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Abstract We present an approximate implicitization method for planar
curves. The computed implicit representation is a piecewise rational approx-
imation of the distance function to the given parametric curve.

The proposed method consists of four main steps: quadratic B–spline
approximation of the given parametric curve, data reduction, segments–wise
implicitization, multiplying with suitable polynomial factors. These segments
are joined such that the collection generate a global Cr spline function which
approximates the distance function, for r = 0, 1.

Keywords approximate implicitization · distance function

1 Introduction

The zero set of a bivariate polynomial F (x, y) defines a planar algebraic curve.
On the other hand, a parametric representation of the form x = p(t)/w(t) and
y = q(t)/w(t), where p(t), q(t), and w(t) are (piecewise) polynomials, gives a
planar rational (spline) curve. Both representations, implicit and parametric,
play an essential role in Computer Aided Geometric Design. Each of them is
particularly well suited for certain applications.

For example, for display purposes, it is easier to generate a large numbers
of points if the parametric form is available. Also, finite segments of curves are

Mohamed Shalaby, Bert Jüttler
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easily defined by imposing parameter bounds. As another advantage, para-
metric curves can be pieced together with various degrees of derivative con-
tinuity. In addition, certain parametric curve forms (e.g., Bézier or B-spline
curves) exhibit highly desirable properties such as the variation diminishing
property and convex hull properties.

On the other hand, using the implicit representation one may easily decide
whether a given point lies on the curve or not. As a theoretical advantage,
the set of all algebraic curves is closed under offsetting (parallel curves are
again algebraic curves), while parametric rational curves are not closed under
this operation.

Any planar rational curve can be described as an algebraic one. The
process of converting the parametric equation into implicit form is called
implicitization. A number of established methods for exact implicitization
exists, such as resultants, Gröbner bases, or moving curves and surfaces [2].
However, the implicitly defined curve may contain extraneous points which
cannot be removed algebraically [3]. As an alternative one may use techniques
for approximate implicitization [13].

In order to increase the flexibility of the implicit representation, one may
work with algebraic spline curves. An algebraic spline curve is the zero con-
tour of a spline function. A spline function is a collection of polynomials,
joined together such that they form a globally Cr function. Similarly, a ra-
tional spline function is obtained by composing rational functions.

In [4,11], we discussed the problem of constructing an approximate im-
plicit representation via spline implicitization. It is defined by a partition of
the plane into polygonal segments along with a bivariate polynomial for each
segment, such that the collection of the zero contours approximately describes
the given curve. The polynomial pieces form a globally Cr spline function,
for certain choice of r. The existing methods for spline implicitization are
restricted to r = 0, 1.

This paper extends the methods of [4,11], in order to obtain a piecewise
rational approximation of the (signed) distance function 1 to the given para-
metric curve. Distance function computation plays an essential role in several
fields: computational geometry, geometric modeling, level set method, com-
puter vision, and robotics. The graph surface of the distance function is a
surface of constant slope. Its singularities correspond to the evolute of the
curve. The distance function dF (X) can also be obtained as the viscosity
solution of the so–called Eikonal equation ‖∇dF (X)‖ = 1, (see, e.g., [10]).
The problem of distance function computation has been studied by several
authors from different fields [7,8,10,14].

In this paper, we propose a technique which generates a piecewise ratio-
nal approximation of the distance function. The proposed method, which can
deal with curves without singular points or self-intersections, consists of four
steps, see Figure 1. First, a quadratic spline curve is used to approximate the
given parametric curve. Second, a simple data reduction technique, which is
based on spline wavelets, is applied. Then, the resulting quadratic segments

1 The value of the distance function of an algebraic (spline) curve at a point
X = (x̄, ȳ) is the smallest Euclidean distance of X to the zero contour of the
defining (piecewise) polynomial.
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Fig. 1 Piecewise Polynomial Approximation of the Distance Function

are implicitized. Finally, by multiplying them with suitable polynomial fac-
tors, these implicitized segments are joined together. The collection of the
segments forms a Cr function, for r = 0, 1, which approximates the distance
function to the curve.

The remainder of the paper is organized as follows: In Section 2, we sum-
marize the preprocessing steps of the spline implicitization, namely the first
three steps of the proposed methods (curve approximation, data reduction
and segments–wise implicitization). Sections 3 and 4 present four algorithms
for generating a Cr implicit spline representation of the given parametric
curve g(t) which approximate the distance function of g(t), for r = 0, 1
respectively.

2 Preprocessing: Conversion into quadratic spline form

Consider a given a planar parametric curve g(t), which does not contain
singular points (cusps) or self-intersections. We assume that the coordinate
functions belong to the Sobolev space H2,2. This assumption is automatically
satisfied by standard curve representations in Computer Aided Geometric
Design, such as NURBS. Any curve satisfying these conditions will be called
a suitable input curve.

First we convert the given curve into a polynomial quadratic spline curve.
Following ideas of [9], we use an orthogonal projection in a suitably weighted
Sobolev space, where the uniform quadratic B-Splines form an orthogonal
basis. Consequently, the coefficients of the approximating curve are found
by evaluating inner products (with respect to the weighted Sobolev inner
product) 〈gi, N

2
j 〉 between the coordinate functions of the given curve and the

quadratic B-Splines. In order to obtain a highly accurate representation, we
choose a uniform knot vector with respect to a small stepsize h. Consequently,
this conversion introduces virtually no error. The approximation order is 3.

As an example, we consider a piecewise polynomial parametric curve con-
sisting of three segments of degree 10. Figure 2a shows the error (grey) be-
tween the original curve (black) and its quadratic spline approximation with
128 segments. The error had to be amplified by a factor of 2000, since it is
very small. Secondly, in order to reduce the number of segments, one may
apply a simple data reduction technique which is based on spline wavelets
[12]. After running the filters of wavelet analysis, we set all wavelets coeffi-
cients which are below a user–defined threshold τ to zero. After synthesis,
most of the knots can be removed in general (depending on the choice of τ).
Clearly, this is a fast but non–optimal technique for knot removal, and more
sophisticated techniques such as [5] could be used instead.
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Fig. 2 a) The original curve (black) and the error (grey, exaggerated) introduced
by approximating it with a quadratic spline curve with 128 knots. b) The error
(grey, exaggerated) after data reduction.

In the example we chose τ = 0.001. Figure 2b shows the original curve
(black) and the error (grey) introduced by the data reduction. The 9 remain-
ing knots are shown as circles. In order to make it visible, the error has been
amplified by a factor of 5.

As the third step, we split the quadratic spline curve into its Bézier seg-
ments and implicitize them using Bezout resultants2. This produces a se-
quence of quadratic bivariate polynomials (Gi)i=0,...,m. Finally, in order to
generate a globally Cr (r = 0, 1) spline function, we join these polynomial
segments Gi, i = 1, . . . , m along suitable lines called the transversal lines.
This will be discussed in the next two sections.

Remark 1 The conversion process can easily be generalized to yield spline
curves of degree higher than two. However, while polynomial quadratic spline
curves consist of parabolic arcs, and therefore produce a relatively well–
behaved implicit representation, this is not automatically true for higher
degrees. For instance, the implicit representations of the Bézier segments of
cubic spline curves may have singularities.

3 The C
0 Case

In order to generate a globally C0 spline function, we join the polynomial seg-
ments Gi, i = 1, . . . , m along suitable lines, which will be called the transver-
sal lines.

2 Potential robustness problems – which we did not experience so far – could be
dealt with by using. e.g., Dokken’s SVD–based approximate implicitization [13]
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3.1 Transversal Lines

Consider two neighboring Bézier segments of the quadratic spline curve with
implicit representations Gi(x, y) = 0, i = 1, 2. These segments are parabolas
which meet with tangent continuity at their junction point p. Moreover, they
intersect in two additional points p1 and p′

1, see Figure 3. These two points
can be both real (b) or conjugate–complex (c), at infinity (d) or one of them
may coincide with p (a). If both coincide with p then the two parabolas are
identical.

PSfrag replacements

G2=0G2=0

G2=0
G2=0

G1=0

G1=0

G1=0

G1=0

∞

p

p

p

p′

1

p′

1

p1

p=p′

1

p1=p′

1

(a) (b) (c) (d)

Fig. 3 Choosing the transversal line L (dashed). The line at infinity is shown as
a finite line (∞), hence the parabolas appear as conic sections which are tangent
to it.

The bivariate polynomials G1 and G2 are to be joined continuously along
a transversal line L through p. Obviously, this implies that L passes through
p1 or p′

1, since the restriction of either Gi to L gives a univariate polynomial,
and the roots of both polynomials have to coincide. The behavior of these
lines is governed by the following result.

Proposition 1 Assume that the original parametric curve has no inflection
points and is given by a C3 arc length parameterization. If the stepsize h
for converting it into quadratic spline form via orthogonal projection in a
weighted Sobolev space, according to [9], is sufficiently small, then the neigh-
boring parabolas intersect in two real points. In addition, one of the two
possible transversal lines at each junction point converges to the normal of
the curve as h → 0.

The proof can be found in [4]; it is based on the so–called canonical Taylor
expansion of a planar curve with respect to its arc length parameter, which
is a consequence of Frenet’s formulas in elementary differential geometry.

Consequently, under the assumptions of the proposition, non–inflected
curve segments alway produce suitable transversal lines L = Li between
neighboring segments Gi and Gi+1. Hence, after multiplying the implicitized
segments by suitable constants, the collection of these bivariate polynomials
Gi(x, y) – each restricted to a tile bounded by the transversal lines – forms a
continuous function G(x, y). This function is defined within a certain neigh-
borhood of the curve. In the limit h → 0, this neighborhood is bounded by
the evolute, since it is the envelope of the normals of the curve.
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Remark 2 The above construction fails at inflections of the quadratic spline
curve, as the additional intersection points p1, p

′

1 do not exist in this case. In
this situation, the two implicitized segments can still be joined continuously,
provided that they can be seen as a graph of a univariate quadratic spline
function with respect to a suitable coordinate system. If this is the case, then
the two segments belong to case (d) in Figure 3 (but one of the two conics
is a hyperbola which touches the line ∞ from above). A local modification
of the B-spline control points, as described in [4] Section 5.3, can be used to
obtain this situation.

3.2 Distance Function Approximation (DFA)

The collection of the bivariate polynomials Gi(x, y), i = 1, . . . , m forms a
continuous function G(x, y). Unfortunately, G(x, y) does not approximate

the distance function. In order to obtain a function Ĝ(x, y) which approxi-
mates the distance function to the curve G(x, y), we multiply G(x, y) by a

polynomial factor λi(x, y) such that ||∇Ĝ(x, y)|| ≈ 1 within the vicinity of

the curve, where Ĝ = λG.
The quality of approximation depends on the degree of the polynomial

factor λi(x, y). We propose two approaches.
Approach 1. This approach works without introducing additional transver-
sal lines. We simply multiply by constant polynomial factors λi(x, y). We use
the original transversal lines and follow Algorithm 1.

Algorithm 1 Basic DFA

Input A suitable parametric curve (see Section 2).
Output An approximate implicit representation by a continuous (C0) piecewise

rational approximation Ĝ(x, y) of degree 3/1 (numerator/denominator) of the dis-
tance function to the given parametric curve. It is defined within a certain neigh-
borhood of the curve.
1: Run the preprocessing steps, Section 2.
2: Choose the transversal lines Li through the junction points pi as described in

Section 3.1, see Fig. 4, and multiply the polynomials Gi by suitable constants
in order to avoid the jump of the gradient at the junction points.

3: Describe the transversal lines by linear functions Li = aix + biy + ci with
normalized coefficients, i.e. a2

i + b2
i = 1.

4: At each junction point pi, compute the constant polynomial factor λi from the
equation

‖∇(λi Gi−1)‖
˛

˛

˛

(x,y)=pi

= 1 (1)

5: For each patch, blend λi and λi+1 using rational linear factors di, di+1 , where
di = ±Li with a suitable choice of the sign. This leads to φi = (λi di+1 +
λi+1 di)/(di + di+1). Each φi is defined over the patch bounded by the two
transversal lines Li and Li+1.

6: The collection of the bivariate polynomials φi Gi – each restricted to a tile

bounded by the transversal lines – forms the continuous function Ĝ(x, y).
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Fig. 4 Basic DFA: No additional transversal lines are needed

An example is shown in Figure 5. The piecewise rational approximation
consists of 8 bivariate polynomials of degree 3/1. They are pieced together
along 7 transversal lines (grey). The quality of the implicit representation is

visualized by the level curves Ĝ(x, y) = constant (“algebraic offsets”). The

level curves are not tangent continuous, since Ĝ is not differentiable (see the
right figure).

Fig. 5 Continuous approximation of the distance function obtained by using Al-
gorithm 1 (left), enlarged (right)

Approach 2. We introduce additional transversal lines L̄i and use poly-
nomial factors of higher degree. The new transversal lines L̄i serve as new
partition lines. Let p̄i be the intersection points of L̄i and Z(G(x, y)) 3. The
gradients ∇Gi(x, y) at p̄i will be normalized to 1. This can be achieved by
following Algorithm 2.

Figure 7 shows an example for an approximation produced by Algorithm
2 with factors of degree n = 1. The piecewise rational approximation consists
of 16 bivariate polynomials of degree 4. They are pieced together along 15
transversal lines (grey). The quality of the implicit representation is visual-

ized by the level curves Ĝ(x, y) = constant. The level curves are not tangent

continuous, since Ĝ is not differentiable (see the right figure).
In Algorithm 2, the user may choose the degree n and the number of

segments (the number of additional transversal lines). Using a high degree

3 Z(G) = {(x, y) | G(x, y) = 0} denotes the zero level set of a function G.
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Algorithm 2 Enhanced DFA

Input A suitable parametric curve (see Section 2) and a user defined degree n.
Output An approximate implicit representation by a continuous (C0) piece-

wise rational approximation Ĝ(x, y) of degree (n + 3)/1 of the distance func-
tion.
1: Run the preprocessing steps, Section 2.
2: Choose the transversal lines as described in Section 3.1 and multiply the poly-

nomials Gi by suitable constants, in order to obtain a globally continuous func-
tion.

3: Choose a number of additional points p̄i on Z(G(x, y)), see Figure 6. For in-
stance, one may choose the midpoints of each curve segment.

4: Introduce additional arbitrary transversal lines L̄i through p̄i. For instance,
one may use the normals to the curve. Describe the transversal lines through
the junction points p̄i by linear functions L̄i = āix + b̄iy + c̄i with normalized
coefficients, i.e. ā2

i + b̄2
i = 1.

5: At each point p̄i, compute the polynomial factor λi of degree n from the equa-
tions

‖∇(λi Gi−1)‖
˛

˛

˛

(x,y)=p̄i

= 1, (
∂m

∂m−`(x)∂`(y)
‖∇(λi Gi−1)‖)

˛

˛

˛

˛

(x,y)=p̄i

= 0 (2)

for m = 1, . . . , n, ` = 0, . . . , m.
6: Blend λi, λi+1 using rational linear factors d̄i, d̄i+1 where d̄i = ±L̄i with a

proper choice of the sign. This leads to φ̄i = (λi d̄i+1+λi+1 d̄i)/(d̄i+d̄i+1). Each
factor φ̄i is defined over the patch bounded by the two ‘additional’ transversal
lines L̄i and L̄i+1. The ‘original’ transversal line Li divides this patch into two
sub-patches where both Gi−1 and Gi are defined. Hence both Gi−1 and Gi are
multiplied with φ̄i.

7: The collection of the bivariate polynomials φi Gi−1, φi Gi forms the continuous

function Ĝ(x, y).
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Fig. 6 Enhanced DFA: additional transversal lines L̄i are introduced

polynomial factor and/or large number of transversal lines improves the qual-
ity of approximation. On the other hand, this will increase the degree of the
implicit representation and/or increase the number of segments of the spline
curve. This will be discussed in more detail in Section 5.
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Fig. 7 Continuous approximation of the distance function obtained by using Al-
gorithm 2 with factors of degree n = 1 (left), enlarged (right)

4 The C
1 Case

Differentiability (i.e., C1 smoothness) is needed for many applications. In or-
der to generate a globally C1 spline function, we join the polynomial segments
Gi, i = 1, . . . , m along suitable transversal lines. In addition, we multiply
again by suitable quadratic polynomial factors.

In this construction, we multiply by polynomial factors twice. First, we
multiply by suitable quadratic polynomial factors f2,1(x, y) and f1,2(x, y)
in order to achieve a C1–joint implicit representations along the transversal
lines. Second, we multiply by polynomial factors λi in order to have obtain
distance function approximation.

4.1 Transversal lines

The transversal lines are now chosen as arbitrary lines through the junction
points pi, e.g., as the normals to the curve.

Two segments. Consider two neighboring Bézier segments of the quadratic
spline curve with implicit representations Gi(x, y) = 0, i = 1, 2. Now we
choose the transversal line L as an arbitrary line passing through p, which is
different from the tangent Tg. Let q and r be the second intersection points
of L and Z(G1), see Figure 8.

We choose an arbitrary point s on L, which is different from p, q and r (see
Figure 9). In order to achieve a C1–joint of the implicit representations along
L, we multiply G1(x, y) and G2(x, y) by two quadratic polynomial factors
f2,1(x, y) and f1,2(x, y), such that the following conditions are satisfied.

– Neither f2,1(x, y) nor f1,2(x, y)) vanish identically along L.
– ∇f2,1(r) and ∇G2(r) are linearly dependent.
– ∇f1,2(q) and ∇G1(q) are linearly dependent.
– ∇f1,2(s) and ∇f2,1(s) are linearly dependent.

Consider the bivariate polynomials

F1(x, y) = G1(x, y)f2,1(x, y) and F2(x, y) = G2(x, y)f1,2(x, y).

As observed in [11], the two bivariate polynomials F1(x, y) and F2(x, y) meet
with C1 continuity along L after multiplying one of them with a suitable
constant.
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This construction has two degrees of freedom: it is possible to choose the
location of s on the line L and the direction of the tangent at this point.

Several segments. In order to deal with more than two segments, we propose
the following algorithm:

Algorithm 3 Global Smoothing

1: Split the plane into patches by choosing arbitrary lines Li through the junction
points pi of the segments. For instance, one may choose the normals to the
curve.

2: Each inner patch (i = 2, . . . , m− 1, where m is the number of the segments) is
split into two sub–patches by an arbitrary line li. For instance, one may choose
the normal through the midpoint of the curve segments.

3: First patch: we multiply G1(x, y) by a quadratic polynomial factor f2,1 such
that ∇f2,1(r1) and ∇G2(r1) are linearly dependent.

4: Inner patches: we multiply Gi(x, y) by a piecewise quadratic multiplier, defined
as quadratic polynomials f1,i and f2,i on each of the two sub-patches, see Figure
10. The multiplier has to satisfy the following conditions:

– It is C1 on the whole patch.
– ∇f1,i(qi−1) and ∇Gi−1(qi−1) are linearly dependent.
– ∇f1,i(si−1) and ∇f2,i(si−1) are linearly dependent.
– ∇f2,i(ri) and ∇Gi+1(ri) are linearly dependent.

These conditions lead to a homogeneous linear system of equations which has
at least one non–trivial solution.

5: The last patch is dealt with similarly to Step 3.

This construction provides two degrees of freedom. When joining the first
two patches, one may choose the location of the point s1 and the slope of
tangent T1 (the tangent of f2,1 at s1). In general, the multipliers which are
applied to the other patches are then determined up to scalar constants.

‘Bad’ patches. In the above construction, the coordinates of the point si

and the tangent direction at this point depend on the coordinates of the
previously generated point si−1 and tangent directions. After the first patch,
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(dashed)

we do not have any control on the coordinates of the points sl, l = 2, . . . , m−1
where m is the number of the patches4. Hence, the polynomial factors may
intersect the original curve within the area of interest.

As described in [11], if there is an intersection between the polynomial
factors and the original curve at any patch (for instance patch i), patch i
will be split into 4 sub-patches. This will introduce 2 additional degrees of
freedom which are used to choose the coordinate of si and the slope of Ti at
this patch to avoid the intersection. Any such modification will act locally
and affect only two patches (patch i and patch i + 1), see Figure 11.
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Fig. 11 Choosing si, Ti to control the curve locally

Clearly, subdividing into 4 sub–patches is more expensive than subdivid-
ing into 2 sub–patches, and it leads to a higher data volume. In practice,
one may use the following hybrid method. First, divide each patch into 2
sub–patches. Only if a singularity is introduced at patch i, then we discard
the 2 sub-patches and subdivide into 4 sub–patches.

The proposed algorithm produces C1 global function whose zero contour
G(x, y) = 0 is the quartic spline curve.

4 This is similar to C1 interpolation with quadratic splines. Once we fix the
tangent direction for the first quadratic function we do not have freedom to choose
any of the tangent directions afterwards.
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4.2 Distance Function Approximation (DFA)

The collection of the bivariate polynomials Gi(x, y), i = 1, . . . , m forms a
C1 smooth global function G(x, y). Unfortunately, G(x, y) does not approxi-
mate the distance function. Once again, we multiply G(x, y) by a polynomial

factors λi(x, y), such that ||∇Ĝ(x, y)|| ≈ 1. This can be achieved by two al-
gorithms: Algorithm 4 and Algorithm 5 which are two modified versions of
the Algorithms 1 and 2. The main difference is that the blending functions
di take the form di = L2

i , in order to preserve the C1 smoothness.
The first algorithm Basic Smooth DFA (see Algorithm 4) works without

introducing additional transversal lines and uses constant factors.

Algorithm 4 Basic Smooth DFA

Input A suitable parametric curve (see Section 2).
Output An approximate implicit representation by a C1 smooth piecewise rational
approximation of degree 6/2 (numerator/denominator) of the distance function to
the given parametric curve. It is defined within a certain neighborhood of the
curve
1: Run the preprocessing steps, Section 2.
2: Choose the transversal lines and describe them by normalized linear equations,

as in Steps 2, 3 of Algorithm 1. Join the segments with C1 smoothness as
described in Algorithm 3.

3: Algorithm 1 (Step 4).
4: Algorithm 1 (Step 5), but with di = L2

i .
5: The collection of the bivariate polynomials φi Gi – each restricted to a tile

bounded by the transversal lines – forms a C1 smooth function Ĝ(x, y) of
degree 6/2.

The second algorithm Enhanced Smooth DFA (see Algorithm 5) works
with introducing additional transversal lines and uses general polynomial
factors.

Algorithm 5 Enhanced Smooth DFA

Input A suitable parametric curve (see Section 2) and a user defined degree n.
Output An approximate implicit representation by a C1 smooth piecewise rational
approximation, of degree (n+6)/2, of the distance function to the given parametric
curve. It is defined within a certain neighborhood of the curve.
1: Run the preprocessing steps, Section 2.
2: Choose the transversal lines and describe them by normalized linear equations,

as described in Algorithm 2. Join the segments with C1 smoothness as described
in Algorithm 3.

3: Steps 3, 4, 5 of Algorithm 2.
4: Algorithm 2 (Step 6) but let di = L̄2

i . .
5: The collection of the bivariate polynomials φi Gi−1, φi Gi forms a C1 function

Ĝ(x, y) of degree (n + 6)/2.

Figures 12 and 13 show the rational approximation of the distance func-
tion of the spline curve g(t) shown in Figure 2. The algorithms 4 and 5 with
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factors of degree n = 1 were used. In order to assess the quality of the result,
we enlarged a part of the curve and drew some additional algebraic offsets
(right figures). It can clearly be seen that the algebraic offsets are C1 smooth.

Fig. 12 C1 smooth approximation of the distance function obtained by using
Algorithm 4 (left), enlarged (right)

Fig. 13 C1 smooth approximation of the distance function obtained by using
Algorithm 5 with n = 1 (left), enlarged (right)

Figure 14 visualizes the quality of the approximation, for the previous
two examples shown above. We compare the level sets of the rational ap-
proximation of the distance function (grey curves) with the corresponding
offsets (which are level sets of the distance function). One may observe that
the quality of the second approximation is slightly better. The quality of
approximation depends on the degree of polynomial factors and the number
of segments (number of transversal lines). This will be analyzed in the next
section.

5 Experimental error analysis

We study the behavior of the error for the approximation of the distance
function generated by the previous algorithms. Two kinds of error can be
considered: First, one may analyze the geometric error, i.e., the maximum
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a)

b)

Fig. 14 Comparison of level sets of the rational approximation of the distance
function (grey) with offset curves (black). (a) Basic Smooth DFA, (b) Enhanced
Smooth DFA with n = 1.

distance between the original curve and its approximate implicit represen-
tation. Second, the error in the distance function should be considered, i.e.,
the deviation of the true signed distance function from its approximation.
For the latter error, two user–defined parameters influence the result: the
degree of the auxiliary factors, and the step size, i.e., the distance between
the transversal lines. The influence of both parameters will be analyzed sep-
arately.

5.1 Geometric error

The geometric error is introduced only during the preprocessing stage: ap-
proximation by a quadratic spline curve via orthogonal projection in a weighted
Sobolev space (step 1) and adaptive knot removal (step 2).

The approximation order of step 1 is known to be three. Virtually no error
is introduced in this step, provided that the step-size is sufficiently small. On
the other hand, the error introduced by the knot removal (step 2) can be
bounded using standard techniques of Computer Aided Geometric Design.
Several techniques for adaptive knot removal with prescribed tolerance exist,
see [5].

5.2 Distance function error and the degree of the auxiliary factors

The accuracy of the approximation to the distance function decreases with
the distance to the given curve. For any given tolerance, the approximation
is valid only within a certain tubular neighborhood.

More precisely, consider a given planar curve p(t) with associated unit
normals n(t). The mapping

(t, d) 7→ q(t, d) = p(t) + d n(t) (3)
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parameterizes a certain neighborhood of the curve. It is non-singular (i.e.,
locally bijective) for |d| ≤ |1/κ|, where κ = κ(t) is the curvature of the curve,
and the parameter d represents the exact signed distance of q(t, d) to the
curve.

The difference between the true signed distance and its approximation
G(x) can easily be expressed in this parameterization,

δ(t, d) = |G(q(t, d) ) − d|. (4)

Using an example, we analyze the behavior of this difference for various
degrees of the auxiliary factor. We consider an arc of an ellipse (see Figure
15) and generate a rational quadratic parameterization p(t) covering the
vicinity of the origin.

–1

1

2

3

–1 –0.5 0.5 1 1.5 2

PSfrag replacements

s1s2

Fig. 15 The example used for analyzing the influence of the degree: An arc of an
ellipse (black) and its evolute (grey).

Starting from the implicit equation of the ellipse, we generate approxima-
tions to the distance function via multiplication with auxiliary polynomials,
such that (2) is satisfied at the origin.

Figure 16 shows the level sets δ = 0.05 and δ = 0.1 of the error (4) for
various degrees of the auxiliary factor. It can be seen that the accuracy of
the approximation to the signed distance function improves by using higher
degrees. We conjecture that the error can be made arbitrarily small at all
points which are closer to the origin than the evolute of the curve segment.
These points are contained in the circle in Figure 15.

The blending procedure used in the four DFA algorithms does not increase
the error, since it is based on a convex combination.

5.3 Distance function error and the step–size

Finally we study the influence of the step–size (the distance between adja-
cent transversal lines). A first example is shown in Figure 17, which compares
the piecewise rational approximations of the distance function obtained by
algorithm Enhanced Smooth DFA with n = 0 before (left) and after (right)
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Fig. 16 Starting from left: The error of the approximated distance function using
polynomial factors of degrees 0, 1, 3 and 5. The vertical and the horizontal axes
correspond to the parameters (t, d) in (3). The dashed line is the graph of d = 1/κ,
which corresponds to the evolute of the curve. The parameterization (3) is singular
there.

adding transversal lines. Using more transversal lines improves the distribu-
tion of the level sets of the rational approximation of the signed distance
function along the curve.

Fig. 17 Distance function approximation (black) and exact (grey), before (left)
and after (right) adding new lines (dashed)

In order to analyze this phenomenon, we choose again a parameterization
p(t) of the given curve and consider the length L of the gradient of the
rational approximation of the distance function along this curve,

L(t) = ||∇G(x, y)||

∣

∣

∣

∣

(x,y)=p(t)

. (5)

Figure 18 compares the smooth DFA obtained by using constant and linear
factors, with 1, 2, 4 and 8 segments. Reducing the step–size decreases the
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deviation from the (ideal) value 1 one the gradient length. In the case of
constant factors, L matches the exact values (i.e., 1) at the parameters that
correspond to the transversal lines, and for linear factors it also matches the
first derivatives (i.e., 0). It is expected that the deviation ||L− 1||∞ behaves
as hn, where n is the degree of the auxiliary factors, and h is the step-size.
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Fig. 18 Gradient length ||∇G|| along the curve for decreasing step size, using
constant (left) and linear (right) factors.

6 Numerical vs. graphical results

Throughout the paper, we used the same example to illustrate the proposed
ideas. Due to space limitation and the size of equations, all results were
presented graphically. In this section we provide some numerical values for
one segment of this curve, see Figure 19. All computations used floating point
numbers (note that many square root computations were needed).

PSfrag replacementsG1

G2

L̄1

L̄2

L

Fig. 19 Distance function approximation of the middle segment of the curve in
Fig. 2

– The given curve is a polynomial curve of degree 10.
– After the preprocessing steps, Section 2 we obtain two quadratic segments

with control points [8.2, 7.1], [9.2, 7.2], [10.2, 6.8] and [10.2, 6.8], [11.2, 6.3],
[10.8, 5.2]. Implicitization gives: G1(x, y) = 8.3061+2.3697 y−5.8337 x+
0.3374 x2 and G2(x, y) = −52.211 − 1.5847 y + 5.5791 x − 1.8154 xy +
0.44273 x2 + 1.8611 y2.

– We choose the transversal line L = y + 16.27355− 2.26351 x (solid grey
in the figure) and apply Algorithm 3. The joining polynomial factors are
f1 = 15.389 − 8.3368 x + x2 + xy − 14.781 y − 0.79714 y2 and f2 =
−226.90 + 25.476 x − 0.6735 x2 + xy − 18.783 y − 0.37794 y2. The two
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segments Ḡ1(x, y) = G1(x, y) f1(x, y) and Ḡ2(x, y) = G2(x, y) f2(x, y)
are C1 along the transversal line L.

– We introduce two transversal lines L̄1 = y + 25.31258 − 3.32888 x and
L̄2 = y + 0.36392 − 0.61775 x (dashed gey in the figure). Algorithm
5 with n = 1 gives λ1 = 0.6685 − 0.03039 x + 0.00436 y and λ2 =
0.237933 + 0.011680 x − 0.2121 y.

– We compute

φ =
λ1 L̄2

2 + λ2 L̄2
1

L̄2
1 + L̄2

2

.

The bivariate rational functions φ Ḡ1 and φ Ḡ2 can be joined along L to
form a C1 continuous function which approximates the signed distance
function.

7 Conclusions

This paper presented four algorithms for finding an approximate implicit rep-
resentation for a given suitable planar parametric curve g(t). The computed
implicit representation is a continuous or a C1 smooth piecewise rational
approximation of the signed distance function to the curve. The algorithms
are computationally simple, since all computations act locally. As a matter
of future research, one may generalize them to the surface case.

Among many possible applications, the proposed methods can be used
to compute the bisector of two planar curves. This bisector, which consists
of the centers of all circles which touch the two curves, are closely related to
the so–called medial axis [1,6].

If two functions F̂ (x, y), Ĝ(x, y) approximate the signed distance func-
tions of two curves f(t), g(t), then the implicitly defined curves defined by

F̂i(x, y) ± Ĝj(x, z) = 0 describe an approximation of the bisector curves. A
first example is shown in Fig. 20.
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Fig. 20 Bisector approximation via approximation of the signed distance function.
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