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Abstract

This paper compares two techniques for the approximation of the off-
sets to a given planar curve. The two methods are based on approximate
conversion of the planar curve into circular splines and Pythagorean
hodograph (PH) splines, respectively. The circular splines are obtained
using a novel variant of biarc interpolation, while the PH splines are
constructed via Hermite interpolation of C

1 boundary data.
We analyze the approximation order of both conversion procedures.

As a new result, the C
1 Hermite interpolation with PH quintics is shown

to have approximation order 4 with respect to the original curve, and 3
with respect to its offsets. In addition, we study the resulting data vol-
ume, both for the original curve and for its offsets. It is shown that PH
splines outperform the circular splines for increasing accuracy, due to
the higher approximation order.

Keywords: Pythagorean Hodograph curves, G-code, Biarc, CNC ma-
chining, approximation order

1 Introduction

Curves with simple closed form descriptions of their parametric
speed and arc–length are useful for numerically controlled (NC)
machining, since they greatly facilitate the control of the tool
along a curved trajectory with constant (or user–defined) speed.
They are closely related to curves that provide a simple exact
representation of their offset curves which allow, e.g., to take
the tool radius easily into account while designing the path of a
cutting tool.

Traditional techniques of NC tool path description rely mostly
on the so–called G–code, which uses piecewise linear and circu-
lar curve segments. Clearly, this curve description is inherited by
its offsets. Biarc interpolation is one of the main techniques for
converting general curves into G-code [4, 7, 9, 12, 13, 18, 19].

The interesting class of Pythagorean Hodograph (PH) curves,
see [2] and the references cited therein, may serve as an alterna-
tive description, which is capable of producing tool paths with
higher smoothness. These curves, distinguished by having a
polynomial arc length function and rational offset curves, pro-
vide a mathematically elegant solution to the problems occurring
in NC machining. Various aspects of applications to NC machin-
ing were studied by Farouki and his co-authors [3, 16].

1Corresponding author. E-mail: zbynek.sir@jku.at, phone/fax: +43
(0) 732-2468-9178 / -9142, Homepage: www.ag.jku.at.

Due to the special algebraic properties of PH curves, all con-
structions, such as interpolation or approximation, which are
linear in the case of standard spline curves become nonlinear.
Hence, the use of local techniques seems to be most appropriate.
Various constructions of planar PH curves matching given Her-
mite type boundary data were developed, see e.g. [5, 8, 14, 17].

The approximate conversion of a planar curve into G-code or
PH form produces simultaneously an approximation of the orig-
inal curve and of the system of offsets. As an alternative, single
offset curves may be approximated directly, see, e.g., [1, 6, 15].

The first part of the paper is devoted to biarc interpolation.
We recall basic facts and describe a novel variant, which is able
to achieve “arc spline precision”, i.e., it reproduces spline curves
which are composed of circular arcs. In addition, we analyze the
approximation order of the biarc interpolation, both with respect
to the curves and to its offsets.

In the second part, which deals with quintic Pythagorean
hodograph curves, we address the construction of PH quintic
spline curves. As a new result, we show that these curves have
approximation order 4 with respect to the given curve, and 3 with
respect to its offsets.

Finally, we compare both techniques with respect to the data
volume produced by them. It is shown that PH curves perform
better than biarcs, if high accuracy is desired.

2 Construction of biarc splines

We review the problem of biarc interpolation of G1 boundary
data. We present the main results in a simple geometric way
which naturally leads to a novel variant of the biarc construction.
Then we apply the biarc interpolation for designing an algorithm
converting an arbitrary G1 continuous curve into a biarc spline.
We investigate the approximation order of this method and the
precision of the corresponding offset approximation.

2.1 Biarc interpolation

Definition 1 The two circular arcs A0, A1 are said to form a
biarc interpolating given oriented G1 data, represented by end
points P0, P1 and unit tangent vectors U0, U1 (see Fig. 1) if
and only if the two circular arcs share one common end point J
called joint and satisfy the following properties:

1. The arc A0 has the end points P0 and J, and U0 is tangent

1



to A0 with orientation corresponding to a parameterization
of A0 from P0 to J.

2. The arc A1 has the end points J and P1 and U1 is tangent
to A1 with orientation corresponding to a parameterization
of A1 from J to P1.

3. The two arcs have a common unit tangent vector at J, with
orientation corresponding to a parameterization of A0 from
P0 to J and of A1 from J to P1.
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Figure 1: A biarc (black) and the joint circle (grey).

Consequently an interpolating biarc represents a G1 smooth
path from (P0,U0) to (P1,U1).

As a well-known fact [9], there is a one-dimensional para-
metric system of interpolating biarcs to general planar data, and
the locus of all possible joints J is a circle passing through P0

and P1. We give a simple proof of this fact, which will yield a
geometric insight that may be useful for later constructions.

Proposition 2 Consider the family of biarcs interpolating given
oriented G1 data P0, P1, U0, U1. Then the locus of all possible
joints J is the circle C passing through the points P0, P1 and
having the same oriented angles with the vectors U0 and U1.

Proof. For any data there is precisely one circle C passing
through the points P0, P1 and having the same (oriented) angles
with the vectors U0 and U1, see Figure 1. It is obtained as the
trajectory of the point P0 under the unique rotation transforming
the data P0,U0 into the data P1,U1. If the vectors U0,U1 are
parallel, then C degenerates into the straight line passing through
P0,P1.

For any point J in the plane there is precisely one arc A0 satis-
fying property (1) of Def. 1 and one arc A1 satisfying the second
property2. These two arcs have a common tangent at J if and

2An exception occurs when J = P0 + tU0 or J = P1 − tU1 (J lies on
the line given by the point Pi and the direction vector Ui, where i is 0 or 1).
If t > 0 then the arc Ai degenerates into a linear segment. If t = 0 then it
degenerates into a point. Finally if t < 0 then it degenerates into a ”line segment
passing through infinity”. In fact the natural framework for biarc interpolation is
the Möbius plane which contains one point at infinity.
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Figure 2: The system of biarcs interpolating given
G1 data. The solid biarcs represent the useful solu-
tions.

only if J ∈ C. In fact, if J ∈ C, then the angle between the
circle C and the arc A0 at the point J is the same as the an-
gle between the circle C and the vector U0. Similarly the angle
between C and the arc A1 at the point J is equal to the angle be-
tween the circle C and the vector U1. Since the circle C has the
same angle with U0 and U1, the two arcs A0, A1 join with G1

continuity at J. The orientations coincide also, since one of the
arcs A0, A1 will be inside and one outside the circle C. Suppose,
on the other hand, that a G1 interpolating biarc is constructed.
The circle passing through the points P0, J and P1 must have
the same angle with both circular arcs A0, A1 and therefore also
with the vectors U0, U1. It is hence identical with the circle C
and J ∈ C. �

To illustrate this result, Figure 2 shows the system of biarc
interpolants to given G1 data, along with the circle C.

Remark 3 The system of biarcs is rational, since the circle C
can be rationally parameterized. Consequently, there is no need
of using trigonometric functions in the description of this system.

Various biarc interpolation schemes were proposed in the rich
literature on biarcs, which are distinguished by the choice of
the joint J. Among the most important ones are the “equal
chord” biarc and the “parallel tangent” biarc. The former one
is constructed so that the two segments P0J and JP1 have equal
lengths, while the latter one ensures that the tangent at the point
J is parallel to the segment P0P1.

We propose a new choice of the joint J which is based on
the following simple observation. Suppose, that the G1 data are
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taken from a C1 continuous curve c(t) - see Fig. 3:

P0 = c(t0), U0 = c
′(t0)

||c′(t0)||
and

P1 = c(t1), U1 = c
′(t1)

||c′(t1)||
.

(1)

Then – by the construction of the circle C – the two vectors U0,
U1 are both pointing outside or inside the circle C. By using
a continuity argument we conclude that there exists at least one
value tJ ∈ (t0, t1) such that c(tJ ) ∈ C. We suggest to choose
this point (or one of them, if more than one exist) as the joint J

determining the interpolating G1 biarc.
As observed in our numerical experiments, see Section 2.3,

this choice typically produces a biarc which is closer to the orig-
inal curve c(t) then those produced by other methods (see Ta-
ble 2 and Fig. 3). The additional point J taken from the curve
allows the biarc to better follow the shape of the curve, therefore
reducing the error.

We summarize the biarc construction in the following algo-
rithm.

Algorithm 4 Procedure Biarc(c(t), [t0, t1])
Input: A continuous curve c(t) defined in a closed interval t ∈
[t0, t1], having a right derivative at t0 and a left derivative at t1.
Output: Biarc composed of two arcs A0, A1.

1. Compute the boundary data using (1).

2. Find the center S of the circle C, e.g., by intersecting the
bisectors of P0P1 and of (P0 + U0)(P1 + U1). Compute
the implicit equation F (x, y) = 0 of the circle C.

3. Find a solution tJ ∈ (t0, t1) of the equation F (c(t)) = 0.
If more then one solution is available in the open interval
(t0, t1), take the middle one.

4. Define J = c(tJ ) and find the unique arcs A0, A1 satisfying
properties (1), (2) of Definition 1.

Remark 5 If the curve c(t) is an biarc, then the output of Algo-
rithm 4 is again this biarc.

Remark 6 The third step requires to locate an existing root of
a function within a given interval. A robust implementation re-
quires some care, since additional roots at the two boundaries of
the interval exist. We combine a binary search with the regula
falsi method.

2.2 Approximate Conversion into Biarc splines

Algorithm 4 can be used to formulate an efficient conversion pro-
cedure of arbitrary (piecewise) G1 continuous planar curves into
arc splines. In the sequel we present a simple non-adaptive algo-
rithm for the conversion of C1 continuous curves.

Algorithm 7 Procedure BiarcSpline(c(t), ε)
Input: A C1 curve c(t), t ∈ [0, 1]; prescribed error ε.
Output: Biarc spline bn = {bn

1 , . . . ,bn
n} approximating c(t).

1. Set n = 1.

2. Construct the sequence of Biarc interpolants:

bn
i = Biarc

(

c(t), [ i−1

n
, i

n
]
)

for i = 1 . . . n

and collect them to form the biarc spline bn.

3. Evaluate the distance of the curve c(t), t ∈ [0, 1] from the
spline bn If the distance is greater than ε then set n = 2n
and GOTO (2). Otherwise STOP.

Remark 8 In practice one will use an adaptive version of this
algorithm. Only those parts of the curve with errors larger than
the given tolerance would be subdivided.

Also, the algorithm always produces curves with step–size
h = 2−n. Clearly, other step–sizes may be used. We restrict
ourselves to these step–sizes, since they allow a particularly sim-
ple interpretation of the approximation order: when halving the
segments, the errors are multiplied (roughly) by 2−d, where d is
the approximation order.

Remark 9 A good estimate of the error can be obtained by
sampling. Alternatively, if c(t) is a NURBS curve, then upper
bounds on the error can be obtained by exploiting the convex
hull property of Bernstein–Bézier representations, similar to the
method used in [1].

2.3 Example

We apply the procedure BiarcSpline to a Bézier curve c(t)
of degree 7. Figure 4 shows the original curve (grey) and the
Biarc spline curves for n = 4 and n = 8. All arc end points lie
on the curve.

The spline is globally G1. For each circular arc, one end point
matches the curve with G1 precision (hollow dots on the Figure)
and one with G0 precision (grey dots on the Figure). In addition,
the figure shows the offsets to the original curve and to the biarc
splines at distance 2. In the latter case, the offset is again a biarc
spline curve.

The biarc spline was generated for n = 1, 2, . . . , 214. For
each value of n, Table 1 reports the error and its improvement,
as compared to the previous value of n (ratio of two successive
errors). Similarly, the error produced by approximating the offset
at distance 2 is shown.

Note that the improvement ratio tends to 8 = 23, which in-
dicates that the approximation order of the method is 3. In the
case of the offset, the improvement ratio tends to 4 = 22, which
indicates that the approximation order is 2.

In order to compare our method with the existing ones, we
have also constructed biarc interpolants using the equal chord
and parallel tangent methods – see Table 2. While in the limit the
errors produced by the three methods are more less the same, our
method achieves smaller errors for most cases. For each value
of n, the smallest, second smallest, and the biggest error have
been marked by ➊, ➁ and ➂, respectively.

2.4 Discussion

According to [7] the interpolation using ”equal chord” or ”paral-
lel tangent” biarcs has approximation order 3. The same is valid
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Figure 3: Biarc constructed to the data taken from a smooth curve (grey line) by our new method (left),
by the “equal chord” method (middle) and by the ”parallel tangent” method (right).

offset

curve

offset

curve

Figure 4: A continuous curve (grey line) converted into a biarc spline (black lines) composed of 4 (left)
and 8 (right) parts. The associated approximation of the offset at distance 2 is also shown.

for our construction, i.e., the distance of the curve c(t) from the
spline bn behaves as O( 1

n3 ).
Offsets to the constructed biarc spline yield approximations

to the offsets of the original curve. In this case, however, the
approximation order is only 2 - see Section 2.3. These results
about approximation orders can be proved using Taylor expan-
sions, similarly to the proof of Proposition 16. For the sake of
brevity, these proofs are omitted here.

Our method has following advantages, as compared to stan-
dard methods:

• This biarc conversion is in fact an arc conversion. All end
points of circular arcs lie on the curve. Consequently, it is
obvious which arc matches which part of the curve. For
other biarc constructions, this correspondence has to be es-
tablished, for example by intersecting the curve with the
normal to the biarc at the joint J. The partition of the curve
is useful for an efficient evaluation of the one sided Haus-
dorff distance between the curve and the biarc

max
t∈[t0,t1]

min
p∈A0∪A1

||c(t) − p||,

which can be estimated via sampling points on the curve

and evaluating their distance from the center of the corre-
sponding arc – see Figure 5. In the case of a piecewise ratio-
nal rational curve c(t), upper bounds on the Hausdorff dis-
tance can be generated by analyzing the Bernstein–Bézier
representations of the compositions Fi◦c, where Fi denotes
the implicit representation of the i–th circular arc Ai.

• If the number of segments is sufficiently large, then the con-
struction reproduces arc splines, i.e., it has arc spline preci-
sion.

• The construction is invariant under the group of Möbius
transformations, which includes all Euclidean similarities
and reflections with respect to circles.

• According to our numerical experiments, due to the addi-
tional joints lying on the curve, the constructed biarcs seem
to follow better the shape of the original curve and the error
is smaller – see Example 2.3 and Table 2.

Clearly, as a slight disadvantage to other methods, the con-
struction of each biarc segment requires the numerical solution
of a single univariate equation. Also, the generalization of this
technique to the 3D case is not obvious.
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Table 1: Example for Biarc conversion: Errors.
Curve Offset at distance 2

Parts Error Ratio Error Ratio

1 4.97 3.22
2 2.23 2.233 2.83 1.136
4 3.98 10−1 5.594 2.35 1.202
8 9.85 10−2 4.042 6.74 10−1 3.494
16 8.73 10−3 11.29 4.66 10−1 1.446
32 1.15 10−3 7.614 2.36 10−1 1.975
64 1.88 10−4 6.084 5.36 10−2 4.400
128 3.33 10−5 5.656 3.17 10−2 1.690
256 4.46 10−6 7.468 7.89 10−3 4.023
512 5.56 10−7 8.018 2.11 10−3 3.743
1024 6.90 10−8 8.061 5.33 10−4 3.951
2048 8.62 10−9 8.009 1.36 10−4 3.929
4096 1.08 10−9 7.955 3.44 10−5 3.951
8192 1.36 10−10 7.939 8.64 10−6 3.977
16384 1.71 10−11 7.970 2.17 10−6 3.989

Table 2: Comparison of different Biarc constructions.
Error

Parts our method equal chords par. tangents

1 ➊ 4.97 ➁ 5.04 ➂ 5.31
2 ➊ 2.23 ➂ 4.73 ➁ 3.46
4 ➁ 3.98 10−1 ➊ 3.24 10−1 ➂ 6.61 10−1

8 ➊ 9.85 10−2 ➁ 2.51 10−1 ➂ 3.83 10−1

16 ➊ 8.73 10−3 ➂ 6.19 10−2 ➁ 1.01 10−2

32 ➊ 1.15 10−3 ➂ 4.95 10−3 ➁ 3.58 10−3

64 ➊ 1.88 10−4 ➁ 5.32 10−4 ➂ 6.98 10−4

128 ➊ 3.33 10−5 ➂ 5.57 10−5 ➁ 5.06 10−5

256 ➊ 4.46 10−6 ➂ 5.77 10−6 ➁ 5.60 10−6

512 ➊ 5.56 10−7 ➂ 6.27 10−7 ➁ 6.22 10−7

1024 ➊ 6.90 10−8 ➁ 7.36 10−8 ➂ 7.38 10−8

2048 ➊ 8.62 10−9 ➂ 8.88 10−9 ➁ 8.80 10−9

4096 ➊ 1.08 10−9 ➁ 1.09 10−9 ➂ 1.11 10−9

8192 ➊ 1.36 10−10 ➁ 1.37 10−10 ➂ 1.38 10−10

16384 ➊ 1.71 10−11 ➊ 1.71 10−11 ➂ 1.72 10−11

Remark 10 No (bi–) arc interpolation scheme can achieve a bet-
ter approximation order than 3, since even the fitting of the best
arc to a shrinking segment of a C3 curve has this approximation
order. In order to prove this observation (see also [7]), we con-
sider a segment x ∈ [0, h], where h → 0, of a graph of a function
y = f(x) which is given by its Taylor expansion. We assume –
without loss of generality – that it touches the x–axis at x = 0,
i.e.,

y = f(x) = f2
x2

2 + f3
x3

6 + . . .

with constant coefficients f2, f3 ∈ R. Inflections at x = 0 are
excluded: f2 6= 0. The family of circles Fh = 0 which are
defined by the quadratic polynomials3

Fh(x, y) = x2 + y2 − 2x m(h) − 2 y n(h) + a(h),

approximates with order three iff for any t ∈ [0, 1] it holds that

3Its center and radius are (m, n) and R =
√

m2 + n2
− a2.
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Figure 5: Evaluating the one–sided Hausdorff distance between
the curve (grey) and the biarc (black) constructed by our method
(top) and other methods (bottom).

Fh(th, f(th)) = O(h3). Indeed, the signed distance dh(x, y) of
a point (x, y) to the circle (which is negative for points within the
circle) satisfies Fh = (dh + Rh)2 −R2

h, where Rh is the radius.
Consequently, if Rh = O(1), then

∀k ∈ Z+ : dh(x, y) = O(hk) ⇐⇒ Fh(x, y) = O(hk).

After replacing m, n, a by Taylor expansions with respect to h
one gets

Fh(th, f(th)) = a0 + (a1 − 2tm0)h+

+( 1
2a2 − 2m1t + (1 − f2 n0)t

2)h2 + . . . ,

with the derivatives zi = (d/dh)iz(h)
∣

∣

h=0
for z ∈ {m, n, a}.

By comparing the coefficients with O(h3) we obtain a0 = a1 =
a2 = m0 = m1 = 0 and n0 = 1/f2, and therefore the limit is
the osculating circle of the graph at x = 0. Under these necessary
conditions,

Fh(th, f(th)) = ( 1
6a3 −m2t−n1f2t

2 − 1
3 (f3/f2) t3)h3 + . . . .

which never behaves as O(h4) at general points, except for ver-
tices of the curve, where f3 = 0.

3 Construction of PH quintic splines

We give an algorithmic construction of PH quintic interpolants
to C1 boundary data, using one of the four solutions discussed
in [8]. This choice is justified later by studying the approxima-
tion order. Then we apply the PH interpolation to the conversion
of arbitrary C1 continuous curves into PH quintic splines. We
investigate the approximation order of this conversion, the re-
quired data volume and the precision of the corresponding offset
approximation.

3.1 C1 Hermite interpolation by PH quintics

The following algorithm is based on results from [8].
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Algorithm 11 Procedure PHQuintic(P0,V0,P1,V1)
Input: End points P0, P1 and end point derivatives (velocity
vectors) V0, V1. All these data are considered as complex num-
bers, by identifying the plane with the Argand diagram.
Output: PH quintic p(τ) defined over the interval [0, 1] and in-
terpolating the input.

1. Transform the data to a certain canonical position,

Ṽ0 =
V0

P1 −P0
, Ṽ1 =

V1

P1 −P0
.

2. Compute the control points of the so–called preimage:

w0 =
+

√

Ṽ0, w2 =
+

√

Ṽ1.

w1 =
−3(w0+w2)+

+

√

120−15(Ṽ0+Ṽ1)+10w0w2

4
,

where +
√ denotes square root with the positive real part.

3. Compute the control points of the hodograph (i.e., the first
derivative vector) and transform it back to the original po-
sition:

h0 = w2
0(P1 −P0)

h1 = w0w1(P1 −P0)

h2 = (
2

3
w2

1 +
1

3
w0w2)(P1 −P0)

h3 = w1w3(P1 −P0)

h4 = w2
2(P1 −P0).

4. Compute the control points of the PH interpolant,

p0 = P0, pi = pi−1 +
1

5
hi−1 for i = 1 . . . 5,

and return the PH curve in Bernstein-Bézier representation

p(τ) =

5
∑

i=0

pi

(

5

i

)

τ i(1 − τ)5−i.

Remark 12 It can be verified by a direct computation that the
curve p(τ) interpolates the input data and that it is a PH curve,
i.e., its parametric speed is a (possibly piecewise) polynomial:

||p′(τ)|| = ||w(τ)||2|P1 −P0|,

where

w(τ) = w0(1 − τ)2 + 2w1τ(1 − τ) + w2τ
2

is the so–called preimage.

Remark 13 Algorithm PHQuintic fails for some rare cases
of singular data. First of all the start point P0 and the end point
P1 must be different because of the division in the step 1. Next,
the function +

√ is not defined on the line R
−
0 = {λ + 0i :

λ ∈ (−∞, 0]}. In order to compute w0 and w2 it is therefore
necessary that the input tangent vectors V0 and V1 are non-zero

and that they are not opposite to the difference vector P1 − P0.
Finally, we need

120−15(Ṽ0+Ṽ1)+10w0w2 /∈ R
−
0 . (2)

Note, that the vector w0w2 =
+
√

Ṽ0Ṽ1 bisects the angle be-
tween Ṽ0 and Ṽ1 and its length is equal to the geometric av-
erage of the lengths of Ṽ0 and Ṽ1. Only input tangent vectors
having a certain rare symmetry with respect to the difference vec-
tor P1 − P0 and at the same time being much longer P1 − P0

may violate condition (2). Various sufficient conditions can be
determined for practical purposes in order to satisfy (2), e.g.,

||Vi|| ≤ 3||P1 −P0||, i = 0, 1.

3.2 Conversion into PH splines

Algorithm 11 can be used to formulate an efficient conversion
procedure of arbitrary (piecewise) G1 continuous planar curves
into PH splines. The simplest non-adaptive algorithm for C1

continuous curves is as follows:

Algorithm 14 Procedure PHSpline(c(t), ε)
Input: A C1 curve c(t), t ∈ [0, 1]; prescribed error ε.
Output: PH spline pn = {pn

1 , . . . ,pn
n} approximating c(t).

1. Set n = 1.

2. Generate the sequence of PH interpolants:

pn
i = PHQuintic

(

c( i−1

n
), 1

n
c′( i−1

n
), c( i

n
), 1

n
c′( i

n
)
)

for i = 1 . . . n. After a linear reparameterization join them
into a spline pn,

pn(t) = pi(nt − i + 1), t ∈ [ i−1
n

, i
n
], i = 1, . . . , n.

defined over the interval [0, 1].

3. Evaluate the parametric distance between c(t) and pn(t)

max
t∈[0,1]

||c(t) − pn(t)||

= max
τ∈[0,1]

i=1,...,n

∥

∥c( τ+i−1
n

) − pn
i (τ)

∥

∥ .

If it is greater than ε then set n = 2n and GOTO (2). Oth-
erwise STOP.

The error can again be evaluated by sampling, or it can be
bounded using control polygons.

Remark 15 If the curve c(t) is regular and C1, then for suffi-
ciently large values of n all requirements of Algorithm 11 (see
Remark 13) will be satisfied for all i.

3.3 Example

We apply the procedure PHQuintic to the same curve c(t)
as in Section 2.3. The PH spline was constructed for n =
1, 2, 4, . . .214 - see Fig. 6. At each step we give the sampled
error and its improvement compared to the previous step (ratio
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Figure 6: A polynomial curve (grey line) converted into a PH spline (black lines) composed of 4 (left)
and 8 (right) parts. The associated approximation of the offset at distance 2 is also shown.

Table 3: Example for PH conversion: Errors
Curve Offset at distance 2

Parts Error Ratio Error Ratio

1 9.09 9.32
2 2.65 3.430 3.96 2.354
4 4.57 10−1 5.798 1.11 3.557
8 5.62 10−2 8.138 6.30 10−1 1.768
16 1.16 10−2 4.860 2.23 10−1 2.830
32 1.80 10−3 6.427 4.11 10−2 5.416
64 1.95 10−4 9.204 2.21 10−2 1.857
128 1.45 10−5 13.51 3.59 10−3 6.164
256 9.30 10−7 15.55 4.45 10−4 8.075
512 5.93 10−8 15.69 5.87 10−5 7.572
1024 3.71 10−9 15.96 7.40 10−6 7.935
2048 2.32 10−10 15.98 9.24 10−7 8.011
4096 1.45 10−11 15.99 1.16 10−7 7.989
8192 9.07 10−13 16.00 1.45 10−8 7.998
16384 5.67 10−14 16.00 1.81 10−9 8.001

of two successive errors). The same quantities are computed for
the approximation of the offset at distance 2. Table 3 reports
these numbers.

Note that the improvement ratio of the curve approximation
tends to 16 = 24, while the improvement ratio of the offset ap-
proximation tends to 8 = 23. This indicates that the approxima-
tion order of the curve approximation by procedure PHSpline
is 4, while the approximation order of the offset approximation
is only 3.

3.4 Discussion

The following proposition describes the asymptotical behavior
of the procedure PHSpline for n → ∞.

Proposition 16 If the curve c(t) is regular and C∞ on the pa-

rameter domain t ∈ [0, 1], then the approximation error satisfies

max
t∈[0,1]

||c(t) − pn(t)|| = O(
1

n4
), (3)

i.e., the approximation order of the quintic PH spline curve is
equal to four.

Proof. We want to study the distance of interpolants pn
i (t) from

the corresponding segment of the curve c(t) for n → ∞. For
this purpose let us extend the definition of pn

i (t) by introducing

p(s, τ, h) := PHQuintic (c(s), hc′(s), c(s + h), hc′(s + h)),

which represents the PH interpolant (with parameter τ ) to the
data taken from the segment {c(s + hτ), τ ∈ [0, 1]}.

Strictly speaking, the function p(s, τ, h) is defined only when
s and s + h are within [0, 1] and h is positive. Moreover the al-
gorithm PHQuinticmay fail for some values - see Remark 13.
However, because the curve c is C∞ on [0, 1], it can be extended
to a C∞ curve on a larger open interval. Moreover, similar to Re-
mark 15, there exists some h0 > 0 such that p(s, τ, h) is well–
defined for [0, 1]× [0, 1]× (0, h0]. Finally it can be continuously
extended to h = 0 by setting p(s, τ, 0) = c(s).
Step 1. We analyze the behavior of the error

max
τ∈[0,1]

||c(s + τh) − p(s, τ, h)||

for h → 0, when s is fixed. The given C∞ curve c(t) has a
Taylor expansion

c(t) =

k
∑

i=0

xi

i!
(t − s)i + i

k
∑

i=0

yi

i!
(t − s)i + O(t − s)k+1

of arbitrary order k at the point t = s, with certain real coeffi-
cients xi = xi(s) and yi = yi(s). Since the entire construction
is invariant with respect to translations, rotations and scalings,
we may – in order to simplify the computations – suppose that
x0 = y0 = 0, x1 = 1 and y1 = 0. Geometrically, we assume
that the point c(s) is at the origin and the tangent vector at this
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point is 1 + 0i. Clearly, the transformations to and from these
local coordinates are C∞ with respect to s.

The input boundary data (see step (2) of Procedure
PHSpline) depend in a C∞ way on h and the Taylor poly-
nomials of arbitrary order k at h = 0 can be computed4 directly,
leading to

P0 = c(s) = 0, V0 = hc′(s) = h,

P1=c(s+h)=(h+ x2

2 h2 + x3

6 h3 + . . . )+ i( y2

2 h2 + y3

6 h3 + . . . )

and

V1=hc′(s+h)=(h+x2h
2+ x3

2 h3+. . . )+i(y2h
2+ y3

2 h3+. . . ).

Now we analyze the procedure PHQuintic and consider each
computed quantity as a function of h. At each step we verify
that the obtained quantity is again C∞ with respect to h and we
compute the Taylor polynomials at h = 0. For instance, in step 1
we get

Ṽ0 =
V0

P1 −P0
=

(

1 − x2

2 h +
3x2

2−2x3−3y2
2

12 h2 + . . .
)

+

+i
(

−y2

2 h + 3x2y2−y3

6 h2 + . . .
)

,

Ṽ1 =
V1

P1 −P0
=

(

1 + x2

2 h +
4x3+3y2

2−3x2
2

12 h2 + . . .
)

+

+i
(

−y2

2 h + 2y3−3x2y2

6 h2 + . . .
)

.

The remainder of the algorithm involves only products, addi-
tions and (complex) square roots. Products and additions pre-
serve the continuity and modify the Taylor polynomials in a
straightforward way. The only technical difficulty is related to
the square root with positive real part (step 2 of Algorithm 10),
since it is C∞ only out of the half–line R

−
0 = {λ + 0i : λ ∈

(−∞, 0]}. Therefore we must verify that its arguments Ṽ0, Ṽ1

and 120−15(w2
0+w2

2)+10w0w2 have a limit for h → 0 within
C − R

−
0 . Looking at the previous Taylor expansions we see that

Ṽ0, Ṽ1 → 1 + 0i for h → 0.

Also, by a direct computation,

120−15(w2
0+w2

2)+10w0w2 → 100 + 0i.

Therefore also the preimage control points wi and the control
points of the resulting PH curve pi depend C∞ on h. The corre-
sponding Taylor polynomials are listed in the Table 4.

Eventually we arrive at the expansion of the PH interpolant
p(s, τ, h) and compare it with the corresponding segment of the
original curve:

c(s + τh) − p(s, τ, h) = 1
96 τ2(1 − τ)2·

[
(

−6 y2y3 + 6 x2x3 − 4 x4 − 3 x2
3 + 9 x2y2

2
)

h4

+
(

6 y2x3 + 6 x2y3 − 9 y2x2
2 − 4 y4 + 3 y2

3
)

ih4 ] + . . . .

All coefficients up to h3 vanish and thus, for fixed values of s
and τ , the difference behaves as O(h4). Moreover, according
to Taylor’s theorem, for any values of h, s, τ there exists h∗ =
h∗(h, s, τ) ∈ (0, h) such that

c(s+τh)−p(s, τ, h) = h4 ∂4

∂h4
[c(s + τh) − p(s, τ, h)]

∣

∣

∣

∣

h=h∗

.

4We used the computer algebra system Maple 9.

Step 2. As shown in Step 1, the function c(s + τh) − p(s, τ, h)
is C∞ with respect to h. Clearly it is also continuous and differ-
entiable with respect to s and τ . Therefore

∂4

∂h4
[c(s + τh) − p(s, τ, h)]

is continuous on the compact (i.e., closed and bounded) domain
[0, 1] × [0, 1] × [0, h0] and its absolute value can therefore be
bounded by some constant K > 0, which does no longer depend
on s and τ . This implies

||c(s + τh) − p(s, τ, h)|| < h4K

for all s ∈ [0, 1], τ ∈ [0, 1] and h ∈ [0, h0]. Since h = 1/n, this
completes the proof of (3). �

Since PH curves possess polynomial speed functions, they
have rational offsets. We can therefore approximate the offsets
of the original curve c(t) by the offsets of p(t). Using again
the Taylor expansion technique it can be shown that error of the
offset approximation behaves as O( 1

n3 ).

Remark 17 Both for interpolation by biarcs and PH quintics,
the approximation order of the offset construction is one less than
that of the the corresponding curve construction. The offsets at
distance d are obtained from

od(t) = c′(t) + d
c′(t)⊥

||c′(t)|| ,

where the derivative vector c′(t) has the same approximation or-

der as the curve c(t), but the unit tangent vector c
′(t)

||c′(t)|| has a re-
duced approximation order. In fact, numerators and denominator
of the unit tangent vectors of the approximating curve segments
behave as O(h) and they approximate the original quantities with
certain accuracy O(h4) and O(h3) for PH curves and biarcs, re-
spectively. After dividing the Taylor expansion (and removing
the singularity at h = 0), the order of accuracy is reduced by 1.

Remark 18 Any piecewise C∞ curve (such as NURBS), can be
split into C∞ segments.

Remark 19 Procedure PHQuintic is based on the first of the
four PH interpolants described in [8] and labeled (++), (+−),
(−+) and (−−). The two signs correspond to the choice of
complex roots with positive or negative real part for w0,w2 in
step (2) of the procedure PHQuintic; this label can be there-
fore re-written as (sgn(<(w0), sgn(<(w2)). In contrast to the
good behavior and approximation order of the interpolant labeled
(+, +), the remaining three curves exhibit an undesired asymp-
totical behavior. It can be proved, that for these three solutions
the error (3) behaves only as O( 1

n
). Using other interpolants than

(+, +) would therefore produce global splines converging much
slower to the original curve.

Moreover, from the leading terms of the Taylor expansions,
one can deduce the limit shapes of the interpolants, see Figure 7.
We will skip the the technical details of how these shapes were
obtained and will rather focus on their meaning. Once more,
for any fixed end point s we consider the interpolant p(s, τ, h),
constructed by taking always the solution (+, +). Additionally,
for each h we translate, rotate and scale the interpolant such that
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its end points are 0 + 0i and 1 + 0i. The curves obtained in such
way converge for h → 0 to some limit shape which, for all s,
is an affine transformation of the first shape of Figure 7 (in fact
only the i axis must be scaled depending on the curvature of c at
the point s). Note, that in this case the limit shape is a parabola
although the interpolants are quintic.

Using other solutions instead of (+, +) would lead to differ-
ent limit shapes (Figure 7) which are truly quintic curves. While
the limit shape of the interpolant (+, +) is smooth, the remain-
ing three limit shapes involve one or two cusps (note that their
hodographs pass through the origin).

This fact is extremely important for applications: In any algo-
rithm based on subdivision, the solution (++) must be used. In-
terpolation using the other solutions would produce curves with
an increasing number of small loops.

4 Comparison and concluding remarks

Based on our theoretical results, we were able to design a new
variant of biarc conversion algorithm and to justify and analyze
the PH conversion algorithm. Both algorithms can be used in
general for piecewise G1 continuous curves. We will conclude
by comparing both algorithms from the point of view of the com-
putational effort and of the required data volume.

The construction of each biarc segment requires a numerical
root finding within a given interval (in addition to basic oper-
ations). In the case of PH quintic, three complex square roots
must be computed, which corresponds to evaluating 6 real square
roots. The computational effort for one PH or biarc segment
seems to be therefore approximately the same.

Also the required data volume is roughly the same for biarc
and PH spline having the same number n of segments. In prac-
tice, the piecewise rational Bézier representation would be used
both for biarc and PH splines. A biarc can be represented as two
rational quadratic curves, requiring 2 × 3 × 3 = 18 real coeffi-
cients. A PH quintic curve can be considered as a rational quin-
tic, requiring 3 × 6 = 18 coefficients. The total number of the
coefficients for a spline is thus approximately the same in both
cases and equals 18n. In this counting we suppose that the arcs
and quintics are represented as non-connected rational curves
with arbitrary weights (not in standard form). Of course, in both
cases, various more compact representations are also available.
The data volume would change only by constant factor.

Both methods are distinguished by the number of segments
required for converting a given curve with prescribed precision.
Due to the higher approximation order in the PH case, the same
precision will be achieved using a smaller number of PH seg-
ments, compared to biarcs segments.

Offsets of a PH quintic are rational curves of degree 9, requir-
ing therefore 3 × 10 = 30 coefficients. Offsets of a biarc are
also biarcs, requiring therefore again 18 coefficients. However,
if the prescribed error is sufficiently small, then due to the higher
approximation order the data volume required for offset approx-
imation is smaller when using PH curves.

Based on given numerical examples, we display in Figure 8
the data volume required for achieving prescribed errors of the
curve approximation (upper figure) and of the offset approxima-
tion (lower figure). For sufficiently small errors, the PH splines
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Figure 8: Data volume (top: curve, bottom: offsets)
needed for achieving prescribed error when apply-
ing the procedure BiarcSpline (grey dots) and
the procedure PHSpline (hollow dots).

require considerably less data then the biarc splines (note the log-
arithmic scales on both axes). Consequently, for certain applica-
tions requiring high accuracy, PH quintics may be more appro-
priate than biarcs.

Acknowledgment The authors were supported through grant
P17387-N12 of the Austrian Science Fund (FWF). We thank to
all referees for their comments which helped us to improve the
manuscript.

References
[1] G. Elber, I.-K. Lee and M.-S. Kim (1998), Comparing Offset Curve Ap-

proximation Methods. IEEE Comp. Graphics and Appl. 17, 62–71.

[2] R.T. Farouki (2002), Pythagorean hodograph curves, in G. Farin, J.
Hoschek and M.-S. Kim (eds.), Handbook of Computer Aided Geometric
Design, North-Holland, Amsterdam, 405–427.

[3] R.T. Farouki, J. Manjunathaiah, D. Nichlas, G.F. Yuan and S. Jee (1998),
Variable-feedrate CNC interpolators for constant material removal rates
along Pythagorean-hodograph curves. Comp.-Aided Design 30 (8), 631-
640.

[4] M. Held and J. Eibl (2005), Biarc approximation of polygons within asym-
metric tolerance bands. Computer-Aided Design 37(4): 357-371.

9



Table 4: Taylor expansions of the control points occurring in the procedure PHQuintic.

w0
[1 − 1

4 x2h +
(

− 1
12 x3 + 3

32 x2
2 − 3

32 y2
2
)

h2 +
(

− 1
48 x4 + 1

16 x2x3 − 1
16 y2y3 − 5

128 x2
3 + 15

128 x2y2
2
)

h3 + . . . ]

+i[− 1
4 y2h +

(

3
16 y2x2 − 1

12 y3

)

h2 +
(

1
16 y2x3 − 15

128 y2x2
2 + 5

128 y2
3 + 1

16 x2y3 − 1
48 y4

)

h3 + . . . ]

w1
[1 +

(

− 1
12 x3 + 1

32 x2
2 − 1

32 y2
2
)

h2 +
(

− 1
24 x4 + 7

96 x2x3 − 7
96 y2y3 − 1

32 x2
3 + 3

32 x2y2
2
)

h3 + . . . ]

+i[
(

1
16 y2x2 − 1

12 y3

)

h2 +
(

− 1
24 y4 + 7

96 y2x3 − 3
32 y2x2

2 + 7
96 x2y3 + 1

32 y2
3
)

h3 + . . . ]

w2
[1 + 1

4 x2h +
(

1
6 x3 − 5

32 x2
2 + 5

32 y2
2
)

h2 +
(

1
16 x4 − 1

6 x2x3 + 1
6 y2y3 + 13

128 x2
3 − 39

128 x2y2
2
)

h3 + . . . ]

+i[ 14 y2h +
(

− 5
16 y2x2 + 1

6 y3

)

h2 +
(

− 1
6 y2x3 + 39

128 y2x2
2 − 13

128 y2
3 − 1

6 x2y3 + 1
16 y4

)

h3 + . . . ]

p0 0 + 0i

p1
1
5h + 0i

p2
[ 25h + 1

20 x2h
2 +

(

− 1
240 x4 + 1

160 x2x3 − 1
320 x2

3 + 3
320 x2y2

2 − 1
160 y2y3

)

h4 + . . . ]

+i[ 1
20 y2h

2 +
(

− 1
240 y4 + 1

160 x2y3 + 1
160 y2x3 − 3

320 y2x2
2 + 1

320 y2
3
)

h4 + . . . ]

p3
[ 35h + 3

20 x2h
2 + 1

60 x3h
3 +

(

− 1
240 x4 + 1

160 x2x3 − 1
320 x2

3 + 3
320 x2y2

2 − 1
160 y2y3

)

h4 + . . . ]

+i[ 3
20 y2h

2 + 1
60 y3h

3 +
(

− 1
240 y4 + 1

160 x2y3 + 1
160 y2x3 − 3

320 y2x2
2 + 1

320 y2
3
)

h4 + . . . ]

p4
[ 45h + 3

10 x2h
2 + 1

15 x3h
3 + 1

120 x4h
4 + . . . ]

+i[ 3
10 y2h

2 + 1
15 y3h

3 + 1
120 y4h

4 + . . . ]

p5
[h + 1

2 x2h
2 + 1

6 x3h
3 + 1

24 x4h
4 + . . . ]

+i[ 12 y2h
2 + 1

6 y3h
3 + 1

24 y4h
4 + . . . ]
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