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Institute of Computational Mathematics and Institute of Applied Geometry,

Johannes Kepler University Linz, Austria1

Abstract

B-H–curves are used for modeling ferromagnetic materials in connection with elec-
tromagnetic field computations. Starting from real–life measurement data, we present
an approximation technique which is based on the use of spline functions and
a data–dependent smoothing functional. It preserves physical properties, such as
monotonicity, and is robust with respect to noise in the measurements.
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1 Introduction

B-H-curves, which describe the nonlinear relation between the magnetic in-
duction (or flux density) B and the magnetic field H , are needed for the
modeling of ferromagnetic materials in connection with electromagnetic field
computations. Due to the underlying physics, such curves are naturally mono-
tone and must often be approximated from real–life measurements.

Based on different approaches (such as classical cubic splines, splines with
free knots, exponential or rational splines), various methods for monotonicity-
preserving interpolation of measurement data have been described in the lit-
erature (Fritsch and Carlson, 1980; Kopotun and Shadrin, 2003; Manni and
Sablonnière, 1997; Oja, 1997; Pinchukov, 2001; Qu and Sarfraz, 1997; Volkov,
2001; Zavyalov and Bogdanov, 1995). A very general and powerful framework
for shape-preserving interpolation and approximation has been developed by
Dierckx (1993).

1 Address: Altenberger Str. 69, 4040 Linz, Austria; E-Mail: clemens.pechstein
@students.jku.at



In the specific situation of B-H-curves, a method for monotonicity–preser-
ving interpolation, which is based on earlier work using cubic splines (Fritsch
and Carlson, 1980), has been described by Heise (1994). However, as a se-
vere limitation, such interpolation techniques may have problems with noisy
data. More recently, Reitzinger, Kaltenbacher and Kaltenbacher (2002) have
proposed to approximate B-H-data by a so-called smoothing spline, balanc-
ing the deviation from the data vs. the L2-norm of the second derivative.
The balancing factor is obtained by an iterative procedure, according to the
discrepancy principle, until monotonicity is achieved. Additionally, an extrap-
olation model for H → ∞ is introduced.

Two key problems of this approach are the following. First, the uniqueness
of the solution to the corresponding optimization problem is achieved only by
imposing boundary conditions on the first derivatives at the two end points.
However, the values of these boundary constraints (e. g., the first difference
quotient of the boundary data) have a non-negligible influence on the shape
of the curve. Consequently, the method looses flexibility. Second, the mono-
tonicity is not a-priori guaranteed. According to numerical experiments with
various real–life data sets, some sets of specific data could not be handled sat-
isfactorily, and even monotonicity could not always be achieved. We believe
that this was mainly caused by the the influence of the boundary conditions.

In this paper, we extend the work in the following directions. In order to
deal with the uncertainties (measurement errors) which are present in the data,
we propose a method for interproximation (cf. Cheng and Barsky, 1991), where
the resulting spline function always satisfies the monotonicity constraints. In
addition, no boundary conditions have to be imposed. Instead, we propose to
use a data–dependent smoothing functional in order to achieve a unique solu-
tion with good physical properties. As demonstrated by curves obtained from
real–life data, using this functional we obtain curves which are both physi-
cally plausible and visually pleasing. Finally, the extrapolation for H → ∞ is
included in the spline interproximation by introducing a nonlinear transforma-
tion. This leads to a robust method which is able to handle rather uncertain
data.

The remainder of the paper is organized as follows. In the next section we
describe the problem and its physical background. Section 3 is devoted to the
numerical realization using spline functions. Finally, we illustrate the results
by several examples.

2 Preliminaries

After a brief introduction to the properties of B-H-curves, we describe the
approximation problem in some detail.
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Fig. 1. Left: B-H-curve associated with a ferromagnetic material. Right:
Measurements corresponding to another material.

2.1 B-H-curves

A key feature in magnetic field computations is the nonlinear relation between
the magnetic induction (magnetic flux density) B and the magnetic field H.
Considering the isotropic case and neglecting the effects of hysteresis, it is
known that

B = µ(|H|)H, (1)

holds within a homogeneous material, where the function function µ : R
+
0 →

R
+ is called the permeability (cf. Ida and Bastos, 1997). Consequently, the

(three-dimensional) vector fields B and H are always parallel.

Introducing f(s) := µ(s)s, we have

|B| = f(|H|), (2)

where the function f : R
+
0 → R

+
0 is usually called B-H-curve (cf. Figure 1,

left). In practice, such material curves are never given in an analytic form.
Instead, they have to be approximated from measurements (Fig. 1, right).

Since in the magnetostatic case, H and B depend only on the current
density J, one usually chooses various densities (Jk)

N
k=1 and performs measure-

ments in the corresponding material. Eventually, this leads to finitely many
pairs

(Hk, Bk), k = 1, . . . , N, (3)

with Hk = |H(Jk)|, Bk = |B(Jk)|, which are affected by noise (measurement
errors), i. e.

∣

∣

∣f(Hk) − Bk

∣

∣

∣ ≤ δk, for k = 1, . . . , N. (4)

If no information about the accuracy of the measurements is available, one
may assume that δk = 0.01 · |Bk|.

In addition to these measurements, we set B0 = H0 = 0.
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Since any nonlinear magnetic field problem and its solution heavily depend
on the underlying B-H-curves, the approximation of those must preserve all
their physical properties, which are formulated in the following assumptions:

(A1) f is continuously differentiable on R
+
0 ,

(A2) f(0) = 0,
(A3) f ′(s) ≥ µ0, ∀s ≥ 0,
(A4) lim

s→∞
f ′(s) = µ0,

where the constant µ0 = 4 π · 10−7 denotes the permeability in vacuum. From
(A1)–(A4), one can deduce further properties which are essential for the anal-
ysis of magnetic field problems and for computations:

1. f is strongly monotone with monotonicity constant µ0:

(

f(s) − f(t)
)

(s − t) ≥ µ0|s − t|2, ∀s, t ≥ 0.

2. f ′ is continuous and bounded:

µ0 ≤ f ′(s) ≤ L := sup
t≥0

f ′(t) < ∞, ∀s ≥ 0.

Consequently, f is (globally) Lipschitz-continuous with Lipschitz con-
stant L.

3. f is bijective on R
+
0 and therefore has an inverse f−1.

4. f−1 is continuously differentiable with

m :=
1

L
≤

(

f−1
)′

(s) ≤ ν0 :=
1

µ0
, ∀s ≥ 0.

5. The so–called reluctivity function ν(s) := f−1(s)/s is well-defined for
s ≥ 0, and furthermore continuous and bounded with

m ≤ ν(s) ≤ ν0, ∀s ≥ 0,

lim
s→0

ν(s) =
(

f−1
)′

(0),

lim
s→∞

ν(s) = ν0.

6. ν(s)s = f−1(s) is strongly monotone with monotonicity constant m and
Lipschitz-continuous with Lipschitz constant ν0.

7. ν is continuously differentiable on (0,∞) and

lim
s→∞

ν ′(s) = 0.

If ν is differentiable in 0 and f twice differentiable in 0, then

ν ′(0) =
1

2
(f−1)′′(0).
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Due to the relation

H = ν(|B|)B, (5)

the reluctivity function ν and also its derivative ν ′ are needed in computa-
tions corresponding to nonlinear eddy current and magnetostatic problems.
Note that the strong monotonicity of ν(s)s guarantees the convergence of
Newton’s method for the nonlinear magnetostatic problem. See Heise (1991,
1994); Pechstein (2004) for additional information.

2.2 The approximation problem

The B-H-curve f has to be approximated by some function f̃ such that (A1)–
(A4) hold for f̃ and

|f̃(Hk) − Bk| ≤ c δk, for k = 1, . . . , N, (6)

for some c > 0, i. e. the approximation error should remain in the range of
the measuring error (cf. Reitzinger, Kaltenbacher and Kaltenbacher (2002);
Dierckx (1993)). The strong monotonicity (A3) is essential, since it guaran-
tees that f is bijective, and – as a consequence thereof – that the reluctivity
function ν is well-defined.

For the numerical simulation of nonlinear magnetic field problems, one
needs very fast procedures for evaluating the functions ν and ν ′, also for values
B > BN . That is, the B-H–curve must be approximated on the domain set
R

+
0 (cf. (A4)).

The original B-H-curve has infinite domain and infinite range. We now
reduce the approximation problem to the approximation with a monotone
function with finite both domain and range.

First, we set

f̃(s) := g(s) + µ0 s, (7)

with

• g : R
+
0 → [0, gmax] continuously differentiable,

• g(0) = 0,
• g′(s) ≥ 0, ∀s ≥ 0,
• lims→∞ g′(s) = 0.

Second, choosing certain suitable values H∗ ≥ HN and h∞ > 0, we represent
the function g on [H∗,∞) by some function ĝ on [H∗, H∞), with H∞ := H∗ +
h∞:

g(s) =







ĝ
(

H∗ + Φ(s − H∗)
)

for s ≥ H∗,

ĝ(s) elsewhere,
(8)
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with

h∞ = 100.

with a C∞ bijective transformation Φ : R
+
0 → [0, h∞) which is both strongly

monotone and fulfills Φ′(0) = 1, Φ′′(0) = 0. A possible choice for this bijective
transformation is

Φ(x) :=
2

π
h∞ arctan

(

π

2

x

h∞

)

. 1 (9)

This setup ensures that g is C2 on [H∗, H∞) if and only if ĝ is C2. Additionally,

g′(s) ≥ 0 ⇐⇒ ĝ′(s) ≥ 0, (10)

owing to Φ′(s) > 0, and lims→∞ g′(∞) = 0 since lims→∞ Φ′(s) = 0. Note that
the choice of h∞ and the value of ĝ(H∞) determine how fast lims→∞ f̃(s) = µ0

converges.

2.3 Interproximation and smoothing conditions

We assume that a sequence of data

(Hk, B̂k + µ0 Hk), k = 0, . . . , N, (11)

is given, where

0 < H1 < · · · < HN ≤ H∗,

0 < B̂1 ≤ · · · ≤ B̂N < ∞.
(12)

The function ĝ has to fulfill the conditions

(B1) ĝ ∈ C1([0, H∞] → R
+
0 ),

(B2) ĝ′(s) ≥ 0, ∀s ≥ 0,
(B3) ĝ(0) = 0 (and optionally ĝ′(H∞) = 0),
(B4) |ĝ(Hk) − B̂k| ≤ c δk, for k = 1, . . . , N .

1 Another one is Φ(x) = h∞

[

1 − e−1/2 (x/h∞)2−x/h∞

]

.
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In order to find a good approximation, we minimize some functional F [g],
measuring the smoothness of the result, in some spline space V, subject to
(B1)–(B4). A first suggestion is the L2-norm of the second derivative (or lin-
earized strain energy) 2

F [g] :=

H∞
∫

0

[ĝ′′(s)]2 ds → min
ĝ∈V

. (13)

It is well known that an interpolating cubic C2-spline with its knots at Hk

minimizes this energy.

As to be demonstrated by the examples (e.g. the data set iron1, see
Figure 5 on page 13), this simple functional often produces unsatisfactory
results. This is due to a characteristic feature of B-H-curves that the first
derivative varies enormously, from “very steep” to “very flat”.

In order to address these problems, we propose to use another, data–
dependent functional. First, ĝ is individually scaled on each interval [Hk, Hk+1]
such that it maps [0, 1] to [0, 1], i. e.

ĝscaled(s) :=
ĝ
(

Hk + s (Hk+1 − Hk)
)

− B̂k

B̂k+1 − B̂k

.

We arrive at the following identity for the scaled linearized strain energy:

1
∫

0

[

d2

ds2
ĝscaled(s)

]2

ds =

Hk+1
∫

Hk

[

d2

dx2
ĝ(x)

]2 (Hk+1 − Hk)
3

(B̂k+1 − B̂k)2
dx.

In order to avoid possible numerical problems for small differences B̂k+1 − B̂k,
we regularize with some ε-term, where 0 < ε << 1 (e. g., ε = 10−7).

Summing up, the functional reads

Fscaled[g] =

H∞
∫

0

[ĝ′′(s)]2
ds

ω(s)
→ min

ĝ∈V
, (14)

with the piecewise constant weight

ω(s) =
1

Hk+1 − Hk

[

(

B̂k+1 − B̂k

Hk+1 − Hk

)2

+ ε
(

B̂N

HN

)2
]

, for s ∈ [Hk, Hk+1),

ω(s) =
1

HN − HN−1

[

(

B̂N − B̂N−1

HN − HN−1

)2

+ ε
(

B̂N

HN

)2
]

, for s ≥ HN ,

(15)

2 Another possible objective function is F [g] :=
∞
∫

0

[g′′(s)]2 ds, involving the trans-

formation Φ.
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As an essential property of any smoothing functional in this application,
the result should not depend on the scaling of the two coordinate axes. It can
easily be verified that this is true both for the original functional F [g] and
for the modified one Fscaled[g]. However, it would not be satisfied for the real
non–linear bending energy

∫

κ2
√

1 + f ′2 ds, where κ is the curvature of the
graph (s, f(s)). Consequently, the use of this energy is not appropriate for
this application!

The results obtained by using the two different functionals will be com-
pared in Section 4.

3 Numerical realization

We recall the definition of B-splines and adapt the description of spline func-
tions to our specific application. This reduces the problem to a quadratic
programming problem.

3.1 B-splines

For any degree d, consider some knots (λi)
n
i=0 with

0 = λ0 ≤ λ1 ≤ · · · ≤ λn = H∞, (16)

satisfying λi < λi+d+1. In addition, the boundary knots are assumed to have
multiplicity d + 1, λ0 = λd and λn−d = λn.

Any piecewise polynomial function of degree d on the partition defined by
these knots which is Cd−m at the knot λj, where this knot has multiplicity 3

m, can be written in the B-spline representation

ĝ(s) =
n−d−1
∑

i=0

xi Ni,d+1(s), s ∈ [λ0, λn], (17)

where Ni,d+1 denotes the i-th normalized B-spline of degree d with respect to
the knots (λi)

n
i=0 (cf. Dierckx, 1993).

The boundary knots λ0, λn are counted with multiplicity d, whereas the
inner knots with multiplicity l. Any linear combination of those basis functions
is then in Cd−l.

In our applications we consider the following variants:

(V.1) Quadratic C1 splines, d = 2, l = 1. The set of inner knots are the given
values Hk with one additional knot per interval.

3 I.e., the m neighboring knots are identical
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(V.2) Cubic C1 splines. The set of knots are again the given values Hk, counted
with multiplicity l = 2.

(V.3) Cubic C2 splines. Two knots Hk −∆k, Hk + ∆k are placed around each
given value Hk with a small distance 2∆k between them (“torn” version
of V.2).

The spline space V, the constraints and the objective function above could
be described by using the coefficients (xi). However, in our case it is more
appropriate to use a slightly different approach. It is known that the first
derivative can be representated with lower degree basis functions, to wit

ĝ′(s) =
n−d−1
∑

j=1

x̄j Nj,d(s). (18)

Due to (B3), i. e. ĝ(0) = 0, the coefficients (x̄j) determine the entire spline
function ĝ. Hence,

ĝ(s) =
n−d−1
∑

j=1

x̄j bj(s), (19)

where the basis functions bj can be computed from the knots and from the
parameters d and l. The following formulas give a 1-1-correspondence between
the coefficients xi and x̄i (see also Dierckx, 1993):

x̄i = (xi − xi−1)
d

λi+d − λi

, ∀i = 1, . . . , n − d − 1

x0 = 0, xi = xi−1 +
λi+d − λi

d
x̄i, ∀i = 1, . . . , n − d − 1.

(20)

Since the basis functions Nj,d are non-negative, we conclude that

x̄j ≥ 0, ∀j = 1, . . . , n − d − 1 =⇒ ĝ′(s) ≥ 0, ∀s ≥ 0. (21)

The other direction holds only if d ≤ 2. However, for d = 3 this stronger
version of assumption (B2) leads to satisfactory results too 4 .

4 Generally, this construction leads to linear sufficient conditions for monotonicity.
Weaker conditions can easily be generated by inserting additional “phantom knots”,
which do not contribute any new degrees of freedom, but which are used only for
generating the B-spline representation. See Jüttler (1997) for more information on
this technique.
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3.2 Formulation as a quadratic programming problem

Introducing the matrices

(G)ij :=

H∞
∫

0

b′′i (t) b′′j (t)
dt

ω(t)
, i, j = 1, . . . , n − d − 1, (22)

(A)kj := bj(Hk), k = 1, . . . , N, j = 1, . . . , n − d − 1, (23)

we arrive at the optimization problem

1

2
x̄T G x̄ → min (24)

subject to

~B − c~δ ≤ A x̄ ≤ ~B + c~δ, (25)

0 ≤ x̄, (26)

where x̄ = (xj)
n−d−1
j=0 , ~B = (B̂k)

N
k=1,

~δ = (c δk)
N
k=1, and the inequalities are un-

derstood component-wise. Setting x̄n−d−1 = 0 corresponds to the right bound-
ary condition in (B3) and can easily be incorporated into the system.

The problem (24)–(26) is a standard quadratic programming problem with
the positive semidefinite (psd) matrix G in the quadratic part of the objective
and with linear box constraints. Such problems can be solved with the active
set method or inner point methods (cf. Gill, Murray and Wright, 1981; Dierckx,
1993).

3.3 Existence of solutions

We assume now that the data is well-posed, i. e. (12), and consider only the
variants V.1 and V.2.

First, we see that the matrix G is always positive semidefinite, because
x̄T Gx̄ ≥ 0 due to the definition of F [g] or Fscaled[g]. Secondly, the linear
box constraints result in a convex feasibility polyhedron. Since one can easily
construct a monotone interpolating spline with vanishing derivatives at the
data points, this feasibility domain is nonempty. Hence, at least one solution
of the quadratic programming problem exists.

The solution is not necessarily unique, since the functional may be con-
stant on one boundary polytopes of the feasible domain. In order to achieve
uniqueness, the functional can be regularized by

Freg[g] := F(scaled) + ε1

N
∑

i=1

(

ĝ(Hi) − B̂i

)2
+ ε2

n
∑

k=1

(

ĝ′′(λ+
k ) − ĝ′′(λ−

k )
)2

, (27)
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with the two regularization parameters ε1, ε2. However, according to our nu-
merical experiments, this issue is only of theoretical importance.

4 Numerical results and concluding remarks

We illustrate the method by several numerical examples. Next we discuss effi-
cient methods for evaluating the BH curves and its inverse, which are needed
for FEM computations. Finally, we conclude this paper.

4.1 Examples

All the following results (Figures 3, 4, 5, 6) were obtained with the parameters

H∗ = HN , h∞ = max{HN/3, HN − HN−1},
δk = 0.005 · Bk, and c = 1.

The optimization problem was solved using a code by Helmut Gfrerer (Linz),
which is based on a variant of the active set method.

In the first example, we applied the method to the data set Su7a2 (all
data are Courtesy of Robert Bosch GmbH). We show the interproximating
B-H-curve f which was obtained using V.2, its first and second derivatives,
and the associated reluctivity function. This curve is to be compared with the
result obtained by using V.3 (third row), where the second derivative is still
continuous (right).

The second example (data set SiF2) shows the advantages of using inter-
proximation instead of interplation. Due to the tolerance, the last two (uncer-
tain) measuring points (marked by crosses) do not affect the natural shape of
the B-H-curve too much, see Figure 4, left.

In order to visualize the self–similarity of the curve, we have plotted the
curve for smaller values of H.

The third example (data set iron1) demonstrates the influence of the two
different smoothing terms. The left curve in Figure 5 has been generated using
the classical linearized strain energy F [g], while the right curve minimizes
the data–dependent functional Fscaled[g]. The right curve is more physically
plausible and visually pleasing than the other result.

Finally, we compare the results obtained by using V.1 and V.2, see Figure 6.

According to our experience, cubic C1-splines (d = 3, l = 2) gave the best
results for the problem of monotonicity–preserving B-H-curve interproxima-
tion. This is probably due to the well–known fact that any monotone data
can be interpolated with a monotone cubic C1-spline but in general not with
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using V.2; upper right: its second derivative; middle left: its first derivative;
middle right: the reluctivity function ν; lower left: approximation using
V.3 (torn knots, C2-spline); lower right: corresponding (continuous) second
derivative.

a monotone C2-spline (cf. Fritsch and Carlson, 1980; Reitzinger, Kaltenbacher
and Kaltenbacher, 2002).

4.2 Evaluating the B-H-curve and its inverse

During nonlinear magnetic field computations via FEM, one needs a high
number of evaluations of µ and µ′, for the scalar potential formulation, or ν and
ν ′, for the vector potential formulation (cf. Heise, 1994; Pechstein, 2004; Ida
and Bastos, 1997). Here, the direct evaluation of f and of its derivative by using
either the definition of the B-spline or de Boor’s algorithm is too expensive.
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Fig. 6. Results for data set vacoflux17. On the right: V.1 – Quadratic
C1-spline with additional knots. On the left: V.2 – Cubic C1-spline.

Instead, recommend to calculate – for each segment of the spline function –
the polynomial representation of the spline function, as a postprocessing step
after the optimization. This polynomial can then efficiently be evaluated, e.g.,
with Horner’s method.

The inverse function f−1 (which is needed in order to evaluate ν, ν ′)
can efficiently be computed using Newton’s method together with a look–up
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table of initial values to keep the number of iterations small (see Reitzinger,
Kaltenbacher and Kaltenbacher, 2002). Here, the use of a C2 solution may
result in better convergence, although the practical benefits seem to be rather
small. On the other hand, by using quadratic splines (V.1), the inverse function
can be expressed explicitly by solving a single quadratic equation.

4.3 Conclusion

We presented a method for monotonicity-preserving interproximation of mea-
surement data, which has been adapted to the special case of B–H–curves.
As shown by the examples, the use of data–dependent functionals, and inter-
proximation instead of interpolation, helps to obtain physically plausible and
visually pleasing results.

In principle, the approximation algorithm presented in this paper can be
extended to the interproximation of any monotone functions (with or without
certain constraints). For instance, characteristic curves in plasticity can be
generated using a similar approach.

Efficient methods for evaluating the resulting spline curves are important
for FEM computations. Here, the use of quadratic spline curves may be an
advantage, since an explicit representation of the inverse function is available.
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