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Abstract We describe a method to approximate a segment of the inter-
section curve of two implicitly defined surfaces by a rational parametric
curve. Starting from an initial solution, the method applies predictor and
corrector steps in order to obtain the result.

Based on a preconditioning of the two given surfaces, the corrector step
is formulated as an optimization problem, where the objective function ap-
proximates the integral of the squared Euclidean distance of the curve to
the intersection curve. An SQP-type method is used to solve the optimiza-
tion problem numerically. Two different predictor steps, which are based on
simple extrapolation and on a differential equation, are formulated.

Error bounds are needed in order to certify the accuracy of the result.
In the case of the intersection of two algebraic surfaces, we show how to
bound the Hausdorff distance between the intersection curve (an algebraic
space curve) and its rational approximation.

1 Introduction

Implicitly defined space curves, which are obtained by intersecting two im-
plicitly defined surfaces, arise in various ways in geometric modeling. As a
special case, they include algebraic space curves, which are intersections of
two (or more) algebraic surfaces1. For instance, the intersection curves of

1 In some cases, as for a space cubic, two surfaces are not sufficient to define the
curve globally, due to the presence of additional components of the intersection,
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two quadric surfaces have thoroughly been analyzed in the literature, see
[WJG02] and the references cited therein. See also [PM02] for a description
of the state of the art in surface–surface intersection in Computer–Aided
Design.

In the case of algebraic space curves, several computational techniques
relying on symbolic and hybrid symbolic-numeric algorithms exist. These
include methods for computing the topology [AS05,GLMT05] and for gen-
erating – in the case of rational space curves – a rational parameterization.
Indeed, by using a birational transformation, the problem can be reduced
to that of parameterizing a planar algebraic curve [Ber97]. The latter prob-
lem has thoroughly been analyzed in the literature, including the choice of
minimal field extensions and the construction of proper parameterizations
[ASS05,Sch92,Sen02,SW97,SW01].

Clearly, these techniques for generating a rational parameterization are
limited to the class of rational curves (algebraic curves of genus zero). In
the general situation, approximate techniques have to be used. Various re-
lated results for planar curves exist [BX97,BR00,GL04]. Numerical methods
for space curves and more general varieties have been discussed in [AC04,
Har00].

The present paper presents a numerical method which generates an ap-
proximate rational parameterization of an implicitly defined space curve.
Clearly, a numerical method for tracing a point on the space curve by a
predictor–corrector type algorithm can easily be formulated by combining
a predictor step (e.g., a Runge–Kutta method) with a suitable corrector,
such as several alternating projections on the two implicitly defined surfaces
which define the space curve. In a certain sense, we extend this technique
to the case of a rational parameterization. Instead of tracing a just single
point on the curve, we formulate a predictor–corrector type method that
traces an entire rational curve segment, whose length increases and which
represents approximately the algebraic curve between a fixed starting point
and a variable end point.

The paper is organized as follows. The next section formulates the prob-
lem in more detail and derives a scalar field which approximates the distance
function to the given space curve. Section 3 formulates the approximation
algorithm and described it components in some detail. Error bounds are
derived in Section 4, and the extension to singular points is discussed in
Section 5. Finally we conclude this paper.

2 Preliminaries

We describe the parameterization problem and discuss approximations to
the distance function of a space curve.

cf. [Har83]. In order to obtain a global definition, an ideal of trivariate polynomials
has to be used. However, in a neighborhood of a regular point of an intersection
curve, two surfaces are locally sufficient.
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2.1 The parameterization problem

For any C3 function f : R
3 → R, let

Z(f) = {p ∈ R
3 | f(p) = 0} (1)

be its zero set. Points p ∈ Z(f) with ∇f(p) 6= 0 (resp. = 0) are called
regular (resp. singular). We consider the intersection curve of two zero sets
of C3 functions f and g,

C(f, g) = Z(f) ∩ Z(g). (2)

If both f and g are polynomials, then C is called an algebraic curve. A
point p ∈ C is called regular, if the two gradient vectors ∇f(p) and ∇g(p)
are linearly independent (and singular otherwise). At a regular point p, the
vectors

t`(p) = (−1)(`−1) ∇f(p) ×∇g(p)

‖∇f(p) ×∇g(p)‖ , ` ∈ {1, 2}, (3)

are unit tangent vectors of the intersection curve C at p.

We assume that a regular point p of the intersection curve and one of
the associated tangent vectors t`(p), where the flag ` ∈ {1, 2} specifies the
desired orientation, are given.

The solution of the differential equation

c′(s) = t`(c(s)), with c(0) = p, (4)

defines the arc–length parameterization of the intersection curve, starting
at the given point p. We assume that a suitable numerical method for
evaluating this arc–length parameterization is available. For instance, one
may combine a Runge–Kutta–type predictor with a suitable corrector step,
which projects a point back onto the intersection curve, see [HL93]. A de-
tailed discussion of this numerical method is beyond the scope of the present
paper.

In order to represent it in a form which is suitable for further appli-
cations, in particular in Computer Aided Design, we want to construct an
approximate rational parameterization of a curve segment of the intersec-

tion curve. The segment starts at the point p and has one of the two unit
tangent vectors t` there, depending on the desired orientation. The segment
end point is not known a priori; it is determined by the algorithm. In order
to be able to generate a globally smooth approximation by collecting several
segments, we shall enforce G1 boundary tangents, see the next section for
details.



4 B. Jüttler, P. Chalmovianský

2.2 The approximating rational curve

The approximating curve is represented as a rational Bézier curve x(t) =
(x1(t)/x4(t), x2(t)/x4(t), x3(t)/x4(t))

> of degree n, where

(x1(t), x2(t), x3(t), x4(t))
> = x̃(t) =

n∑

i=0

Bn
i (t)p̃i, (5)

with the unknown control points (in homogeneous coordinates)

p̃i = (b4i, b4i+1, b4i+2, b4i+3)
> ∈ R

4 \ {0} (6)

and the Bernstein polynomials Bn
i (t) =

(
n
i

)
(1 − t)n−iti. All control points

can be gathered in one vector

b = (b0, . . . , b4n+3)
> ∈ R

4n+4. (7)

The approximating curve satisfies G1 boundary conditions, i.e.,

x(0) = p, x(1) = q = c(s),
x′(0) = λ t`(p), x′(1) = µ t`(q)

(8)

where q = c(s) with s > 0 is the segment end point, and λ, µ > 0 is needed
in order to preserve the orientation of the boundary tangents. In addition,
we require that the curve is described in standard form, b3 = b4n+3 = 1, see
[HL93]. We use these conditions in order to eliminate some components of
the unknown control points by introducing new variables

r = (r0, . . . , r4n−9)
>. (9)

The vector of control points b depends linearly on these new variables. The
two boundary control points p̃0 and p̃n are fully detemined by p and q, and
the next two inner control points p̃1 and p̃n−1 are obtained from the bound-
ary points, the tangents and two free parameters r0, r1 and r4n−8, r4n−9 for
each of them. The remaining control points are completely free and their
components are parameterized by r2, . . . , r4n−7. More precisely, we get

b(r) = Ar + bboundaries, (10)

where A is the (4n + 4) × (4n − 8) matrix

A(s) =





A11 08×4(n−3) 08×2

04(n−3)×2 I4(n−3)×4(n−3) 04(n−3)×2

08×2 08×4(n−3) A33



 (11)

with the blocks

A11 =





04 04

t`(p) p

0 1



 and A33 =





q −t`(q)
1 0
04 04



 , (12)



Approximate Parameterization of Intersection Curves 5

and
bboundaries = (p>, 1, 0, . . . , 0,q>, 1)>. (13)

In order to preserve the orientation of the boundary tangents, only vectors
(9) satisfying

r0 = λ > 0 and r4n−9 = µ > 0 (14)

are feasible. For later reference we note the relations between gradients and
Hessians

∇G = A>∇H and ∇2G = A>∇2HA, (15)

where H : b 7→ H(b) is an arbitrary C2 function on R
4n+4, and the function

G : r 7→ G(r) = H(b(r)) on R
4n−8 is obtained by substituting (10).

2.3 Approximating the distance to the intersection curve

Following [Sam82], one may use the Sampson distance

distf (x) = |f(x)|/‖∇f(x)‖ (16)

in order to approximate the distance between a point x and the implicitly
defined surface Z(f). If fx ∈ Z(f) is the closest point to x, then

‖x− fx‖ = distf (x) + O(‖x − fx‖2). (17)

Consequently, in the vicinity of the surface, (16) is a fairly accurate estimate
of the true distance.

The distance to the intersection curve can be approximated by

Distf,g(x) =
√

distf (x)2 + distg(x)2, (18)

but this does not give a precise estimate. In order to improve it, we consider
the functions

F (x) = F̄ (x)/‖∇F̄ (x)‖, G(x) = Ḡ(x)/‖∇Ḡ(x)‖ (19)

where
F̄ (x)

Ḡ(x)

}

= f(x) ‖∇g(x)‖
{

+

−

}

g(x) ‖∇f(x)‖. (20)

Lemma 1 For any regular point r of the intersection curve, there exists a

neighborhood N such that for all points x ∈ N

||x − fx|| =
√

F (x)2 + G(x)2
︸ ︷︷ ︸

= DistF,G(x)

+O(||x − fx||2). (21)

holds, where fx ∈ C is the closest point of x.

Proof If N is sufficiently small, then the closest points of all x ∈ N are
regular points of C. Then, the two functions F and G have unit and mutually
perpendicular gradients along C. The result follows by analyzing the Taylor
expansion (and its remainder term) of

D(d) =
√

F (fx + dv)2 + G(fx + dv)2, (22)

where v = (x − fx)/‖x− fx‖ and d is the distance, at d = 0. �
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3 Approximate parameterization of the intersection curve

This section starts with an outline of the predictor–corrector–type algorithm
for approximating a regular segment of the intersection curve. Then we
describe its components in more detail.

3.1 Outline

We assume that the two functions f, g defining the intersection curve C, a
regular point p ∈ C, the flag ` ∈ {1, 2} which specifies the desired orienta-
tion, the degree n, and the numerical procedure for evaluating the arc–length
parameterization s 7→ c(s) are available. The approximation algorithm con-
sists of four steps.

1. Use the initial predictor to generate the segment end point q and the
initial curve segment x(t).

2. Apply the corrector in order to optimize the current solution. If the
accuracy of the result is insufficient, then continue with step 4.

3. Use one of the two predictors in order to extend the current approximat-
ing curve x(t). If an extension is possible, then continue with step 2.

4. Use the rational curve x(t) which was generated prior to applying the
last predictor step as the final result.

If the length of the curve x(t) is too small, then one can now set p = x(1)
and apply the algorithm again. This gives a G1 rational spline curve which
approximates the intersection curve C.

Example 1 An example is shown in Fig. 1. Two quadrics intersect in an
algebraic curve of order 4, which is approximated by a rational cubic curve.
Three curves obtained by the iterative algorithm are shown.

3.2 Initial predictor

Using the numerical procedure for evaluating the arc length parameteriza-
tion, we generate the segment end point q = c(h) and the unit tangent
vectors at p = t`(p) and q = t`(q). The step size h should be chosen
proportional to the radius of curvature of C at p. The initial solution is
the cubic polynomial interpolant x(t) (see (5), but with degree n = 3 and
weights b3 = b7 = b11 = b15 = 1) of the C1 Hermite boundary data

x(0) = p, x′(0) = L t`(p), x(1) = q, x′(1) = L t`(q). (23)

where L = ‖p − q‖. If n > 3, then we use degree elevation (see [HL93]) in
order to generate the control points of the initial solution.

Example 2 Fig. 2 (top row) shows a the initial solution obtained for the
intersection curve of a quadric and a cubic surface.
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Fig. 1 Left column: Rational cubic curves approximating the intersection of a
sphere (radius 2) and a cylinder. The thick parts represent the the curve obtained
for t ∈ [0, 1]. From top to bottom: While the left end point remains fixed, the
right end point moves along the intersection curve. Right column: Orthogonalized
distance functions Distf,g(x(t)). The error increases with the length of the curve
segment.

3.3 Corrector step

We generate the optimized rational curve by minimizing a suitable objective
function (see below) among all rational curves x(t) in standard form, which
are subject to the G1 boundary conditions (8) for fixed boundary points p,
and q. The objective function H = H(b) is chosen as

H = H0 + w1H1 + w2H2 (24)
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Fig. 2 Approximate parameterization of the intersection of a sphere with a cubic
surface. Initial (top) and optimized (bottom) solutions, and estimated distance
DistF,G (right). The sphere has radius 2. The thicker (resp. thinner) part corre-
sponds to the curve segment t ∈ [0, 1] (resp. t ∈ R \ [0, 1]).

with

H0 =

∫ 1

0

F (x(t))2 + G(x(t))2dt, (25)

and

H1 =

∫ 1

0

h(x0(t)) dt, where h(ξ) = (ξ − 1)8, (26)

and the regularization terms

H2 =

n−1∑

i=0

‖p̃i+1 − p̃i‖2, or H ′
2 =

n−2∑

i=0

‖p̃i+2 − 2p̃i+1 + p̃i‖2. (27)

The first term H0 approximates the integral of the squared Euclidean dis-
tance between the intersection curve and its rational approximation, cf.
Lemma 1. It will keep the approximating rational curve close to the inter-
section curve.

The second term H1 measures the deviation of the rational Bézier curve
x(t) from a polynomial one. It is introduced in order to avoid potential
problems with a vanishing denominator x4(t), cf. (5). At the same time, it
allows the denominator to deviate significantly from 1. Hence, the method
uses the greater flexibility of rational curves, as compared to polynomial
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ones. The function h can be replaced with other suitable C2 convex function
with minimum at 1 in order to get similar results.

The regularization term H2 represents the length of the homogeneous
control polygon. The alternative regularization term H ′

2 forces the distri-
bution of the control points on the control polygon to be as uniform as
possible. By using a regularization one may avoid potential problems with
degeneracies of the linear systems which have to be solved in the corrector
and predictor steps of the algorithm. For instance, such degeneracies could
be caused by using a too high polynomial degree, such as, e.g., trying to
generate a cubic parameterization of a straight line. The terms H2 and H ′

2

can also be used simultaneously.
We assume that the weights w1 and w2 are specified by the user. They

should satisfy
0 < w1 � w2 � 1 (28)

in order to match the importance of the objectives represented by the cor-
responding terms. They can semi-automatically be adjusted during the op-
timization, such that both w1 and w2 tend to zero.

The objective function depends on the parameters r = (r0, . . . , r4n−9),
see (9), which are subject to the constraints r0 > 0, r4n−9 > 0, see (14). In
order to obtain a closed convex domain, we replace the constraints by

r0 ≥ ε, r4n−9 ≥ ε, (29)

where 0 < ε � 1 is a suitable constant.
The optimized rational approximation of the intersection curve is found

by solving the non–linear optimization problem

r∗ = arg min
{r | r0≥ε,r4n−9≥ε}

G(r), (30)

where G(r) = H(b(r)), via an SQP2–type method. More precisely, we gen-
erate a sequence of parameters {ri}∞i=0, where r0 is the previously generated
initial solution, and

ri+1 = ri + γi(r
i − sgn (∇G(ri) · qi)qi, (31)

where
qi = [∇2G(ri)]−1∇G(ri). (32)

The derivatives in ∇G(ri), ∇2G(ri) can be evaluated by applying the differ-
entiation to the integrands in H0 and H1, and using numerical integration.
In addition, the equations (15) may be useful.

Using bisection starting with 1, the step sizes γi ∈ (0, 1] are chosen
such that the values H(ri) decrease and such that the new iterate respects
the constraints (29). If the decrease of H(ri) falls below a user–defined
threshold, then the iteration (31) terminates and the current vector ri serves
as approximation to r∗.

2 sequential quadratic programming
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Example 3 This corrector step has been applied to the initial solution de-
scribed in the previous example, see Fig. 2 (bottom row). The maximum
distance error is reduced to approx. 3% of its initial value. The rational
approximation has degree n = 3.

3.4 Predictor steps

Two different predictor steps, which generate the homogeneous control points
(p̃+

i )i=0....,n describing the initial guess for the next corrector step, may be
used.

The first predictor (by extrapolation) is simpler and uses a more heuristic
approach. The second predictor (by evolution) tries to trace the optimal
solution, which is slightly more complicated, but automatically guarantees
the preservation of the boundary conditions.

Extrapolation predictor. We choose an extrapolation parameter E ∈ [0, 1]
and extrapolate the current rational curve segment to the parameter domain
[0, 1 + E]. The extrapolated segment has the homogeneous control points

p̃∗
k =

k∑

i=0

Bk
i (1 + E) p̃i, k = 0, . . . , n. (33)

They can be computed using the algorithm of de Casteljau, see [HL93]. By
transforming this extrapolated curve into standard form, we obtain

p̃◦
k =

1

( n
√

p̃∗i,4)
i
p̃∗

k, (34)

where p̃∗i,4 is the weight of the last control point.

Finally, we modify the last two control points in order to satisfy the G1

boundary conditions at x(1). We need to consider the Cartesian coordinates
pi = (pi,1, pi,2, pi,3)

> of these control points, which satisfy pi,j = p̃i,j/p̃i,4.
First, we project the last control point into a point q = c(s∗) and replace the
last homogeneous control point by p̃+

n = (q1, q2, q3, 1). Second, we project
the last but one control point onto the tangent at q,

p+
n−1 = q + [(p◦

n−1 − q) · t`(q)] t`(q) (35)

and replace the corresponding homogeneous control point by

p̃+
n−1 = p̃◦n−1,4 (p+

n−1,1, p+
n−1,2, p+

n−1,3, 1)>. (36)

All other control points remain unchanged, p̃+
i = p̃◦

i for i = 0, . . . , n − 2.
If the extrapolation parameter E is too large, then the homogeneous

control points p̃+
i , which are generated by the extrapolation predictor, may

describe an infeasible curve, or the error (measured by (25)) may be too
large. We then use bisection towards 0 in order to decrease E. As an heuristic
initial estimate we choose E = min{Emax , tan α/κ1} where Emax is a user-
defined maximum value and κ1 is curvature of the current curve x(1) = q.
The angle α is defined by user. In our experiments, we chose α = π

6 .
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Evolution predictor. In order to derive the second predictor, we consider the
solution of the optimization problem G(r) → min, see (30), as a function of
the arc length s of the curve segment. For any fixed value of s, i.e., for any
fixed segment end point q = c(s), the solution satisfies ∇G = 0. If s varies,
then we obtain using (10) and (15) the ordinary differential equation

0 =
d

ds
∇G =

d

ds
(A(s)>)∇H(A(s) r(s) + bboundaries(s)) (37)

or, equivalently,

0 = C(r, s)r′(s) + D(r, s)r(s) + E(r, s) (38)

with the matrices

C = A>∇2HA, D = A>∇2HA′ and (39)

E = A′>∇H + A>∇2Hb′
boundaries. (40)

where ′ = d/ds. In order to extend the current solution, where s = s0, to
some bigger curve segment s0(1 + E) (where E is again the extrapolation
parameter), we trace the solutions of the differential equation (38), which
is equivalent to

r′ = φ(r, s) = −C(r, s)−1D(r, s)r − C(r, s)−1E(r, s) (41)

using the standard Runge–Kutta method, see e.g. [SB05]. Clearly, this works
only if C is regular. This can be guaranteed by using the following result.

Lemma 2 If w2 is sufficiently large, then the matrix C(r, s) is regular.

Proof Eq. (24) gives

C = A>∇2H0A + w1A
>∇2H1A + w2A

>∇2H2A (42)

Since H2 is a semidefinite quadratic form of the control point vector b (see
(6), (7) and (27)), its Hessian is also semidefinite. The null space of the
Hessian consists of all vectors of the form

b = (ξ0, ξ1, ξ2, ξ3, ξ0, ξ1, ξ2, ξ3, . . . , ξ0, ξ1, ξ2, ξ3)
> (43)

which correspond to curves where all homogeneous control points (6) co-
incide. On the other hand, the space spanned by the columns of A (see
(11)) does not contain any of these vectors, except for the null vector. Con-
sequently, the matrix A>∇2H2A is positive definite and therefore regular.
Hence, if w2 is sufficiently large, the matrix C is regular, too. More precisely,
limw2→∞ det C = ∞. �

4 Error bound

We discuss how to obtain an error bound for the rational approximation of
the intersection curve.



12 B. Jüttler, P. Chalmovianský
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Fig. 3 Eq. (44) defines the one–sided Hausdorff distance between the dashed
curve and the solid curves.

4.1 Hausdorff distance bound

We assume that the approximating curve segment x(t) is contained in some
closed domain Ω ⊂ R

3, and let C∗ = C ∪ ∂Ω, where ∂Ω is the boundary of
Ω. The one–sided Hausdorff distance of the curve segment and C∗ is defined
as

HDΩ(x, C) = sup
t∈[0,1]

inf
y∈C∗∩Ω

‖x(t) − y‖, (44)

see Fig. 3 for a schematic illustration.

Remark 1 The usual Hausdorff distance is the symmetrized version of (44).
The boundary of Ω had to be added to C, in order to avoid certain technical
problems.

Lemma 3 We consider the two functions f, g defining the curve C, and

h =
√

f2 + g2. We assume that positive constants c, k exist, such that the

inequalities ‖∇f‖ ≥ c, ‖∇g‖ ≥ c and |∇f · ∇g| ≤ k are satisfied for x ∈ Ω,

and c2 > k. Then ‖∇h‖ ≥
√

c2 − k holds for x ∈ Ω\C.

Proof Clearly, ∇h = (f∇f + g∇g)/
√

f2 + g2. Hence,

‖∇h‖2 =
1

f2 + g2
(f2‖∇f‖2 + g2‖∇g‖2) +

1

f2 + g2
(2fg∇f · ∇g)

≥ | 1

f2 + g2
(f2‖∇f‖2 + g2‖∇g‖2)|

︸ ︷︷ ︸

≥c2

− | 2fg

f2 + g2
|

︸ ︷︷ ︸

≤1

|∇f · ∇g|
︸ ︷︷ ︸

≤k

and the result follows. ut

Theorem 1 Consider a curve segment x : I → Ω. Under the assumptions

of Lemma 3, if f(x(t))2 + g(x(t))2 ≤ M2 for t ∈ I, then the one–sided

Hausdorff distance is bounded by

HDΩ(x, C) ≤ M√
c2 − k

. (45)

Proof We consider the integral curves of the vector field − ∇h
‖∇h‖ where h

is defined as in the Lemma. These curves are regular at all inner points
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of Ω\C. For any t ∈ I , consider an integral curve p(s) with p(0) = x(t).
Applying the Mean Value Theorem to h(p(s)) and using Lemma 3, we get

h(p(s)) = h(p(0)) + s∇h(p(s0)) · ṗ(s0)

= h(p(0)) − s‖∇h(p(s0))‖ ≤ M − s
√

c2 − k.

Since h ≥ 0, the integral curve p(s) is not defined for s > M√
c2−k

. Conse-

quently, there exists an s∗ ∈ [0, M√
c2−k

], such that

lim
s→s∗

s<s∗

p(s) = y, where y ∈ C∗. (46)

As p(s) is parameterized by arc length,

‖x(t) − y‖ = ‖p(0) − y‖ ≤ s∗ ≤ M√
c2 − k

. ut

Remark 2 In the presence of almost singular points of the gradient fields
(c ≈ 0) or tangential intersections (c2 ≈ k), the theorem gives either no
bounds (if c2 < k) or only very poor bounds.

4.2 Bounding function values and gradient norms

In the case of polynomials f and g, one may obtain the bounds M, c, k
by exploiting the convex–hull property of Bernstein–Bézier representations
(see [HL93]).

Function values. The expression f(x(t))2 + g(x(t))2 is a rational function
of t. It can therefore be represented in Bernstein–Bézier (BB) form as

f(x(t))2 + g(x(t))2 = (
N∑

i=0

BN
i (t)ai)/(

N∑

i=0

BN
i (t)wi), t ∈ (0, 1), (47)

where ai and wi are the BB coefficients of numerator and denominator,
and N is the degree. If all wi are positive (and this is very likely the case,
since the numerator is a certain power of the positive polynomial x4(t)), the
upper bound M can be chosen as

M =
√

max
i

|ai|/ min
i

wi. (48)

If some of the weights are negative, then one may generate the BB represen-
tations with respect to subintervals via subdivision. Since the numerator is
a positive polynomial, this is guaranteed to give positive weights, provided
that the length of the subintervals is sufficiently small.
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Length of the gradients. We choose a tetrahedron 4 which contains the
domain Ω. Recall that any trivariate polynomial with values in R

d (for any
d ∈ Z+) has a Bernstein–Bézier representation with respect to this simplex,
see [HL93]. In the case of the gradient of f (and similarly for g), we get a
BB representation of the form

∇f(y) =
∑

|i|=nf−1

B
nf−1
i (y) mi (49)

with certain coefficients mi ∈ R
3. Here, nf is the degree of f , and the

functions B
nf−1
i (y) are the trivariate Bernstein polynomials with respect

to 4. We use multi–indices i = (i1, i2, i3, i4) ∈ Z
4
+ and |i| = i1 + i2 + i3 + i4.

If the convex hull of the coefficients {mi | |i| = nf − 1} does not contain
the origin, then the distance between the convex hull3 and the origin is a
lower bound for ‖∇f‖. In the case that this assumption is violated, then
one may split 4 into sub–tetrahedra and analyze the corresponding BB
representations.

Inner product of the gradients. This upper bound can be derived by analyz-
ing the BB representation of the scalar–valued trivariate polynomial ∇f ·∇g
of degree nf + ng − 2 with respect to the tetrahedron. The upper bound k
can be chosen as the maximum absolute value of its BB coefficients.

Remark 3 In the case of planar algebraic curves, a similar technique has
been used in [ASJS05].

4.3 Example

We applied this technique to the three examples in Figure 1, where the
intersection curve C is defined by the two polynomials f = x2 + y2 − 1.44
and g = (x− 1)2 + y2 + z2 − 4. In order to obtain tight bounds, we split the
curves into 1, 2 and 6 subsegments, respectively, and the table reports the
values for the segment with the largest error. We chose the domain Ω to be
the convex hull of the Bézier control points of the approximating rational
curve. This convex hull, which was a simplex, has also been used to generate
the various Bernstein–Bézier representations.

One may compare these bounds with the graphs of the orthogonalized
distance functions in Fig. 1. These functions have the same order of magni-
tude as the bounds, indicating that the bounds are fairly accurate.

3 In order to avoid the convex hull computation, one may instead consider the
BB representation of the scalar–valued polynomial ‖∇f(y)‖2 to obtain a lower
bound on it, which can then be used to infer a lower bound on ‖∇f(y)‖.
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M c k HDΩ ≤

top 1.6 · 10−4 1.05 3.4 · 10−4 1.5 · 10−4

center 2.6 · 10−3 0.99 4.1 · 10−1 3.5 · 10−3

bottom 9.4 · 10−3 0.73 1.8 · 10−4 1.3 · 10−2

Table 1 Error bounds for the approximating curves in Figure 1.

5 Dealing with singular points

The method can be extended to curve segments starting at singular points
(which are characterized by ∇f ×∇g = 0) of the intersection curve. For the
sake of simplicity, we restrict ourselves to singular points, where the tangents
of all real branches passing through this point are mutually different. Also,
we do not address the question of how to compute singular points and
these tangent directions. In the case of polynomials, these problems lead to
(systems of) polynomial equations.

In order to apply the parameterization technique to the case, where p

is a singular point, it has to be modified as follows.

1. The tangent vector t`(p) has to be chosen as the tangent of the chosen
branch of the curve starting from p; it cannot be computed from (3).

2. The corrector step of the numerical method used to solve (4) may expe-
rience difficulties for small values of s. If this is the case, then one should
use a better predictor at the singular point (s = 0). For instance, one
may use a higher–order Taylor expansion of the desired branch of the
intersection curve. Techniques from symbolic computation will faciliate
the computation of such an expansion.

3. The orthogonalized distance function is not defined at p. Therefore, the
integration in (25) should start at some small positive value ε � 1. For
the segment [0, ε] one may use the (25), but with the original functions
f and g.

Example 4 We consider a rational curve segment on Viviani’s window, which
is defined as the intersection of a cylinder and a sphere which touch each
other. This curves possesses an exact rational parameterization of degree
4, and we generate an approximate parameterization of degree 3. Even for
longer segments, the error remains quite small.

6 Conclusion

We presented an algorithm for the approximate parameterization of regular
segments of the intersection curves of two implicitly defined surfaces by a
rational curve. The algorithm optimizes both the numerator (control points)
and the denominator (“weights”) of the rational parameterization. In order
to obtain a good approximation, we introduced an orthogonalized distance
function, which is used to measure the quality of the fit. The method can be
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Fig. 4 Rational curve approximating Viviani’s window, starting at the singular
point. Since the orthogonalized distance function is not defined at t = 0, the
graphs show the plots starting at t = 0.1, 0.013 and 0.003. respectively.

used to generate spline curves (i.e., piecewise rational parameterizations),
see Fig. 5. It can be modified so as to deal with curves starting at a singular
point.

Open problems include the explotation of techniques for analyzing the
topology of algebraic space curves (cf. [AS05,GLMT05]) in connection with
the parameterization algorithm, and the generation of distance bounds in
the case of non–polynomial functions f and g. Also, it would be desirable
to derive a priori distance bounds for the approximating curve.
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