle fit to any
two neighboring points. Then, the new point is picked from this circle. It is shown that the
circle is unique, and that the scheme produces G1 limit curves for certain reasonable classes
of input configurations.
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The construction can be modified in several ways, including different weights in the ob-
jective function used for the fitting, change of the fitted curve, and different strategies of
choosing the new point. In particular, we propose a scheme which has experimentally been
demonstrated to generate G2 curves.

The paper is organized as follows. In section 2 we introduce briefly the notation and
several necessary notions. Section 3 analyzes the basic step repeated during the refinement
– the fitting of the circle to point and normal data. In section 4, we recall the setup for
subdivision of curves and adapt it to our construction. Section 5 provides the proof of several
facts about the limit curve produced. The last section concludes the paper with several
remarks concerning possible variations and improvements of the method.

2 Preliminaries

Let P = {pi}
n
i=0 be a sequence of points, where pi ∈ R

2 for i = 0, . . . , n and V = {~ni}
n
i=0

be a sequence of associated unit vectors, where ~ni = (cos ϕi, sinϕi)
> ∈ S

1 with ϕi ∈ R for
i = 0, . . . , n.1

In the method described below, the fundamental step of the construction consists in fitting
a circle to a pair of neighboring points and associated normals. The newly generated points
are then picked from it. The normal is determined as an appropriately oriented normal of
the segment formed by those neighboring points. In each step, the total number of points is
(roughly) doubled.

For an arbitrary vector ~n = (nx, ny)
>, let ~n⊥ = (−ny, nx)

> be the vector obtained by a
rotation of π

2 .

3 The Fundamental Construction Step

Consider two points a,b ∈ R
2, a 6= b with associated normals ~na, ~nb ∈ S

1. We assume that
||a− b|| = 2r, where r > 0. We construct a circle

f(x, y) = 0, (1)

where
f(x, y) = a(x2 + y2) + bx + cy + d, a, b, c, d ∈ R, (2)

which minimizes the objective function

F (a, b, c, d) = f(a)2 + f(b)2 + ‖∇f(a)− ~na‖
2 + ‖∇f(b)− ~nb‖

2. (3)

Hence, the task is to solve
min

a,b,c,d∈R

F (a, b, c, d). (4)

Clearly, the solution of (4) is invariant with respect to Euclidean transformations. Therefore,
we suppose the following choice of the coordinate system (see Figure 1)

a = (−r, 0)>, b = (r, 0)> (5)

1For neighboring normals, we always take the closest representatives of their angles modulo 2π.
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(−r, 0)> = a b = (r, 0)>

~na = (cos θ, sin θ)> ~nb = (cos φ, sinφ)>

θ φ

Figure 1: Local coordinates for analyzing the circle fit (Lemma 1).

and
~na = (cos θ, sin θ)>, ~nb = (cos φ, sin φ)> (6)

for θ, φ ∈ R.
Note that – using a Euclidean transformation (rigid planar motion) – any two non–

identical points with associated normals can be mapped to this situation.
Let

α =
θ + φ

2
and β =

θ − φ

2
. (7)

The angles in (7) will be often referred to as functions

α(a,b, ~na, ~nb) and β(a,b, ~na, ~nb) (8)

of the given data. The following lemma shows that the circle fit always exists, except for
pathological cases.

Lemma 1

(i) The problem (4) has a unique solution.

(ii) Let
Z(f) = {x ∈ R

2 : f(x) = 0} (9)

be the zero set of the solution of (4). The set (9) is a real conic section unless θ =
−φ = π

2 + kπ for k ∈ Z. Moreover, if θ = φ + 2kπ or θ = −φ + 2kπ it is a double line.
Otherwise, it is a circle.

Proof: The minimization of the function (3) leads to the 4×4 linear (inhomogeneous) system
given by the Jacobi matrix

∂F (a, b, c, d)

∂(a, b, c, d)
= ~0. (10)

One can easily check that the coefficient matrix has a non–zero determinant.
Now consider the set (9). Solving the system (10), we get

a =
cos θ − cos φ

4r
, b =

cos θ + cos φ

2(r2 + 1)
, c =

sin θ + sinφ

2
, d = −

(cos θ − cos φ)

4r
. (11)

The coefficient a vanishes iff
cos θ − cosφ = 0. (12)

3



This condition is equivalent to

θ = φ + 2kπ (13)

or
θ = −φ + 2kπ for k ∈ Z. (14)

Clearly, the coefficient d vanishes as well, if (12) holds. In the first case (13), either the
coefficient b 6= 0 or c 6= 0, depending on the angles α and β. Therefore, the solution is a line

bx + cy = 0. (15)

In the second case (14), we get the non-trivial solution unless the angles θ = π
2 + kπ and

φ = −π
2 + kπ, since then at least the coefficient b 6= 0.

If a 6= 0, the solution is a circle. The radius of the circle is equal to

rf =
√

Df with Df =
b2 + c2 − 4ad

4a2
. (16)

Consequently, there exists a real point on the circle if and only if

Df ≥ 0. (17)

The case Df = 0 represents a singular real solution – a point.
Substituting the solution (11) into the numerator of (17) and using trigonometric identi-

ties, we get an expression discriminating the existence of a real solution

sin2 α +
1

(r2 + 1)2
cos2 α cos2 β ≥ 0. (18)

Clearly, it is always non-negative. Moreover, the strict inequality condition holds iff θ 6= π
2 +kπ

or φ 6= −π
2 + kπ for any k ∈ Z. Thus, we get a real circle in the generic case.

�

Assuming that Z(f) is a circle, the newly generated point is taken from

l ∩ Z(f), (19)

where the line l is the bisector of the points a and b

l : x =
1

2
a +

1

2
b + t(b− a)⊥, t ∈ R. (20)

Using the choice of coordinates from Figure 1, it is the y-axis (see also Figure 2). After a
short calculation, the new point turns out to be one of the two possible solutions

q′ =

(

0,−r
cos β + 1

sinβ

)>

and q =

(

0,−r
cos β − 1

sinβ

)>

. (21)

Since the distance of each of the possible new points to the points a, b is the same (due to
the choice of line l), we get

‖q′ − a‖2 = ‖q′ − b‖2 =
r2

sin2 β
2

(22)
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a b

~na
~nb

sf

q′

q

Z(f)

l

Figure 2: A new point generated from the fitted circle Z(f) and the line l.

and

‖q− a‖2 = ‖q− b‖2 =
r2

cos2 β
2

. (23)

We expect the new point to be in the vicinity of the existing ones and the corresponding angle
β is expected to be small for neighboring points. Consequently, we choose the point q as the
one with the smaller distance.

If Z(f) = ∅ or the intersection of l and Z(f) (see (13) and (14)) contains more than finite
number of points, we set

q =
1

2
a +

1

2
b (24)

Next, we need to determine an appropriate normal ~nq associated with the new point q. We
assume that the normals ~na and ~nb point to the same halfplane with respect to the line ab.
We take the normal of that line pointing in the same halfplane. This choice is invariant under
all Euclidean transformations2.

Note that the normal can be calculated as an appropriately oriented normal of the circle
passing through the points a,b,q, when they are non-collinear due to (23). Hence, the
construction reproduces circles.

Summarizing, we have the following

Algorithm 2 (New Point and Normal)
Given two points a, b and two associated (unit) normals ~na, ~nb.

If ~na · ~nb > −1, compute the new point from

q =
1

2
a +

1

2
b− tan

β

2
(b− a)⊥, (25)

where β is given by (7). More precisely,

tan
β

2
= sgn(~na ∧ ~nb)

(

1− cβ

1 + cβ

)
1
2

with cβ =

(

1 + ~na · ~nb

2

)
1
2

, (26)

2Another choice would be to use simply the normalized vector (b − a)⊥. This works for all configurations
of data, but it is not invariant under reflections.
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where ~x ∧ ~y = x1y2 − x2y1. The corresponding normal is given as

~nq = ±
(b− a)>

‖b− a)‖
(27)

such that ~nq · ~na > 0 and ~nq · ~nb > 0. We denote these functions as q(a,b, ~na, ~nb) and
~n(a,b, ~na, ~nb).

Lemma 3 The choice of the new point and the new normal in Algorithm 2 is invariant under
the group of Euclidean similarities (including rigid body transformations and scaling) of the
plane.

Proof: The proof of invariance is obvious from (25) and (27).
�

An example is shown in Figure 3. Starting with the sequence of points and normals shown
(i), it shows eight iterations of the refinement. Figure 4 provides a closer look at the behavior
of the generated normals after the eighth iteration.

4 Algebraic Subdivision of a Curve

After introducing the notation and basic algorithm to refine a polygon, we will now prove
some properties of the generated sequence of points. Let

P 0 = {p0
i }

n0
i=0 with p0

i ∈ R
2 (28)

such that
p0

i 6= p0
i+1 for i = 0, . . . , n0 − 1 (29)

and
V 0 = {~n0

i }
n0
i=0 with ~n0

i ∈ S
1 (30)

be the sequence of associated unit normals with the points in P 0 for n0 ∈ Z, n0 > 0. Using
Algorithm 2, we obtain iteratively a sequence of sequences, for j = 0, 1, 2, . . . ,

P j = {pj
i}

nj

i=0 with pj
i ∈ R

2 (31)

and
V j = {~nj

i}
nj

i=0 with ~nj
i ∈ S

1 (32)

such that
pj+1

2k+1 = q(pj
k,p

j
k+1, ~n

j
k, ~nj

k+1) for k = 0, . . . , nj − 1, (33)

pj+1
2k = pj

k for k = 0, . . . , nj , (34)

are the newly generated points and

~nj+1
2k+1 = ~n(pj

k,pj
k+1, ~n

j
k, ~n

j
k+1) for k = 0, . . . , nj − 1, (35)

~nj+1
2k = ~nj

k for k = 0, . . . , nj (36)

are the newly generated vectors associated with the corresponding points, where

nj+1 = 2nj. (37)
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure 3: Applying eight subdivision steps to the data in (i). The behavior
of the framed part (ix) is shown in Figure 4.
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Figure 4: Zoom of the behavior of the normal for the Figure 3, (ix).

Associated with the sequences (31) and (32), we have also the sequences of local angles

{θj
i }

nj−1
i=0 and {φj

i}
nj−1
i=0 (38)

such that
~nj

i = (cos θ
j
i , sin θ

j
i )

> (39)

and
~nj

i+1 = (cos φ
j
i , sinφ

j
i )

> (40)

in the local coordinate systems determined by the points pj
i , pj

i+1 (see Figure 1). Using (7),
we also have an equivalent description

{αj
i}

nj−1
i=0 and {βj

i }
nj−1
i=0 (41)

of the parameter angles for j = 0, 1, 2, . . ., where

α
j
i = α(pj

i ,p
j
i+1, ~n

j
i , ~n

j
i+1) (42)

and
β

j
i = β(pj

i ,p
j
i+1, ~n

j
i , ~n

j
i+1). (43)

Note that the angles α
j
i and β

j
i are also considered in the local coordinate systems defined

by the neighboring points. Clearly, we may consider the sequences (31), (32) as sets P̄ j , V̄ j ,
and then

P̄ j ⊂ P̄ j+1 and V̄ j ⊂ V̄ j+1 (44)

for j = 0, 1, 2, . . .. Let

P̄∞ =

∞
⋃

j=0

P̄ j and V̄ ∞ =

∞
⋃

j=0

V̄ j (45)
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0 1 2 3 t

α

level j = 0

level j = 1

Figure 5: Change of the step function α during the refinement over the
parameterization interval [0, n0) for n0 = 4.

be the limit set of the generated points resp. vectors. We prove several properties of these
sets.

Each of the sequences P j defines a polygon in R
2. We denote it with poly(P j). It can be

piecewise linearly parameterized. For P 0, we use

p0(t) =
ti+1 − t

ti+1 − ti
p0

i +
t− ti

ti+1 − ti
p0

i+1 (46)

for t ∈ [ti, ti+1), where ti = i for i = 0, 1, . . . , n0. Now, we can continue inductively with the
parameterization of poly(P j) as

pj(t) = 2j(tji+1 − t)pj
i + 2j(t− t

j
i )p

j
i+1 (47)

for t ∈ [tji , t
j
i+1), where t

j
i = i

2j for i = 0, 1, . . . , nj . The parameters t
j
i are called dyadic knots.

Note that due to (34)
pj+1(tj+1

2i ) = pj(tji ) (48)

for j = 0, 1, . . .; i = 0, 1, . . . , nj. Similarly, we parameterize the corresponding vector function
as

~nj(t) = 2j(tji+1 − t)~nj
i + 2j(t− t

j
i )~n

j
i+1 (49)

for t ∈ [tji , t
j
i+1).

In addition, we can consider the sequence (41) as a sequence of piecewise constant func-
tions, each defined on the interval [0, n0) with uniform binary refinement (see Figure 5).

Clearly, the values p(tji ) of the set P∞ and ~n(tji ) of the set V ∞ depend locally on the
initial values. Hence, it suffices to consider a pair of neighboring points and normals to reveal
the local properties of the generated sets.

In the sequel, we assume that
~nj

i · ~n
j
i+1 > −1 (50)

holds for j = 0, 1, . . ., i = 0, . . . , nj − 1.

5 Analysis of the Limit Curve

Consider the sequence P 0 = {a,b} for a 6= b as in (5) and V 0 = {~na, ~nb} as defined in (6).
Hence, n0 = 1 in this section.
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We will prove that the generated set P̄∞ is a dense subset of G1 curve and, moreover, the
normals of that curve are those in V̄ ∞ for the corresponding points.

The proof consists of the following steps.

1. First, we prove the technical Lemma 4, which preserves certain configurations of data
during the subdivision and certain properties of sequences of local angles.

2. Second, we show that the polygons generated by our algorithm, provided the initial
data are in certain configurations, form a Cauchy sequence in the space C 0[0, 1] with
respect to the maximum norm.

3. We prove that the limit curve has finite length and it is locally injective.

4. As the last step, we show that the limit of that sequence of C 0 functions is G1, by
considering the existence of tangent in each generated point.

5.1 Continuity of the limit curve

The following technical lemma is a key tool for the proof of the properties of the limit sets (45).

Lemma 4 If

∣

∣

∣
α0

0 −
π

2

∣

∣

∣
≤

π

4
, (51)

|β0
0 | ≤

π

4
(52)

hold, then

(

α
j+1
2i −

π
2

β
j+1
2i

)

=

(

1
2 0

1
2

1
2

)(

α
j
i −

π
2

β
j
i

)

, and (53)

(

α
j+1
2i+1 −

π
2

β
j+1
2i+1

)

=

(

1
2 0

−1
2

1
2

)(

α
j
i −

π
2

β
j
i

)

(54)

for j = 0, 1, . . . and i = 0, 1, . . . , nj − 1. In particular,

∣

∣

∣
α

j+1
2i −

π

2

∣

∣

∣
=

∣

∣

∣
α

j+1
2i+1 −

π

2

∣

∣

∣
≤

π

4
, (55)

∣

∣

∣
β

j+1
2i

∣

∣

∣
≤

π

4
, and (56)

∣

∣

∣
β

j+1
2i+1

∣

∣

∣
≤

π

4
. (57)

Proof: We prove the statement by induction on j. For j = 0, see Figure 6, where the indices
of α and β were omitted in order to simplify the figure.

The new angles after a subdivision step in the local coordinates determined by points a,q

are θ1
0 = α0

0 +
β0
0
2 and φ1

0 = π
2 −

β0
0
2 . Similarly, θ1

1 = π
2 +

β0
0
2 and φ1

1 = α0
0 +

β0
0
2 are the angles for

the coordinate system determined by points q,b. After a short calculation, using (7), we get
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a b

~na
~nb

q

~nq

β
2

β
2

β
2

β
2

β
2α+ β

α − β

Figure 6: Angles in a subdivision step

(π

2
,0)(π

4
,0) ( 3

4
π,0)

(0,π

2
)

(0,−π

2
)

α

β

Transformation AR

(π

2
,0)(π

4
,0) ( 3

4
π,0)

(0,π

2
)

(0,−π

2
)

α

β

Transformation AL

Figure 7: The angle transformations (53) and (54)
.

α1
1 −

π

2
= α1

0 −
π

2
=

1

2

(

α0
0 −

π

2

)

(58)

β1
0 =

1

2

(

α0
0 −

π

2

)

+
1

2
β0

0 (59)

β1
1 = −

1

2

(

α0
0 −

π

2

)

+
1

2
β0

0 , (60)

which are the transformations (53) and (54). Clearly,

∣

∣

∣
α1

i −
π

2

∣

∣

∣
≤

1

2

∣

∣

∣
α1

i −
π

2

∣

∣

∣
≤

π

4
(61)

∣

∣β1
i

∣

∣ ≤
1

2
·
π

4
+

1

2
·
π

4
=

π

4
(62)

for i ∈ {0, 1}. Hence (55), (56) and (57) hold.
Now, we can inductively proceed to finish the proof for j ≥ 1.

�

We will denote the 2 × 2 matrix from (53) as AL and the matrix from (54) as AR. The
transformation of the angles can be visualized by Figure 7. The light grey square area is
the feasible domain of inequalities (51) and (52), the dark grey area is its transformation
under the transformations given by (53) and (54). It is easy to see that both mappings are
contractive.
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Lemma 5 If the conditions (51), (52) hold, the sequence of sequences (41) has the following
properties: For k = 0, 1, . . ., j = 0, 1, . . ., i = 0, . . . , nj − 1

∣

∣

∣
α

j
i −

π

2

∣

∣

∣
=

1

2j

∣

∣

∣
α0

0 −
π

2

∣

∣

∣
, (63)

|βj
i | ≤

|β0
0 |

2j
+

j|α0
0 −

π
2 |

2j
, (64)

α
j
i −

π

2
=

2k(i+1)−1
∑

l=2ki

(

α
j+k
l −

π

2

)

, and (65)

β
j
i =

2k(i+1)−1
∑

l=2ki

β
j+k
l . (66)

Proof: Using (58), (59) and (60), we get all statements of this lemma by induction.
�

Lemma 6 If the conditions (51) and (52) hold, the sequence of polygons

{pj(t)}∞j=0 (67)

converges to a C0 curve. We will refer to this limit as p(t).

Proof: Considering the parameterization (47) and using (23), we get

‖pj+1(t)− pj(t)‖ ≤ rj
max

1

cos β
j
max
2

, (68)

for sufficiently large j, where

rj
max =

1

2
max

i=0,...,nj−1
‖pj

i+1 − pj
i‖ (69)

and
βj

max = max
i=0,...,nj−1

|βj
i |. (70)

Using (23), we get

rj+1
max ≤

1

2| cos β
j
max
2 |

rj
max . (71)

Due to (64), β
j
max → 0 as j → ∞. Hence, there is an constant D, 0 < D < 1 and an

integer j0 ∈ Z+ such that

0 <
1

2| cos β
j
max
2 |

< D < 1 (72)

hold for all j > j0. Summing up,

‖pj+1(t)− pj(t)‖ ≤ 2rj0
max Dj+1−j0 (73)

for j > j0 and therefore (67) is a Cauchy sequence of C0 polygons. Therefore, it converges
uniformly to a C0 curve p(t).

�
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5.2 Several properties of the limit curve

Now we prove several properties of the limit curve p(t) from Lemma 6. Let ~i = {ij}
∞
j=0 be a

sequence of integers. Let

D∞ = {~i : ij ∈ {0, . . . , nj − 1} & (ij+1 = 2ij ∨ ij+1 = 2ij + 1 for j ≥ 0)}. (74)

Further, let
Dn = {{ij}

n
i=0 :~i ∈ D∞} (75)

be the set of all finite sequences of length n, which can be extended to a sequence from
D∞. Clearly, each sequence ~i ∈ D∞ induces a sequence of intervals [tj

ij
, t

j
ij+1) with dyadic

parameters as endpoints. An interval on the level j +1 is either the left or the right offspring
of the interval on the level j generated during subdivision. Similarly, we can also form a
(finite or infinite) sequences of corresponding angles,

α~i
= {αj

ij
}∞j=0 and β~i

= {βj
ij
}∞j=0. (76)

For a sequence y = {yi}
∞
i=0 and c ∈ R, we use the abbreviations

(y, c) = {yi − c}∞i=0 and Sk(y, c) =
∞
∑

j=0

(yi − c)k. (77)

Further, for any sequence x = {xi}
∞
i=0, let

y ◦ x = {yixi}
∞
i=0. (78)

The sequence of polygons generated during the subdivision has the following property.

Lemma 7 If (51) and (52) hold, then the lengths of the polygons pj(t) converge to a finite
limit as j →∞.

Proof: Let ln be the length of the polygon pn(t). Starting with the situation on Figure 1,
we have l0 = 2r. Using (23) and induction, we get

ln = 2r
1

2n−1

∑

~i∈Dn

n−1
∏

j=0

(

cos
1

2
β

j
ij

)−1

. (79)

Due to (23) and (64) the sequence {ln}
∞
n=0 is non-decreasing for all n > n̄ for some n̄ ∈ Z+.

We prove that it is also bounded.
Using the well-known Taylor expansion

cos x =
∞
∑

i=0

(−1)i x2i

(2i)!
, (80)

we get in a certain neighborhood of 0 the following estimate

cos x ≥ 1−
x2

2
. (81)
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According to (64), we can assume without loss of generality that all angles β
j
ij

are sufficiently
small for j ≥ 0. If not, we can refine the data finitely many times and get the needed
inequality for β

j
ij

for some j ≥ j0 on the finitely many subintervals. Therefore

n−1
∏

j=0

(

cos
1

2
β

j
ij

)−1

≤
∞
∏

j=0

(

cos
β

j
ij

2

)−1

≤
∞
∏

j=0

(

1−
(βj

ij
)2

8

)−1

(82)

for any ~i ∈ D∞ expanding the given finite one. The product on the right–hand side of (82)
is convergent iff

S2(β~i
, 0) =

∞
∑

j=0

(βj
ij

)2 (83)

converges.
Clearly, the series S2(α~i

, π
2 ), S1(β~i

, 0) and S1(α~i
, π

2 ) are absolutely convergent due to (63)
and (64). Hence, using (53) and (54) we get

S2(β~i
, 0) = (β0

0)2 +
1

4
(S2(β~i

, 0) + S2(α~i
, π

2
))

+
1

2
S1((β~i

, 0) ◦ (α~i
, π

2
) ◦ ({(−1)(ij+1 mod 2)}∞j=0, 0), 0).

(84)

Solving (84) for S2(β~i
, 0), we get the convergence of (83) and therefore (82) is also convergent.

Using (64), it is also bounded.
Since |Dn| = 2n, we may conclude that {ln}

∞
n=0 is bounded. This completes the proof.

�

Lemma 8 The arc length of the polygon pj(t) has a uniform lower bound with respect to the
length of the domain interval.

Proof: Let I = [tjk, t
j
k+l] ⊂ [0, 1]. Due to (23), we get

‖pj
i+1 − pj

i‖ ≥ r
1

2j−1
(85)

for all i ∈ {0, . . . , nj − 1}. Hence, the length of the polygon pj
k,. . . ,p

j
k+l can be estimated as

l(pj(t)|I) ≥ r
1

2j−1
· l = 2r|I|. (86)

where 2r is the distance of the two initial points.
�

Let I ⊂ [0, 1] be an interval with dyadic endpoints. We will consider the turning angle of
the generated normals over the interval I at level j. Let

ω
j
i,i+1 = −

(

θ
j
i −

π

2

)

+
(

φ
j
i −

π

2

)

= −2βj
i , (87)

see Figure 8. Similarly, for l > 0,

ω
j
k,k+l =

l−1
∑

i=0

ω
j
k+i,k+i+1 = −2

l−1
∑

i=0

β
j
k+i. (88)
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Figure 9: Estimation of the length of I via the length of its maximum dyadic
subinterval of level m.

Also, let ω
j
k,k = 0 for all feasible j and k. Due to (66), we have for a polygon with given two

endpoints after a subdivision step

ω
j
k,k+l = ω

j+1
2k,2k+2l. (89)

On the other hand, let ω̄
j
k,l be the turning angle of the polygon pj

k, . . . ,p
j
l . Clearly,

ω̄
j
k,l − ω

j
k,l = θ

j
k −

π

2
−
(

φ
j
l−1 −

π

2

)

=
(

α
j
k + β

j
k −

π

2

)

−
(

α
j
l−1 − β

j
l−1 −

π

2

)

. (90)

Due to (63) and (64), the right side of the (90) converge to zero as j →∞ and therefore the
turning angle of the normals converges to the turning angle of the curve p(t) for any given
two endpoints.

We now bound the value of ω
j
k,k+l with respect to the length of the corresponding param-

eter interval [tjk, t
j
k+l].

Let m be the smallest non-negative integer such that for some m′ ∈ {0, 1, . . . , nm − 1}

[tmm′ , tmm′+1] ⊂ [tjk, t
j
k+l]. (91)

Without loss of generality we suppose that m′ is the biggest number satisfying (91). Since
the number m is the minimum, we can have at most one more dyadic point of of level m in
the interval I. Then the length of the interval can be estimated as

2−m ≤ |I| =
l

2j
≤ 2−m+2, (92)

(for the right inequality see also Figure 9). Further, let

s = l −m′2j−m = s02
j−m + s12

j−(m+1) + · · · + sj−m (93)

with si ∈ {0, 1} for i = 0, . . . , j −m and s0 = 1 (see Figure 9). Let

Si = s02
j−m + s12

j−m−1 + · · ·+ si2
j−m−i (94)
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be partial sums for i ∈ {0, 1, . . . , j −m} and S−1 = 0. Then

ω
j

m′2j−m,l
=

j−m
∑

i=0

ω
j

m′2j−m+Si−1,m′2j−m+Si
(95)

Therefore,

|ωj

m′2j−m ,l
| ≤

j−m
∑

i=0

|ωj

m′2j−m+Si−1,m′2j−m+Si
| ≤

j−m
∑

i=0

2si|β
m+i

m′2i+2−(j−(m+i))Si−1
|

≤ 2

j−m
∑

i=0

|β0
0 |

2m+i
+

(m + i)|α0
0 −

π
2 |

2m+i
≤

C(m)

2m
,

(96)

where
C(m) = 4|β0

0 |+ 4(m + 1)
∣

∣

∣
α0

0 −
π

2

∣

∣

∣
. (97)

Similarly, we can estimate

|ωj

k,m′2j−m | ≤
C(m)

2m
. (98)

Note that it may occur tmm′−1 < t
j
k and therefore the |ωj

k,m′2j−m | angle of the left part might

have even a smaller upper bound. Combining (96) and (98), we get

|ωj
k,k+l| ≤

2C(m)

2m
. (99)

Hence, we can prove the following Lemma.

Lemma 9 The turning angle of the generated normals (49) for pj(t) is uniformly continuous
with respect to the length of a parametric interval for all j.

Proof: Let I ⊂ [0, 1] be an interval with dyadic endpoints such that |I| < 2−M . Let m be
the minimum integer such that 2−m ≤ |I|. Then

M < m (100)

holds. Hence,

|ωj
kj ,lj
| ≤

2C(M)

2M
, (101)

where I = [tjkj
, t

j
lj
] for j > j(M). Since the right-hand side of (101) can be made arbitrarily

small for |I| → 0, we have the desired result.
�

Corollary 10 For every pj
i , j = 0, 1, . . ., i ∈ {0, . . . , nj}, there is h0 ∈ Z+, h0 ≥ j and ε > 0

such that if 0 < |t− t
j
i | < ε then

‖ph(t)− ph(tji )‖ > 0 (102)

holds for all h > h0.
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Figure 10: The local injectivity of the generated points.

Proof: First, we consider all dyadic points for parameters t
j′

i′ , |t
j′

i′ − t
j
i | < ε, t

j′

i′ 6= t
j
i . Let h0

be such that for all h ≥ h0
∣

∣

∣
αh

k + βh
k −

π

2

∣

∣

∣
< ε and

∣

∣

∣
αh

l−1 − βh
l−1 −

π

2

∣

∣

∣
< ε (103)

for some sufficiently small ε > 0 and feasible k, l ∈ Z+. Let M be such that

2C(M)

2M
<

π

4
− 2ε. (104)

Then, for all |tj
′

i′ − t
j
i | < 2−M , the point pj′

i′ lies in the right part of the gray wedge drawn in

Figure 10, if t
j′

i′ > t
j
i and in the left one if t

j′

i′ < t
j
i . Indeed, using (90), the turning angle of

each generated polygon over interval [tj
i , t

j′

i′ ] is less than π and according to (86) its length is

bigger than 2r|tj
′

i′ − t
j
i |. Hence, the point pj′

i′ must be different from pj
i . This holds uniformly,

i.e., h0 is independent of i′, j′.
Clearly, the angle π

4 of the wedges can be made arbitrarily small. Using this fact, the
proof for non-dyadic t comes from continuity of ph(t) and convexity of the interior of the left
and right wedges.

�

According to this corollary, the refinement rule generates a sequence of points which is
locally “well-behaved”: it does not contain any loops locally.

Lemma 11 The sequence of vector functions

{~nj(t)}∞j=0 (105)

converges to a continuous vector function ~n(t) along the curve p(t).

Proof: Applying (64) and (66), we get the result.
�

5.3 Existence of tangents

Now, we shall prove the existence of a tangent at each generated point in P ∞. We consider
sequences of points in P∞. We use the local coordinate system described in Section 2, see
Figure 1. Such a coordinate system exists, iff the considered points are distinct. Corollary 10
proves the existence of such a local coordinate system in a certain neighborhood of a generated
point.
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Lemma 12 If the conditions (51) and (52) hold, the system of sequences (41) has the fol-
lowing property: Let {qk}

∞
k=0 be a convergent sequence of points qk = pjk

ik
∈ P̄∞ and

lim
k→∞

qk = q, (106)

where q = pJ
I , for some J ∈ Z+ and I ∈ {0, . . . , nJ}. Then

lim
j→∞

α(qk,q, ~nqk
, ~nq) =

π

2
(107)

and
lim

j→∞
β(qk,q, ~nqk

, ~nq) = 0. (108)

Proof: We can assume without loss of generality that q = p0
0. Further, let {tk}

∞
k=0 be the

sequence of the dyadic parameters corresponding to {qk}. We assume that tk 6= 0 for all k.
Due to Corollary 10 the limit curve p(t) is locally loopless. Hence, we have tk → 0.

First, we prove the second part for special sequences. Let qk = pk
ik

be such that ik+1 = 2ik
or ik+1 = 2ik + 1 for k = 0, . . .. Then α(qk,q, ~nqk

, ~nq) = αk
ik

for k = 0, 1, . . .. Using (58),

we get (107) by induction. Similarly, β(qk,q, ~nqk
, ~nq) = βk

ik
and using (64), we get (108) for

this special case.
Now, let the sequence {qk}

∞
k=0 of points be arbitrary. Let tk = ik

2mk
. Then, using (51) and

(65), we have

0 ≥ α(qk,q, ~nqk
, ~nq)−

π

2
=

lk
∑

l=0

(

α
ik
l −

π

2

)

≥ α
Mk

0 −
π

2
(109)

for some lk ∈ {0, . . . , nk − 2} and

Mk = max{m ∈ Z+; 2−m > tk}. (110)

Since tk → 0 for Mk →∞, using (107) for the special case proved above, we get the conver-
gence in the general case.

In order to prove (108) in the general case, we have via (52) and (66)

0 ≤ β(qk,q, ~nqk
, ~nq) =

lk
∑

l=0

β
ik
l ≤ β

Mk

0 . (111)

Using (108) for the special case, we get the result for all sequences.
�

The last step is the proof of G1 continuity of the limit curve. Since we know the curve is
C0 according to the Lemma 6, we prove the existence of the tangent line for every generated
point. The normal of this line will be the corresponding generated normal vector at the point.

Theorem 13 If the conditions (51) and (52) hold, then the curve p(t) is a locally injective
curve with a well defined tangent and is therefore G1 everywhere.

Proof: Let {tk}
∞
k=0 be a convergent sequence of dyadic parameters with dyadic limit t, and

let qk = p(tk), q = p(tk) be the corresponding points. We assume that tk 6= t for all k. Then,
{qk}

∞
k=0 is a convergent sequence of points in P̄∞ and qk → q ∈ P̄∞. Moreover, qk 6= q for

all k, due to Corollary 10. Let the generated normal at qk be ~mk. We prove that the line ←→qqk
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Figure 11: The convergence of the tangent for positive and negative δk

becomes perpendicular to ~nq in the limit. More precisely, we prove that the angles between
the vectors ~mk and ~nq converge to 0,

lim
k→∞

qk − q

‖qk − q‖
· ~nq = 0. (112)

Since the function ~n(t) is continuous according to Corollary 11, we suppose that ~mk is in a
the neighborhood of ~nq. Let {αk}

∞
k=0 and {βk}

∞
k=0 be the sequences generated by

αk = α(qk,q, ~mk, ~nq) (113)

and
βk = β(qk,q, ~mk, ~nq). (114)

Using Lemma 12 we get (see also Figure 11)

qk − q

‖qk − q‖
· ~nq = cos δk = cos(π − αk + βk)→ 0 (115)

when δk > 0 and similarly

qk − q

‖qk − q‖
· ~nq = cos δk = cos(αk + βk)→ 0 (116)

when δk ≤ 0. This completes the proof for sequences from P ∞. Using completion and the
fact that ~n(t) is C0, we conclude that the p(t) is locally G1 with well defined normal n(t).

�

5.4 Examples

In order to visualize this result, we have checked the quality of the generated curve, as follows.
First, we have generated the graph of the normal angle for the generated curve in Figure 3,
see Figure 12, (a). Clearly, it is a continuous function of the dyadic parameter.

In Figure 12, (b), the approximation of the curvature (the inverse of the radius of the circle
passing through three consecutive generated points) is shown. Both figures are from the level
(ix) of the refinement in Figure 3. The limit curve does not seem to have a well–defined
curvature.

Since we used circle fits to generate new points, it is clear that this construction reproduces
a circle, if the initial data are taken from the circle. This fact is demonstrated by Figure 13,
which shows a heart–shaped curve composed of two circular and two non-circular segments.

Finally, we compare the result to standard cubic Hermite splines, where the length of the
boundary derivatives was chosen according to the distances ‖pi+1−pi‖. Clearly, these splines
cannot reproduce circles 14(c), while the curve generated by subdivision 14(b) does.
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Figure 12: (a) Graph of the normal angle; (b) Graph of the discrete curvature
of the curve

Figure 13: Heart–shaped curve (right) and half of the initial data (left).

6 Conclusion and Future Work

We have presented a novel method for refinement of the sequence of points in the plane with
associated unit normal vectors. The method is invariant under Euclidean similarities. It
produces a G1 curve, provided that certain technical conditions are satisfied by the initial
data. The initial data (points with associated normals) are interpolated by the generated
curve. While the computations are more complicated than for the classical linear subdivision
techniques, they are still relatively simple and fairly robust, see Algorithm 2.

Our analysis of the non–linear subdivision relied completely on geometric arguments.
More precisely, no special properties of the parameterization (such as asymptotic closeness
to a linear subdivision scheme) have been used. As a possible topic for future research, one
may try to investigate shape preserving properties of the scheme or a variant thereof. See [6]
for more information on shape-preserving interpolatory subdivision.

In order to improve the local behavior of the generated set of points, we have developed
an experimental method which generates a smoother normal (see Figure 15). The initial data
are taken those from Figure 3, (i). In this case, we fit a general conic section to the set of
four consecutive points and their normals. The new point and the corresponding normal are
picked from this conic. The construction provides interpolation of the initial points, while
the normals are adapted during the refinement. Clearly, this scheme has the property of
preserving conics. Following this pattern, subdivision methods that reproduce certain classes
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(a) (b) (c)

Figure 14: Comparison of (discrete) curvature of the subdivision curve with
cubic Hermite splines. (a) The original data set, (b) subdivision
curve, (c) cubic Hermite spline. The scaled normals visualize the
curvature distribution.

of curves (e.g., logarithmic spirals) can be developed.
The graph of the normals (see Figure 16, (a)) and the corresponding graph of the curvature

radius (see Figure 16, (b)) show a promising behavior. The generated curve and the normal
field can be seen on Figure 15. The properties of these curves may be be a subject of further
research.

The method can also be extended to the surface case. In this context, we need to consider
triangular meshes with given normals in the vertices. The new points can be picked from
(e.g.) a quadric fitted to certain neighborhood.
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