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Abstract

As observed by Choi et al. (1999), curves in Minkowski space R
2,1 are very well

suited to describe the medial axis transform (MAT) of a planar domain, and Min-
kowski Pythagorean hodograph (MPH) curves correspond to domains, where both
the boundaries and their offsets are rational curves (Moon, 1999). Based on these
earlier results, we give a thorough discussion of G1 Hermite interpolation by MPH
cubics, focusing on solvability and approximation order. Among other results, it is
shown that any analytic space–like curve without isolated inflections can be ap-
proximately converted into a G1 spline curve composed of MPH cubics with the
approximation order being equal to four. The theoretical results are illustrated by
several examples. In addition, we show how the curvature of a curve in Minkowski
space is related to the boundaries of the associated planar domain.

Key words: Hermite interpolation, Minkowski Pythagorean hodograph curves,
space–like vector, Taylor expansion.

1 Introduction

Offsets of planar curves are needed for various applications. For example, they
are used as the tool paths of computer–numerical–control (CNC) machines.
Since the accuracy and efficiency of the representation of curves and sur-
faces is one of the basic issues in computer aided geometric design (CAGD),
curves with polynomial or rational offsets have been thoroughly investigated.
In particular, Pythagorean hodograph (PH) curves, which were introduced by
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Fig. 1. The medial axis transform in xyr–space and the corresponding circles
in the xy–plane. The envelope of the circles defines the boundary of the
planar domain. The medial axis is shown in grey.

Farouki & Sakkalis (1990), are polynomial curves with rational offsets. Many
related references can be found in the excellent survey of Farouki (2002).

In order to use the offset to a given curve as a tool path or for other appli-
cations, the so–called trimming procedure has to be applied. This procedure
trims off the unwanted pieces and gives the true offset. Depending on the geom-
etry and the offset distance, the trimming procedure can be time–consuming
and computationally difficult.

An elegant approach to this problem was formulated by Moon (1999) and Choi
et al. (1999). It is based on the medial axis transform (MAT) of a planar do-
main (see Pottmann and Peternell (1998) and Degen (2004), and the references
cited therein) which identifies the domain with a (system of) space curve(s).
Recall that the medial axis of a planar domain consists of the centers of all
inscribed circles, which touch the boundary in at least two points. The MAT
is then the system of space curves obtained by lifting the points of the medial
axis of the domain into xyr–space, using the radius of the corresponding circle
as additional coordinate, see Fig. 1.

Motivated by the offset formula for the boundaries of a planar domain, Moon
defined MPH curves as polynomial speed curves in Minkowski (or pseudo–
Euclidean) space with respect to Minkowski inner product. If the MAT is a
(piecewise) MPH curve, the δ–offset curves to the corresponding boundary
domain are rational. Moreover, the trimming procedure for the inner offsets
becomes simpler, see Fig. 2 (cf. Pottmann and Peternell, 1998). The parts of
the MAT, where the corresponding circle radius r is less than δ, have to be
trimmed.

Based on so called domain decomposition technique, Choi et al. (1999) have
designed an interpolation scheme for interpolating the MAT of a planar do-
main by MPH cubics. Recently, Kim & Ahn (2003) addressed the problem
of C1 Hermite interpolation using MPH quartics and introduced a new con-
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Fig. 2. Trimming procedure using medial axis transform.

cept, C1/2 interpolation. MPH curves in higher dimensions have recently been
analyzed by Cho et al. (2004).

The approximation of the MAT by pseudo–Euclidean arc splines and by
parabolic arcs has been outlined by Pottmann and Peternell (1998).

Starting from the results of Choi et al. (1999), this paper analyzes the problem
of G1 Hermite interpolation by MPH cubics. Based on the mutual position of
the given end tangent vectors, we formulate an algorithm for computing the
interpolants in Bernstein–Bézier form. Lorentz transforms are used to map the
given Hermite data to one among five canonical positions, which significantly
simplify the analysis. The problem has in the ‘regular’ case four solutions,
which can be computed by solving two quadratic equations.

Based on the canonical positions of the input data and the causal character
of the difference of the end tangent vectors we derive sufficient and necessary
conditions for interpolants to exist. In fact, the difference of the endpoints
has to lie inside certain quadratic cones depending solely on the end tangent
vectors. Singular cases are also discussed.

In order to analyze the convergence order of the interpolants, an asymptotic
approach by means of Taylor expansions and Frenet formulas in Minkowski
space is introduced. As a result, we give conditions for converting curves into
MPH cubic splines. It turns out that any space–like (piecewise) analytic curve
can be approximately converted into a G1 MPH cubic spline. The approxima-
tion order is four, provided that the curve has no isolated inflections. Otherwise
the approximation order drops to two.

In addition to these results on MPH cubics, we provide a geometric interpre-
tation of the Minkowski curvature and Minkowski inflections in terms of the
geometry of the associated planar domain.
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2 Preliminaries

This section summarizes some basic concepts and some results concerning Min-
kowski space, MPH curves and differential geometry of curves in Minkowski
space.

2.1 Minkowski space

The three–dimensional Minkowski space R
2,1 is a real vector space with an

indefinite inner product given by the matrix G = diag(1, 1,−1). The inner
product of two vectors u = (u1, u2, u3)

>, v = (v1, v2, v3)
>, u,v ∈ R

2,1 is
defined as

〈u,v〉 = u>Gv = u1v1 + u2v2 − u3v3. (1)

The three axes spanned by the vectors e1 = (1, 0, 0)>, e2 = (0, 1, 0)> and
e3 = (0, 0, 1)> will be denoted as the x–, y– and r–axis, respectively.

Since the quadratic form defined by G is not positive definite as in the Eu-
clidean case, the square norm of u defined by ||u||2 = 〈u,u〉 may be positive,
negative or zero. Motivated by the theory of relativity we distinguish three so-
called ‘causal characters’ of vectors. A vector u is called space–like if ||u||2 > 0,
time–like if ||u||2 < 0, and light–like (or isotropic) if ||u||2 = 0.

All light–like vectors form a cone in R
2,1, the so called light cone. We denote

a light cone with the vertex at a point w by Cw.

Two vectors u,v ∈ R
2,1 are said to be orthogonal if 〈u,v〉 = 0. Therefore

a normal vector of a plane given by ax + by + cz = 0 has the coordinates
n = (a, b,−c)>. The cross–product in the Minkowski space can be defined
analogously to the Euclidean case as

w = u 1 v = (u2v3 − u3v2, u3v1 − u1v3,−u1v2 + u2v1)
>. (2)

Clearly, 〈u,u 1 v〉 = 0 for all u,v ∈ R
2,1.

A vector u ∈ R
2,1 is called a unit vector if ||u||2 = ±1. When u is a space–like

vector, it can be normalized to ||u||2 = 1, in the time–like case to ||u||2 = −1.

2.2 Lorentz transforms

A linear transform L : R
2,1 → R

2,1 is called a Lorentz transform if it maintains
the Minkowski inner product, i.e. 〈u,v〉 = 〈Lu, Lv〉 for all u,v ∈ R

2,1. The
group of all Lorentz transforms L = O(2, 1) is called the Lorentz group.
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Let K = (ki,j)i,j=1,2,3 be a Lorentz transform. Then the column vectors k1, k2

and k3 satisfy 〈ki,kj〉 = Gi,j, i, j ∈ {1, 2, 3}, i.e., they form an orthonormal
basis of R

2,1.

From 〈k3,k3〉 = G3,3 = −1 one obtains k2
33 ≥ 1. A transform K is said to be

orthochronous if k33 ≥ 1. The determinant of any Lorentz transform K equals
to ±1, and special ones are characterized by det(K) = 1.

The Lorentz group L consists of four components. The special orthochronous
Lorentz transforms form a subgroup SO+(2, 1) of L. The other components are
T1 ·SO+(2, 1), T2 ·SO+(2, 1) and T1 ·T2 ·SO+(2, 1), where T1 = diag(1, 1,−1)
and T2 = diag(1,−1, 1). Let

R(α) =







cosα − sinα 0
sinα cosα 0

0 0 1





 and H(β) =







1 0 0
0 cosh β sinh β
0 sinh β cosh β





 (3)

be a rotation of the spatial coordinates x, y, and a hyperbolic rotation with a
hyperbolic angle β, respectively. Any special orthochronous Lorentz transform
L ∈ SO+(2, 1) can be represented as L = R(α1)H(β)R(α2).

2.3 Minkowski Pythagorean hodograph curves and the MAT

Recall that a polynomial curve in Euclidean space is said to be a Pythagorean
hodograph (PH) curve, if the norm of its first derivative (or hodograph) is
a (possibly piecewise) polynomial. Following Moon (1999), MPH curves are
defined similarly, but with respect to the norm induced by the Minkowski
inner product. More precisely, a polynomial curve c ∈ R

2,1, c = (x, y, z)> is
called an MPH curve if a polynomial w exists such that

x′
2
+ y′

2 − z′
2

= w2. (4)

We recall the motivation that led Moon (1999) to the definition of MPH
curves. Consider a domain Ω ∈ R

2. The medial axis (MA) of Ω is the locus
of all the centers of maximal disks touching the boundary ∂Ω in at least two
points, which are inscribed into the domain Ω. Let (x(t), y(t))> be a parame-
terization of a part of the medial axis of Ω and let r(t) be a radius function,
which specifies the radii of the maximal disks with centers at (x(t), y(t)). The
corresponding part of the medial axis transform (MAT) is then a spatial curve
(x(t), y(t), r(t))>.

On the other hand, given a segment g(t) = (x(t), y(t), r(t))>, t ∈ I, of the
MAT, we can recover the original domain by forming the union of the disks,

Ω =
⋃

t∈I

Dr(t)(x(t), y(t)), (5)
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where Dr(x, y) is the disk with center (x, y) and radius r. Its boundary ∂Ω is
obtained as the envelope of the medial axis circles. The envelopes determined
by a C1 segment g(t) = (x(t), y(t), r(t))> of the MAT (see Choi et al., 1997)
are

b(±)(t) =

(

x
y

)

− r

x′2 + y′2
[ r′
(

x′

y′

)

±
√

x′2 + y′2 − r′2
(

−y′
x′

)

], (6)

provided that r > 0. Moreover, δ–offsets of ∂Ω may be computed the same
way by lifting the MAT to (x(t), y(t), r(t)± δ)>. As observed by Moon (1999),
if the corresponding MAT is an MPH curve, then the coordinate functions of
the envelopes are rational.

Remark 1 As an immediate consequence of the definition, the tangent vector
c′(t) of an MPH curve cannot be time–like. Also, light–like tangent vectors
c′(t) correspond to roots of the polynomial w in (4). In the remainder of this
paper we consider only curves with space–like tangent vectors. These curves
will be called space–like. Note that the MAT of a planar domain is a (collection
of) space curve(s) with space–like or light–like tangent vectors, where the latter
ones appear only at isolated points, typically at vertices (points with extremal
curvature) of the boundaries.

2.4 Frenet formulas in Minkowski space

This section introduces several facts from the differential geometry of curves in
the Minkowski space, cf. Blaschke (1929); Ekmekci & Ilarslan (1998); Walrave
(1995). Consider a space–like curve c(s) ∈ R

2,1. We may assume that the
curve is parameterized by its arc length, i.e. ||c′(s)|| = 1. Then we define a
(space–like) unit tangent vector T = c′(s) of c(s). The Frenet formulas take
the form

T′ = κN,
N′ = −〈N,N〉κT + τB,
B′ = τN,

(7)

provided that the vector T′ of c(s) is space–like or time–like on some parameter
interval. Then, the unit vectors N and B are the unit normal and binormal
vector, respectively, and κ > 0 and τ are the Minkowski curvature and torsion
of c(s). The three vectors T, N and B form an orthonormal basis.

The vector T′ may be light–like at an isolated point, or within an entire
interval. The two cases will be called (Minkowski) inflections and inflected
segments, respectively. The first case will be addressed in the first paragraph
of Section 5.2. In the second case, the Frenet formulas take the form

T′ = κN,
N′ = τN,
B′ = −κT − τB,

(8)
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Fig. 3. A planar domain, its medial axis (dotted), an inscribed circle, and the
curvatures of the boundaries (visualized by the osculating circles c1 and c2).

where 〈T,N〉 = 〈T,B〉 = 0, 〈N,N〉 = 〈B,B〉 = 0 and 〈N,B〉 = 1. In this
situation, the Minkowski curvature evaluates to κ = 0 if c(s) is a straight line,
and to κ = 1 otherwise.

2.5 An interpretation of the Minkowski curvature

We discuss the relationship between the Minkowski curvature of a space–like
curve in R

2,1 and the curvatures of the boundaries of the associated planar
domain. The results lead to an interpretation of Minkowski inflections and of
inflected segments.

Proposition 2 Let p = (x(t), y(t), r(t))> be a space–like curve in R
2,1. Then

〈T′,T′〉 =
1

(ρ1 − r)(ρ2 + r) sin2 φ
2

=
k1k2

(1 − rk1)(1 + rk2) sin2 φ
2

, (9)

where T′ denotes the derivative of the unit tangent vector of p with respect to
the Minkowski arc length, k1 = 1

ρ1
, k2 = 1

ρ2
are the signed curvatures according

to the parameterization (6) of the boundaries of the associated planar domain
Ω (see (5)), and the angle φ equals φ = ∠(b(+), (x, y),b(−)), cf. Figure 3.

Proof: We choose the coordinates such that the origin is located at x(0), y(0),
while the derivative x′(0), y′(0) is aligned with the x–axis, see Figure 3. Then
b(±) = r(c,∓s), where c = cos φ

2
, s = sin φ

2
. We replace the two boundary

curves by their osculating circles c1, c2 at b(±) with the radii ρi. The two
circles define two light cones in R

2,1 with apexes at

a1 = ((r − ρ1)c,−(r − ρ1)s, ρ1)
> and a2 = ((r + ρ2)c, (r + ρ2)s,−ρ2)

>.

Each of them has a second order contact with the developable surface of
constant slope π/4 through the corresponding boundary along the generating
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line through b(±). The developable surfaces of constant slope are the graph
surfaces of the signed distance functions associated with the boundaries.

One branch of the intersection curve of the light cones is a conic section (see
Fig. 4), which has a contact of second order with the MAT (x(t), y(t), r(t))>

at the point (0, 0, r(0))>. It has the quadratic Taylor approximant

m2(σ) =







0
0
r





+
σ

s







1
0
−c





+
σ2

2
T′(0) (10)

with respect to the Minkowski arc length σ, where

T′(0) =
1

2(ρ1 − r)(ρ2 + r)s2







(2r − ρ1 + ρ2)c
(ρ1 + ρ2)s

−2r + ρ1 − ρ2





 . (11)

Indeed, the quadratic Taylor approximant m2(σ) satisfies approximately the
equations of the light cones, ‖ai − m2(σ)‖2 = O(σ3), and it also approxi-
mately satisfies the equations of the Minkowski arc length parameterization,
‖m′

2(σ)‖2 = 1 + O(σ2). Eq. (9) follows directly from (11). 2

Corollary 3 If 〈T′,T′〉 6= 0, then κ =
√

|〈T′,T′〉|. Consequently, Minkowski
inflections correspond to inflections of at least one of the boundaries, and
inflected segments correspond to planar domains where at least one of the
boundaries is locally a straight line. Otherwise κ = 0 or κ = 1, see Section 2.4.
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3 Interpolation of G1 Hermite boundary data

Consider an MPH cubic in Bézier form

g(t) = p0 (1 − t)3 + p1 3t(1 − t)2 + p2 3t2(1 − t) + p3 t
3, t ∈ [0, 1], (12)

which is to interpolate the two given points q0 = p0 and q1 = p3, and the
associated space-like unit tangent directions t0 and t1. More precisely, we have
to find constants a and b such that the inner control points satisfy

p1 = p0 + at0, and p2 = p3 − bt1, (13)

and the cubic is MPH. Since the degree of the hodograph g′(t) is two, this
implies that there exists a quadratic polynomial

σ(t) = σ0 (1 − t)2 + σ1 2t(1 − t) + σ2 t
2 (14)

such that ||g′(t)||2 = 9σ(t)2. Let

l0 = at0, l1 = (p3 − p0) − at0 − bt1, l2 = bt1, (15)

be the legs of the control polygon of the cubic. The MPH condition leads to
the five equations (cf. Choi et al., 1999)

σ2
0 = 〈l0, l0〉, σ2

2 = 〈l2, l2〉, (16)

σ0σ1 = 〈l0, l1〉, σ1σ2 = 〈l1, l2〉 and (17)

σ0σ2 + 2σ2
1 = 〈l0, l2〉 + 2〈l1, l1〉. (18)

The first two equations (16) are equivalent to σ0 = ±a and σ2 = ±b. As σ(t)
and −σ(t) yield the same hodograph g′(t), it suffices to consider only two of
the four possible sign combinations,

σ0 = a, σ2 = ±b, (19)

since the other two give the same results.

The first equation in (17) leads to

σ1 = 〈t0, l1〉. (20)

After eliminating σ1 from the two equations (17), and using (15) and (19), we
arrive at one of the two equations

〈l1, t0 ∓ t1〉 = 0, (21)

depending on the choice of the sign in σ2 = ±b.
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Fig. 5. Necessary condition: The control polygon of the interpolating MPH
cubic lies on a certain hyperbolic paraboloid.

These equations form necessary conditions for the existence of a solution. From
a geometric point of view, the leg l1 of the control polygon must be parallel
to a plane with the normal vector t0 ∓ t1 (with respect to Minkowski inner
product). It is well known that all lines which are parallel to a given plane
and intersect two skew lines form a hyperbolic paraboloid. Consequently, in
the case of non–planar input data we get from each of the two cases in (21)
such a hyperbolic paraboloid. The control polygons of the MPH cubics lie on
these surfaces completely, see Fig. 5.

By substituting (19) and (20) into (18) we get one of the two equations

±ab + 2〈t0, l1〉2 = ab〈t0, t1〉 + 2〈l1, l1〉, (22)

depending on the choice of sign in (19).

Finally we solve (21) for a and substitute the result into the corresponding
equation (22). For each of the two cases, this leads to a quadratic equation
E1/2(b) = 0. Consequently, we may obtain up to four real solutions to the
interpolation problem. The two equations E1/2(b) = 0 are rather long, and we
do not include them in a general expanded form. See Section 4 for canonical
cases of these equations.

Let Ei(b) = φib
2 + ξib + ψi, φ1φ2 6= 0, ξ2

i − 4φiψi > 0, where i ∈ {1, 2}. Then
we denote the solutions as

bi,1 =
−ξi +

√

ξ2
i − 4φiψi

2φi
, bi,2 =

−ξi −
√

ξ2
i − 4φiψi

2φi
. (23)

The order of the solutions bi,j is important in the following discussions. Note
that multiplying equations (22) by negative constants is not allowed, since it
changes the labeling.

The algorithm for computing the interpolants is summarized in Table 1. An
example will be presented later (see Section 6 and Fig. 12, page 23).
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Table 1
G1 interpolation by MPH cubics.

Given: End points q0, q1 with associated space–like tangent vectors t0, t1.

(1) Solve the equation Ei(b) for b (i = 1, 2) =⇒ bi,1, bi,2.

(2) Compute ai,1, a1,2 from 〈l1, t0 ∓ t1〉 = 0 corresponding to bi,1, bi,2.

Output: Four MPH cubic interpolants given by (12) and (13).

Remark 4 The two solutions obtained by choosing the plus signs in (19)
corresponding to the plus sign in (22) and the minus sign in (21), which are
found by solving E1(b) = 0, will be called the solutions of the first kind. The
other two solutions will be called the solutions of the second kind.

4 Solvability

This section studies the number of solutions for given G1 input data. In order
to analyze the solvability, we simplify the given input data without loss of
generality as far as possible. First, we move the starting point g(0) of the
curve g(t) to the origin, while the endpoint g(1) remains arbitrary, i.e.,

p0 = (0, 0, 0)>, p3 = (x, y, r)>. (24)

Then we apply Lorentz transforms in order to obtain one among five canonical
positions, as described in the following section.

4.1 Canonical positions of the boundary tangents

Proposition 5 Any pair of space–like unit vectors t0, t1 in three dimensional
Minkowski space can be mapped by a Lorentz transform to one of the canonical
positions described in Table 2, depending on the causal characters of their sum
and difference vectors s = t0 + t1 and d = t1 − t0.

Proof: The plane spanned by t0 and t1 can be space–like (case 1), time–
like (cases 2 and 2′) or light–like (cases 3 and 3′), depending on whether the
restriction of the quadratic form v 7→ 〈v,v〉 to the plane is positive definite,
indefinite or semi–definite, respectively. Using a suitable Lorentz transform we
map it into one of the planes r = 0, y = 0 and y− r = 0, respectively. Within
these planes, the unit vectors (characterized by x2 +y2−r2 = 1) form a circle,
a hyperbola, and a pair of parallel lines (in the Euclidean sense), see Figure 6.
Using another Lorentz transform one may map them to one of the canonical
configurations listed in Table 2. 2
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Table 2
Canonical positions of two space–like unit vectors t0, t1. The abbreviations sl.,
tl., and ll. stand for space–, time– and light–like, respectively.

canonical position
no. s d t0 t1 f ∈
1 sl. sl. (cos f, sin f, 0)> (cos f,− sin f, 0)> (−π

2 , π
2 ]

2 sl. tl. (cosh f, 0, sinh f)> (cosh f, 0,− sinh f)> (−∞,∞)

2′ tl. sl. (cosh f, 0, sinh f)> (− cosh f, 0, sinh f)> (−∞,∞)

3 sl. ll. (1, 0, 0)> (1, f, f)> (0,∞)

3′ ll. sl. (1, 0, 0)> (−1, f, f)> (0,∞)
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Fig. 6. The canonical positions of the plane spanned by the two vectors t0, t1,
the curves formed by the unit vectors (bold) and the time–like resp. light–like
vectors (interior and boundary of the grey regions in cases 2,2′ and 3,3′).

Remark 6 The remainder of this section studies the number of solutions
for given G1 input data. Later, in Section 5, we will analyze the behavior of
piecewise G1 Hermite interpolation of data taken from a space–like (possibly
piecewise) analytic curve by MPH cubic splines. In this context, cases 2′ and
3′ from Proposition 5 cannot occur, provided that sufficiently close endpoints
are chosen (see Section 5). Consequently, the solvability in these cases will not
be analyzed now.
Moreover, since the interpolation procedure does not distinguish between the
different possible orientations of the boundary tangents, cases 2 and 2′ are
equivalent, and the cases 3 and 3′ are equivalent. Therefore, only the cases 1,2
and 3 have to be addressed, which are distinguished by the causal character
of d = t1 − t0.

4.2 Solvability analysis

We study the solvability for the cases 1,2 and 3 of the given input data, and for
the (degenerate) case of linearly dependent boundary tangents. While cases
1 and 2 are regular (“generic”), case 3 and the degenerate case of linearly
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dependent boundary occur for singular data.

4.2.1 Regular cases

Case 1: Space–like difference d. We consider G1 Hermite data, as speci-
fied in case 1 of Proposition 5. Recall that p0 = (0, 0, 0)> and p3 = (x, y, r)>,
see (24). The two equations (21) lead to

a =
y + bs

s
resp. a =

x− bc

c
, (25)

depending on the choice of the sign, where s = sin f and c = cos f . After using
them to eliminate a from (22), we get the two quadratic equations

E1 = (8c4−10c2+2)b2+(−8sc2y+8s2cx+2sy)b−2(sx−cy)2+2r2 = 0 and

E2 = (8c4−6c2)b2+(−8sc2y−8c3x+6cx)b−2(sx−cy)2+2r2 = 0.

The roots of E1(b) (resp. E2(b)), along with the a values obtained from the
first (resp. second) equation (25), give the solutions of the first kind, resp. of
the second kind. Clearly, these roots may be conjugate complex. Moreover, if
f ∈ {0,±π

6
,±π

3
, π

2
}, then one of the two quadratic equations degenerates into

a linear one.

In the general case (f 6∈ {0,±π
6
,±π

3
, π

2
}), the number of real solutions of the

first or second kind depends on the signs of the discriminants D1, D2 with
respect to the parameter b,

D1 = 4s2(4s2x2 + (1 − 4c2)y2 + (16c2 − 4)r2) resp.
D2 = 4c2((1 − 4s2)x2 + 4c2y2 + (16s2 − 4)r2).

(26)

Consider a quadratic cone C : αx2 + βy2 + γr2 = 0, where αβγ 6= 0. A given
point p̃ = (x̃, ỹ, r̃)> is said to lie

inside
on

outside











the cone C if αx̃2 + βỹ2 + γr̃2











< 0
= 0
> 0

. (27)

Fig. 7 visualizes the two families of quadratic cones D1 resp. D2. Note that the
x– resp. y–axis is always outside. The cones D1 share the two common lines
(0,±2t, t)>, t ∈ R and two tangent planes y2 = 4r2 along them. Analogously,
the cones D2 share the two common lines (±2t, 0, t)>, t ∈ R and the associated
tangent planes x2 = 4r2.

Proposition 7 For any given value of f ∈ (−π
2
, π

2
)\{0,±π

6
,±π

3
}, the number

of real solutions of the G1 interpolation problem by MPH cubics with a space–
like difference vector d depends on the mutual position of the end point p3 =
(x, y, r)> 6= (0, 0, 0)> and the quadratic cones D1, D2. If p3 = (x, y, r) lies

13



x

y

r

x

y

r

a) b)

Fig. 7. Space–like difference vector d: a) The family D1, and b) the family
D2 of quadratic cones for various values of the parameter f .

outside, on, or inside Di, then the number of solutions of the i–kind equals two,
one, or zero, respectively. In any case one obtains at least two real solutions.

Proof: The last part remains to be shown. By inspecting the two families
of cones, one can verify that the interior parts of the cones do not intersect.
Indeed, if f ≈ 0, then the y-axis is inside D1 and the r–axis is inside D2. If
f → ±π

2
, then the r–axis is inside D1 and the x-axis is inside D2. 2

We conclude this section with a short discussion of singular cases.

• If f = π
3
, then E1 is linear in b and yields one solution when x 6= 0. If x = 0

then we obtain infinitely many or no solutions of the first kind, depending
on whether 8r2 − 2y2 = 0 or not. The second equation E2 can be dealt with
as in the regular case.

• If f = π
6
, then E2 is linear in b. The discussion of the number of solutions

is analogous to the previous case.
• Coinciding endpoints, p0 = p3 = (0, 0, 0)>. The first equation (25) gives
a = b, and E1 = 0 implies f = ±π

3
. This is in perfect agreement with the

fact that any planar PH curve of degree three is similar to a Tschirnhausen
cubic (see Farouki & Sakkalis (1990)) as the angle between the tangents at
the double point of the Tschirnhausen cubic equals π

3
. The second case gives

an equivalent result.
• The case of linearly dependent boundary tangents f ∈ {0, π

2
} will be ana-

lyzed in the last paragraph of Section 4.2.2.

Remark 8 Some solutions may have the wrong orientation (a < 0 or b > 0)
or singular end points (a = 0 or b = 0). While this could be characterized
by certain nonlinear inequalities for the components of p3, we will present
another approach in Section 5.

14
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Fig. 8. Time–like difference d: The family a) D1 and b) D2 of quadratic
cones for various values of the parameter f .

Case 2: Time–like difference d. The analysis in the case of a time-like
difference vector d is similar, but reveals a different behaviour. We consider
G1 Hermite data, as specified in case 2 of Proposition 5. The two equations
(21) lead to

a =
r + bS

S
resp. a =

x− bC

C
, (28)

depending on the choice of the sign, where S = sinh f and C = cosh f . After
using them to eliminate a from (22), we get the two quadratic equations

E1 = (8C4−10C2+2)b2+(8C2r−8SCx−2r)Sb+2(Sx− Cr)2−2y2=0 resp.

E2 = (8C4−6C2)b2+(6Cx−8C3x+8C2Sr)b+2(Sx− Cr)2−2y2=0

Their roots, along with the a values obtained from the first (resp. second)
equation (28), give the solutions of the first kind, resp. of the second kind.

If f = 0, then the first equation degenerates into a linear equation. Otherwise,
the number of real solutions of the first or second kind depends on the signs
of the discriminants D1, D2 with respect to the parameter b,

D1 = 4S2(4S2x2 + (16C2 − 4)y2 + (1 − 4C2)r2) resp.
D2 = 4C2((4S2 + 1)x2 + (16S2 + 4)y2 − 4C2r2).

(29)

Similar to the previous case, we obtain two families of quadratic cones with
apex at the origin, see Fig. 8. The r–axis is always inside both cones.

Proposition 9 For any given value of f ∈ R \ {0}, the number of real solu-
tions of the G1 interpolation problem by MPH cubics with a time–like differ-
ence vector d depends on the mutual position of the end point p3 = (x, y, r)> 6=
(0, 0, 0)> and the quadratic cones D1, D2. If p3 = (x, y, r) lies outside, on, or
inside Di, then the number of solutions of the i–kind equals two, one, or zero,
respectively. As a sufficient condition, if 4y2 − r2 > 0, then we get two solu-

15



tions of the first kind, and if 1
4
x2 + y2 − r2 > 0, then we obtain two solutions

of the second kind.

Proof. The second part of the proposition can again be shown by analyzing
the distribution of the cones. For f → ±∞, both cones converge to the same
limit cone x2 + 4y2 − r2 = 0. For f → 0, the cone D1 converges to the two
planes 4y2 − r2 = 0, and D2 converges to the limit cone 1

4
x2 + y2 − r2 = 0. 2

The only singular case concerns coinciding endpoints, p3 = (0, 0, 0)>. This
case does not have any solutions, except for f = 0. When d is time–like, no
planar MPH curve with a double point exists.

Remark 8 is again valid, but with possibly different signs for a and b, since
cases 2 and 2′ of Proposition 5 have been identified.

4.2.2 Singular cases

Case 3: Light–like difference d. We consider G1 Hermite data, as spec-
ified in case 3 of Proposition 5. The first of the two equations (21) implies
f = 0 (which will be analyzed in the next section) or y = r. Consequently,
for a general difference vector p3 = (x, y, r)> with y 6= r we do not obtain
any solutions of the first kind. If y = r, then any choice of a, b gives an MPH
cubic.

On the other hand, the second equation (21) leads to

a = x− b+
1

2
f(y − r) (30)

After eliminating a from the second equation (22), we get

E2 = 3bf(y − r) − 2(bx + y2 − r2 − b2). (31)

The discriminant of the quadratic equation E2 has the form

D2 = 4x2 + (y − r)(16y + 16r + 9f 2y − 9f 2r − 12fx). (32)

Similar to the regular cases, this equation defines a family of cones, see Fig. 9.
For any given f and p3, the number of solutions can be decided with the help
of the corresponding cone in this family.

Degenerate case: Linearly dependent tangent vectors. We may as-
sume that t0 = t1 = (1, 0, 0)>. Solutions of the first kind exist if and only if
y2 = r2, and any choice of a, b then gives a solution. Solutions of the second
kind exist if the discriminant D2 = 4x2 + 16y2 − 16r2 of E2 is non–negative.

16
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Fig. 9. Light–like difference d: family D2 = 0 of quadratic cones for various
values of the parameter f .

5 Asymptotic analysis

As shown in the previous sections, the solvability of the G1 Hermite interpo-
lation problem depends heavily on the given data. In the remainder of the
paper we take a different approach, as follows. We consider a curve segment
p = p(s) with s ∈ [0, Smax] in Minkowski space, which is assumed to be space–
like. The coordinate function are assumed to be analytic, and the parameter
s is assumed to be the Minkowski arc length, i.e., 〈p′,p′〉 = 1.

For a given step–size h, we generate points and tangents at the points s = ih,
i = 0, 1, 2, . . . and apply the G1 Hermite interpolation procedure by MPH
cubics to the pairs of adjacent points and tangents. We analyze the existence
and the behaviour of the solutions for decreasing step–size h→ 0.

5.1 Regular cases

Using the Frenet formulas (see Section 2.4) we generate a Taylor expansion of
the given curve. The derivatives at s = 0 evaluate to

p′(0) = T0,p
′′(0) = T′(0) = κ0N0,

p′′′(0) = κ1N0 + κ0N
′(0) = κ1N0 ∓ (κ2

0T0 + κ0τ0B0),
(33)

etc., where T0 = T(0), N0 = N(0), B0 = B(0), κ0 = κ(0), κ1 = κ′(0),
τ0 = τ(0), etc.. The choice of the sign in p′′′(0) (and all further derivatives)
depends on the causal character of the normal vector N0. In the generic case,
the normal vector N is either space–like or time–like.

Note that the equations (33) are not valid at Minkowski inflections, where N0

is light–like. These cases have to be studied separately.
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Using suitable initial conditions, we generate a Taylor expansion of the given
curve,

p(s) = p(0) + sp′(0) +
s2

2
p′′(0) +

s3

6
p′′′(0) + . . . . (34)

Without loss of generality, we choose p(0) = (0, 0, 0)>, T0 = (1, 0, 0)>, and
{N0,B0} = {(0, 1, 0)>, (0, 0, 1)>}, depending on the causal character of N0.

We analyze the interpolants to the G1 Hermite data sampled at s0 and s1 =
s0 + h. In the limit case h → 0, the normal vector N(0) plays the role of the
difference vector d of the end tangent vectors.

Proposition 10 Let p(s) be a space–like analytic curve with a space–like or
time–like principal normal vector at p(s0). Consequently, the Minkowski cur-
vature satisfies κ 6= 0 at p(s0). Then the G1 Hermite interpolation of p(s) in
[s0, s0 +h] by MPH cubics has four solutions, provided that the step–size h > 0
is sufficiently small. Exactly one among them matches the shape of the given
curve segment and possesses the approximation order four.

Proof: Let s0 = 0. If N(0) is space–like, then this remains valid for s ∈ [0, h],
provided that h is sufficiently small. The given curve has the Taylor expansion

p(s) =









s− 1
6
κ2

0s
3 − 1

8
κ0κ1s

4 + O(s5)
1
2
κ0s

2 + 1
6
κ1s

3 + 1
24

(κ2 + κ0(τ
2
0 − κ2

0))s
4 + O(s5)

1
6
κ0τ0s

3 + 1
24

(2κ1τ0 + κ0τ0)s
4 + O(s5)









. (35)

After sampling the Hermite boundary data at s0 = 0 and s1 = h, we gen-
erate Taylor expansions of the two quadratic equations Ei(b) = 0 and their
discriminants,

D1 = κ4
0h

8 + 2κ3
0κ1h

9 + O(h10),
D2 = 4h4 − 16

3
κ2

0h
6 − 16

3
κ0κ1h

7 + O(h8).
(36)

If h is sufficiently small, then the discriminants are positive and we obtain
four real solutions.

The first solution of the first kind will be analyzed in more detail. The corre-
sponding parameters a, b have the expansions

a1,1 =
1

3
+

κ1

12κ0
h+ O(h2), b1,1 =

1

3
− κ1

12κ0
h + O(h2). (37)

Hence, if h is sufficiently small, then the interpolant matches the orientations
of the given tangent vectors. These parameters lead to the solution q(t) =
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(x̄(t), ȳ(t), r̄(t))>, where

x̄(t) = th+
κ1t(1 − t)

4κ0
h2 + O(h3),

ȳ(t) =
1

2
κ0t

2h2 +
1

12
κ1t

2(3 − t)h3 + O(h4),

r̄(t) =
1

6
κ0τ0t

3h3 − 1

24
τ0(κ0(1 − 2t) − κ1(1 + t)) + O(h5).

(38)

This solution approximates the given analytic curve with the (geometric) ap-
proximation order 4, i.e.,

q(t(τ)) − p(hτ) = O(h4) (39)

holds for all τ ∈ [0, 1] where t(τ) is a reparameterization [0, 1] → [0, 1],

t(τ) = τ + hτ(τ − 1)
κ1

4κ0
+ h2τ(τ − 1)

L1τ + L2

96κ2
0

, (40)

where

L1 = 10κ2
1 + 8κ2

0τ
2
0 − 8κ4

0,
L2 = 4κ4

0 − 4κ2
0τ

2
0 − 17κ2

1 + 12κ0κ2.
(41)

The remaining three solutions can be analyzed in a similar way, see Kosinka
(200x). It can be shown that the solutions of the second kind do not preserve
the orientation of the boundary tangents, while the second solution of the first
kind exhibits an ‘overshooting’ behaviour. The top row in Figure 12, page 23,
visualizes the typical shape. These solutions do not match the shape of the
given curve, and they do not possess the approximation order 4.

An analogous discussion can be given when the normal vector of p at the
origin is time–like. We obtain similar results, but by choosing the solution
corresponding to the parameters a1,2 and b1,2 as the ‘best’ one. 2

5.2 Singular cases

Minkowski inflections correspond to points where the normal vector N is light–
like. This can be the case at an isolated point or within an entire interval.

Case 1: Isolated Minkowski inflection. We suppose that the normal
vector of p(s) at the origin is light–like and the canonical Taylor expansion of
p(s) at the origin has the form

p(s) = s







1
0
0





+
s2

2







x2

y2

r2





+
s3

6







x3

y3

r3





+
s4

24







x4

y4

r4





+







O(s5)
O(s5)
O(s5)





 . (42)
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Table 3
Causal character of normal vector N.

j yj, rj (−h0, 0) 0 (0, h0)

odd yj > rj time–like N light–like N space–like N

odd yj < rj space–like N light–like N time–like N

even yj > rj space–like N light–like N space–like N

even yj < rj time–like N light–like N time–like N

From equation 〈p′(s),p′(s)〉 = 1, which holds for all s from some neighborhood
of s0 = 0, we obtain without loss of generality that x2 = 0, y2 = κ, r2 = κ,
x3 = 0, x4 = κ(r3 − y3) etc. Therefore the expansion of p′′(s) takes the form

p′′(s) = κN =







0
κ
κ





+ s







0
y3

r3





+
s2

2







3κ(r3 − y3)
y4

r4





+







O(s3)
O(s3)
O(s3)





 . (43)

Let j be the least index such that yj 6= rj, j ≥ 3 (the case when j does not
exist is considered in the paragraph addressing inflected segments). Then there
exists an h0 > 0 for which the normal vector N of p(s) at the interval (−h0, 0),
at the origin and at the interval (0, h0) has the causal character specified in
Table 3.

This classification follows directly from the expansion of p′′(s) and from the
fact that xi = 0 for every 2 ≤ i ≤ j, i ∈ N.

The discriminants D1, D2 of the two quadratic equations for b have the ex-
pansions

D1 = kjκ(rj − yj)
2h2j+4 + O(h2j+5),

D2 = 4h4 + O(h4+j),
(44)

where kj is a nonzero constant. Thus, all four solutions are real if κ 6= 0,
provided that the stepsize h is sufficiently small. The case when κ = 0 yields
an analogous result.

Similar to the previous section, we may identify the best solution. However,
the geometric approximation order of this solution is only two. Consequently,
isolated Minkowski inflections reduce the approximation order.

Case 2: Curve with inflected segments. This section analyzes a case
which would not be present in the Euclidean world: a non–straight curve
segment, where all points are inflection points.

More precisely, the normal vector is assumed to be light–like within an entire
interval. This property characterizes curves which are contained in light–like
planes. One boundary curve of the associated planar domain is a straight line
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(the intersection of the light–like plane with the plane r = 0).

Proposition 11 Let p(s) be a space–like analytic curve with a light–like nor-
mal vector for s ∈ [s0, s0+h], where h > 0. Then the G1 Hermite interpolation
of p(s) in [s0, s0 + h] by MPH cubics has infinitely many solutions. For one
of them the orientations of the tangent vectors are preserved and the approxi-
mation of p(s) is of order four.

Proof: Following (8), we may suppose (without loss of generality) that N(0) =

(0,
√

2
2
,
√

2
2

)>, B(0) = (0,
√

2
2
,−

√
2

2
)>. Then canonical Taylor expansion takes the

form

p(s) =











s
√

2
4
s2 +

√
2

12
(κ1 + τ0)s

3 + O(s4)
√

2
4
s2 +

√
2

12
(κ1 + τ0)s

3 + O(s4)











. (45)

In this case, the first equations (21), (22) are automatically satisfied. We ob-
tain a two–parameter family of interpolants of the first kind, since the param-
eters a1 and b1 can be chosen arbitrarily. The coordinates of the interpolants
(x̄(t), ȳ(t), r̄(t))> have the expansions

x̄(t) = ((3a1 + 3b1 − 2)t3 + (−6a1 − 3b1 + 3)t2 + (3a1)t)h,

ȳ(t) = r̄(t) =

√
2

4
((6b1 − 2)t3 + (3 − 6b1)t

2)h2 + O(h3).
(46)

By choosing a1 = b1 = 1
3
, the approximation order becomes four again and

the interpolant matches the orientations of the boundary tangent vectors.

On the other hand, from the second set of equations (21), (22) we get a2 =
1 − b2, E2(b2) = −2a2b2 and therefore a2,1 = b2,2 = 0, a2,2 = b2,1 = 1. The
interpolants of the second kind have a singular point at one of the segment
boundaries. 2

5.3 Bounding the Hausdorff distance of planar domains

The Hausdorff distance between two circles with non–negative radii r1, r2 in
the plane equals ∆r + ∆c, where ∆r = |r1 − r2| is the difference of the radii,
and ∆c is the distance between the centers. Consequently, the bound on the
Euclidean distance between two curves in Minkowski space p(s), q(s) implies
an upper bound on the Hausdorff distance between the associated planar do-
mains,

HD(Ωp,Ωq) ≤
√

2max
s∈I

||p(s) − q(s)||E (47)

where ||.||E denotes the Euclidean norm. Therefore, the results on the approx-
imation order of the MAT imply analogous results for the Hausdorff distance
of the associated planar domains.
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HD HD HD HD

Fig. 10. Tangential distances (TD) vs. Hausdorff distances (HD) of two circles;
the radii are assumed to be positive. In the first (resp. second) example, the
tangential distance is imaginary (zero) , since the difference vector between the
points in Minkowski space describing the two circles is time–like (light–like).

Note that the Lorentz metric is not suitable for bounding the Hausdorff dis-
tance; it represents the so–called tangential distance between two circles, see
Figure 10.

6 Examples

In this section we present numerical results obtained by applying the previ-
ously designed MPH approximation scheme. We consider the space–like cubic
arc (the MAT of a planar domain Ω, cf. Fig. 11) h(t) = (t, t2, t3

2
)> with the

parameter domain t ∈ [0, 1].

Example 1. We apply the G1 Hermite interpolation scheme to the curve
segment obtained for t ∈ [0, 1

2
], i.e., to the left half of the curve shown in

Fig. 11.

The G1 Hermite data are h(0) = (0, 0, 0)>, h(1
2
) = (1

2
, 1

4
, 1

16
)> and h′(0) = e1,

h′(1
2
) = (1, 1, 3

8
)>. The algorithm described in Table 1 gives four solutions for

parameters a and b:

a) a1,1 = 0.128036, b1,1 = 0.184193,
b) a1,2 = 0.586249, b1,2 = 0.520228,
c) a2,1 = 0.811725, b2,1 = −0.158310,
d) a2,2 = −0.175181, b2,2 = 0.492110.

(48)

The four interpolants in Minkowski space are shown in Fig. 12 (top row),
along with the rational approximations to the original domain boundary ∂Ω
(bottom). The first interpolant (black curve in the top left figure) is obviously
the best one, and the given MAT cannot be visually distinguished from this
curve. This fact was to be expected, since the normal vector of h(t) is space–
like for every t ∈ [0, 1

2
] (see Section 5.1).
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Fig. 11. (a) Curve in R
2,1 with a Minkowski inflection point, (b) associated

planar domain, its offsets and the inflections of the boundary.

Fig. 12. Top: The four interpolants of Example 1 (black and grey, thick
lines) and their control polygons (thin lines) in Minkowski space. Left: so-
lutions of the first kind, right: solutions of the second kind. Bottom: The
corresponding families of circles and their rational envelopes.
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Table 4
Numerical results obtained by G1 MPH interpolation and refinement via
subdivision.

i mi,1 m
ρ
i,1 Mi,1 M

ρ
i,1 Hi,1 H

ρ
i,1

0 2.253 · 10−2 – 3.575 · 10−3 – 3.286 · 10−3 –

1 2.985 · 10−3 7.548 2.389 · 10−4 14.967 2.322 · 10−4 14.151

2 3.861 · 10−4 7.731 1.560 · 10−5 15.307 1.549 · 10−5 14.996

3 4.877 · 10−5 7.918 9.887 · 10−7 15.784 9.867 · 10−7 15.694

4 6.112 · 10−6 7.978 6.201 · 10−8 15.943 6.198 · 10−8 15.920

5 7.646 · 10−7 7.995 3.879 · 10−9 15.985 3.879 · 10−9 15.980

6 9.559 · 10−8 7.999 2.425 · 10−10 15.996 2.425 · 10−10 15.995

Example 2 Consider again the cubic arc of Example 1. We will interpolate
h(t) using the G1 MPH interpolation scheme and a binary subdivision. For the
i–th level of subdivision (i = 0, 1, 2, . . .) and the n–th interval span [ n−1

2i+1 ,
n

2i+1 ]
we have the first order Hermite data pi,n−1 = h( n−1

2i+1 ), pi,n = h( n
2i+1 ) and

ti,n−1 = h′( n−1
2i+1 ), ti,n = h′( n

2i+1 ), where n = 1, . . . , 2i.

Following the results from Section 5.1 and Example 1 we consider the inter-
polant corresponding to a1,1, b1,1 only. We denote this interpolant qi,n(s) and
linearly reparameterize it to s ∈ [ n−1

2i+1 ,
n

2i+1 ].

The numerical results are presented in Table 4. The values mi,n, Mi,n and Hi,n

are sampling–based estimates of various distances between the original curve
h(t) and its interpolants. More precisely, we study the parametric distance

mi,n = max
t

{||qi,n(t) − h(t)||E}, (49)

the parametric distance after the reparameterization (40)

Mi,n = max
t

{||qi,n(τ(t)) − h(t)||E} (50)

and the Hausdorff distance

Hi,n = max{max
t

{min
s
{||h(t) − qi,n(s)||E}},max

s
{min

t
{||h(t) − qi,n(s)||E}}},

where s, t ∈ [ n−1
2i+1 ,

n
2i+1 ] and ||.||E denotes Euclidean norm. For each level of

subdivision, only the distances obtained for the first segment (n = 1) are
reported. Moreover, the ratios of two adjacent values for i = 1, 2, . . . are shown,
i.e. mρ

i,1 =
mi,1

mi−1,1
, Mρ

i,1 =
Mi,1

Mi−1,1
and Hρ

i,1 =
Hi,1

Hi−1,1
.

The numerically computed ratios confirm that the approximation order of the
best solution is three resp. four before resp. after the reparameterization.

Example 3 The curve h(t) = (t, t2, t3

2
)> has Minkowski inflections for t =

±
√

3
3

and t = ±
√

2. Let us now take a closer look at the inflection t =
√

3
3

.
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Table 5
Numerical results obtained by G1 MPH interpolation and refinement via
subdivision at an inflection point.

i mi,1 m
ρ
i,1 Mi,1 M

ρ
i,1 Hi,1 H

ρ
i,1

0 1.845 · 10−1 – 1.438 · 10−1 – 7.735 · 10−2 –

1 8.404 · 10−2 2.195 3.333 · 10−2 4.098 1.981 · 10−2 3.905

2 4.141 · 10−2 2.029 7.948 · 10−3 4.048 4.995 · 10−3 3.966

3 2.049 · 10−2 2.021 1.940 · 10−3 4.024 1.254 · 10−3 3.983

4 1.019 · 10−2 2.012 4.791 · 10−4 4.012 3.142 · 10−4 3.991

5 5.078 · 10−3 2.006 1.191 · 10−4 4.006 7.864 · 10−5 3.996

6 2.535 · 10−3 2.003 2.968 · 10−5 4.003 1.967 · 10−5 3.998

Figure 11(a) depicts the curve h(t) for t ∈ [0, 1] along with its projection to the

xy plane. The parameter value t =
√

3
3

is marked by the thin line. Figure 11(b)
shows the associated planar domain and the inflections of the boundaries, see
Proposition 2.

The numerical data obtained from the subdivision scheme analogous to the
one in Example 2 for the parameter interval [

√
3

3
, 1] are summarized in Table 5.

Again, compare the values with the results of Section 5.2: the approximation
order – after the reparameterization – is equal to two.

Remark 12 So far, curves with light–like tangents have been excluded. Still,
such points may be present in applications, e.g., in the case of boundaries
with vertices. If a point on the Minkowski space curve approaches a point
with a light–like tangent, then the curvature goes to ∞. The interpolation
procedure can be adapted to this case, and the analysis of the number of
solutions can be carried over. As observed in our numerical experiments, a
‘nice’ solution exists always, provided that the stepsize is sufficiently small.
The approximation order of this solution is again equal to two, similar to the
case of inflections. A thorough discussion to these cases will be given in the
first author’s doctoral thesis (Kosinka, 200x).

7 Conclusion

As demonstrated in this paper, MPH curves can be used for approximating
the medial axis transform of a planar domain. As an advantage, they admit
a rational parameterization of the offset curves of the domain boundary. We
have presented a general method for converting a space–like curve (MAT) into
a G1 spline via MPH cubics.

Based on the mutual position of the given first order Hermite data we derived
the conditions for the existence and the number of interpolants. Using Taylor
expansions we studied the approximation order, which is generally equal to
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four, but it reduces to two at isolated Minkowski inflections.

In our future research we would like to analyze the C1 interpolation via MPH
quintics in Minkowski space R

2,1 with the help of the Clifford algebra tools
presented in Choi et al. (2002) and Cho et al. (2004).
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