Piecewise approximate implicitization:
Experiments using industrial data

Mohamed F. Shalaby!, Jan B. Thomassen??3, Elmar M. Wurm?,
Tor Dokken? and Bert Jiittler!

! Institute of Applied Geometry, Johannes Kepler University, Altenberger Str. 69,

4040 Linz, Austria; www.ag. jku.at, Email: firstname.lastname@jku.at

2 SINTEF ICT, P.O. Box 124 Blindern, N-O314 Oslo, Norway;
www.math.sintef .no, Email: [Jan.B.Thomassen|Tor.Dokken] @sintef.no

3 Center of Mathematics for Applications, P.O.Box 1053 Blindern, N-0316 Oslo,
Norway; www.cma.uio.no, Email: jan.b.thomassen@cma.uio.no

Summary. We compare several methods for approximate implicitization by piece-
wise polynomials which have been developed by the authors, and a linear-algebra-
based numerical method for implicitization which is provided as a part of MAPLE.
We investigate both quantitative criteria (such as computing time, memory use,
and the error of the approximation) and qualitative criteria. As demonstrated by
the results, piecewise approximate implicitization is able to handle surfaces arising
in industrial applications. However, special care has to be taken to avoid additional
branches and unwanted singularities.

1 Introduction

Parametric representations, such as NURBS surfaces, are used in most CAD
systems see [Far02]. The parametric representation offers a number of ad-
vantages, e.g., simple techniques for display and for analyzing the geometric
properties. On the other hand, implicitly defined surfaces are better suited
in many applications, such as surface fitting (possibly subject to shape con-
straints, such as convexity) and the possibility of defining solids. In many
applications, such as the computation of intersection and the detection of
possible self-intersections, it is advantageous to combine both types of repre-
sentations [Lee99, Tho05].

In order to exploit the potential of implicit representation, methods
for conversion to and from implicit form are needed. The process of im-
plicitization has been discussed by several authors. Various exact meth-
ods, such as resultants, Groebner bases, moving curves and surfaces exist
[Cox97, Cox98, Cox99, Elk04, Hof93, Sed95, Veg97]. More recently, a number
of approximate methods [Chu89, Dok01, Dok03, Jiit03] have emerged. They
form a valuable alternative to the exact techniques.

2 M. Shalaby et al.

Several computational techniques for approximate implicitization of sur-
faces by a single algebraic surface have been compared in [Wur05]. However,
for more complicated input surfaces, the approximation by a single algebraic
surface is no longer feasible. In these cases, surfaces of relatively high degree
would be needed, which may not be of much use for applications. In addition,
the use of such surfaces would lead to numerical problems. Consequently, the
use of piecewise polynomial representations (i.e., splines) is more appropriate.

This paper presents a feasibility study for two methods for approximate im-
plicitization by piecewise polynomials. The two methods are the scattered data
fitting method developed at Linz (‘PPL’) , and the sampling-based method
developed at SINTEF (‘PPS’). We restrict ourselves to the approximate im-
plicitization of surfaces, since this case is more important for applications. Our
results are based on work we have done in connection with the EU project
GAIA 1II.

The feasibility study is performed by applying the algorithms to two sets
of “academic” and industrial test surfaces. The “academic” surfaces were con-
structed in the course of testing and developing the algorithms, while the in-
dustrial surfaces were supplied by the CAD vendor think3, which is a partner
in the GAIA II project.

We follow a procedure similar to [Wur05], where benchmarking for implici-
tization by polynomials has been presented. The input was a single parametric
patch while the output was a single polynomial implicit function. In this paper,
we have generalized this to the case of piecewise polynomials. Consequently,
we can now deal with much more complicated surfaces. The approach enables
piecewise surfaces — i.e., NURBS surfaces — as input, and piecewise polyno-
mial implicit functions as output. In addition to studying the feasibility, the
two methods are qualitatively compared to each other.

Some of the test surfaces are given in terms of a single polynomial patch,
and for this data it is possible to apply the implicitize routine implemented in
MAPLE (‘ML’) and the previously studied single polynomial implicitization
algorithm from SINTEF (‘PS’) [Wur05]. For these test cases we have been
able to compare all four methods (PPL, PPS, ML, PS), and thereby study
the effects of using implicit functions that are piecewise polynomial.

This paper is organized as follows. Section 2 gives a short outline of the
four methods of implicitization. Section 3 describes the test surfaces we have
used in our experiments. In section 4, we comment on the parameters we are
measuring in our experiments — time, memory usage, and approximation error
— and specify how we made the measurements. The results are presented in
section 5. In section 6 we give a qualitative analysis, and finally, in Section 7,
we give a conclusion.

Piecewise approximate implicitization 3
2 The methods

In this Section, we describe the four methods used for approximate impliciti-
zation. Only the first two of them (PPL and PPS) are relevant for piecewise
implicitization. The two additional methods (PS and ML) are included in
order to study some effects of using piecewise polynomials instead of just a
single polynomial.

All methods produce an approximate implicit representation of the form

flx,y,2) = Z@(ﬁc,y,z)q (1)
JjeET

with certain coefficients c¢; € R and finite index set 7. In the case of PPL and
PPS, the basis functions ¢;(z,y, z) are trivariate tensor-product B-splines.
Consequently, the output is a three-dimensional array of B-spline coefficients,
along with three knot vectors. In the case of PPL, the array is sparse, and dy-
namical data structures may therefore be used in order to exploit the sparsity.
PS and ML use a suitable basis of trivariate polynomials, such as Bernstein
polynomials on a tetrahedron or tensor-product Bernstein polynomials.

Note that none of these methods takes care of approximating the boundary
curves (e.g., by clipping surfaces). This may be a subject of further research.
Also, the use of hierarchical spline spaces (such as T-splines) should lead to a
further improvement of the method.

2.1 PPL

This method for approximate implicitization by piecewise polynomials has
been developed at Linz [Jiit02]. It is characterized by the simultaneous ap-
proximation of sampled point data p; = (z;, yi, z:), ¢ € Z, and estimated unit
normals n; at these points.

If no other information is available (e.g., from a given parametric or pro-
cedural description of the surface, then each normal vector n; is estimated
from the nearest neighbors of the point p; = (x;,¥;, 2;). In addition, a region-
growing-type algorithm is used for adjusting the orientation of the normal
vectors.

In order to control the shape of the resulting surface, an additional tension
term is optimized. It pulls the approximating surface towards a simpler shape.
A possible quadratic tension term is

T(c)=/// 2 i e+ 242 fL 4+ dedyde. (2)
2

By increasing the influence of this tension term, the resulting surface becomes
more similar to a plane.

The implicit function is obtained as the minimum of a convex quadratic
objective function

4 M. Shalaby et al.

Z f(ﬂ%, Yi, Zi)Q + ’LU| |Vf(IZ, Yi, ZZ) - ni”2 =+ “tension”, (3)
€T

where w is a positive weight. The weight controls the influence of the estimated
normal vectors n; to the resulting surface. As observed in our experiments,
increasing the weight can be used to ‘push away’ unwanted branches of the
surface.

This method is fully general, i.e., it can be applied to any space of func-
tions, not only to piecewise polynomials. For practical applications, however,
fast evaluation of basis functions is important. For this reason we implemented
the algorithm for trivariate tensor-product B-splines. In this case, the basis
functions ensure global smoothness, and the resulting system of linear equa-
tions is sparse.

The domain of interest is divided into cubes of the same size. This is done
by specifying a cell-size. In order to guarantee an integer number of cells, the
bounding box of the input surface is enlarged a bit. We consider only the
cubes which contain data, and its neighbors. We named it as “active cells”.
The domain of the spline functions consists only of the active cells.

Another input parameter is the degree d of the spline function. We choose
the knot vector with simple knots in the interior, so the continuity is C?~*. The
choice of the degree d depends on the singularities of the given curve/surface.
Singularities can be reproduced by the algebraic approximation, provided that
a sufficiently high degree is employed in the algebraic approximation. For
example, in 2D, in order to represent a double point, one has to use degree
three or higher. See also the discussion in Section 6.2, which addresses the
conflict between pushing away unwanted branches and avoiding singularities.

Due to the compact support of the B-splines, the implementation is rela-
tively fast because of the sparsity of the resulting linear system of equations.
Consequently, even complicated singular surfaces can be implicitized. In this
case, it is an important issue to create a consistent orientation of the (es-
timated) normals n;, and this can be achieved by a propagation technique
[Jiit03]: First, an initial approximation is computed using only information
from one part of the data, where a consistent orientation could be created
without ambiguities. The result is then used to propagate the orientation
of the normals to the neighboring segments of the data. The details of this
method are described in [Jiit02, Wur05, Sir05]. A fast implementation of the
method is important, since is then feasible to iterate this process, for orienta-
tion propagation and for adjusting the estimated normals.

2.2 PPS

The piecewise polynomial approximate implicitization algorithm made at
SINTEF is a generalization of the polynomial SINTEF algorithm from [Dok03,
Wur05]. Essentially, it is a generalization in two ways: First, it produces a
piecewise polynomial implicit function, more specifically a trivariate tensor

Piecewise approximate implicitization 5

product B-spline function. The three knot vectors of the B-spline function are
obtained by dividing the bounding box of the input surface into n x n X n
cells, where n is a user-defined integer, and adding d additional knots at the
boundaries (where d is the degree d of the spline function). This gives inter-
polating boundary conditions. The knot vector is chosen with simple knots in
the interior, hence the continuity equals C91.

The second generalization is the use of point sampling on the input surface.
Thus a linear system of equations is set up such that each point defines a row
in the matrix of the equation,

(@i, v, 2i) = Z & (i, Yi,2i)c; =0, €. (4)

€T

Points are sampled according to a uniform grid in the parameter domain. The
density of the points in the parameter domain is chosen large enough such
that the matrix equation is over-determined. From experimenting with the
algorithm, a good choice for the number of points in the algorithm was found
to be roughly two times the number of coefficients in the implicit function.
Thus, if M x N denotes the dimensions of the matrix ®;; = ¢;(z;, ys, 2:), we
have M ~ 2N.

The rest of the algorithm proceeds essentially in the same way as the
polynomial version [Dok03, Wur05): We get a matrix, and we want to find a
suitable vector in an approximate null space of this matrix. This is done by
SVD, and the resulting approximate nullvector will be the vector of coefficients
for the implicit spline function. Special care must be taken to ignore vectors
belonging to singular values that are exactly zero. Such singular values appear
in general because some cells in the rectangular space grid are outside the
support of the relevant basis functions, and this produces columns of zeros in
the matrix. We remove these columns before we run the SVD. We also take
the square of the matrix @, i.e. we use ®7'®, which further reduces the size
of the matrix from M x N to N x N before SVD is applied. The coefficients
corresponding to the original zero columns are subsequently arbitrarily set to
Zero.

The input parameters to this algorithm, in addition to the surface, are
the degree of the spline approximation and the number of grid cells in each
direction.

2.3 PS

This method is the single polynomial approximate implicitization method
developed at SINTEF, which is also based on singular value decomposition
(SVD). A description can be found in [Dok03].

In brief, we insert the parametric surface into an implicit polynomial func-
tion of chosen degree and with unknown coeflicients. This results in the fac-
torization

6 M. Shalaby et al.

f(x(u,v)) = &(u,v)" De, ()

where @ is a vector of basis functions (bivariate tensor-product Bernstein poly-
nomials) and ¢ contains the unknown coefficients of f. In addition, it contains
a certain matrix D, which depends on the given surface. The coefficients of
the implicit representation are then found as the eigenvector corresponding
to the smallest singular value of that matrix. The only input parameter is
the degree of the implicit function. For this we have either used the exact
degree, or, if the exact degree is too high, a relatively low degree to produce
an approximation. We have found d = 5 to be a good choice.

2.4 ML

The ‘implicitize’ routine in MAPLE is based on the algorithm described in
[Cor00], which relies on numerical linear algebra. Again, the parametric sur-
face is inserted into an implicit function of a chosen degree and unknown
coefficients. The implicit approximation then is found by minimizing the in-
tegral of the resulting parametric function over the given parametric domain,
with respect to the unknown coefficients. The eigenvector associated with
the smallest eigenvalue of a certain matrix has to be computed. In order to
generate this matrix, several integrations have to be performed.

3 Test cases

Piecewise approximate implicitization methods work for both curves and sur-
faces. In the sequel we consider only the surface case, since it is more inter-
esting for applications, and — unlike curves — many surfaces are not accessible
for exact implicitization techniques.

The test cases used in benchmarking the algorithms can be divided in two
groups. The first group contains “academic” examples, which were constructed
at SINTEF and Linz in order to help developing the algorithms and to display
essential features like singularities and self-intersections in a relatively simple
setting. The second group consists of industrial examples, provided by CAD
vendor think3 (a partner in the GAIA II project).

The surfaces are visualized and described in Fig. 1 and Fig. 2. The tables
in these figures give a short description of the various test cases, along with
short motivations for choosing these examples.

The industrial surfaces have been generated using geometrical operations
such as sweeping, which may create severe problems with self-intersections.
Some of these example have already been used in [Wur05]. In this paper, we
focus on the more complicated industrial examples, which could not be dealt
with previously.

Piecewise approximate implicitization

/&%

Looped patch Nested nodal Quartic surface
surface

Surface_7x7 Surface_6x5

Surface Degree Description

Looped patch (3,1) Self-intersecting. It is the simplest type of surface
with this property.

Nested nodal (3,3) Doubly self-intersecting. The bi-degree of the

surface Bézier representation suggests an exact implicit
representation of degree 2 x 3 x 3 = 18, but due to
reflection symmetries the correct degree is 6.

Quartic surface (3,2) Surface with self-intersection curves and a cusp-
like singular point. As with the ‘nested nodal sur-
face’ the correct implicit degree is reduced, in this

case to 4.

Surface_7x7 (7,7) High degree oscillating patch without singularities.
The theoretical algebraic degree of this surface is
2x7x7=098.

Surface_6x5 (6,5) Self-intersecting patch. A self-intersecting curve is

moved in space and at the same time bent. The
theoretical algebraic degree of this surface is 2 x
6 x 5 =60.

Fig. 1. Academic test surfaces

8

M. Shalaby et al.

Self_ucurves

Simplesweep Self_sweep

Self_pipe

Self_proport

Surface

Degree Description

Self_ucurves

Simplesweep

Self_sweep

Self_pipe

Self_proport

(4,2)

(4,3)

(12,1)

Surface with a closed self-intersection curve. Two
points on this curve are cusp-like singularities. Ef-
fectively, the degree of the exact implicit represen-
tation for this surface is 8. The surface is obtained
by blending a curve segment with a node between
two non-self-intersecting curves.

Self-intersecting. The exact implicit representation
has degree 6. The surface is obtained by “sweep-
ing” between a piece of a node and a piece of a
parabola.

The surface is generated by sweeping a line with
constant draft angle along a planar curve. It con-
sists of 8 patches each of degree (12,1) connected
with C? continuity.

The surface is generated by sweeping a circular
section along a curve. It consists of 2310 bicubic
patches connected with C? continuity.

The surface is a general sweeping surface. It is
obtained by sweeping a curve (drive) along an-
other curve (boundary). It consists of 1824 bicubic
patches connected with C? continuity.

Fig. 2. Industrial test surfaces (data courtesy of think3)

Piecewise approximate implicitization 9

4 Quantitative criteria

The three main criteria for the comparison are the computing time, the mem-
ory needed by the algorithms being tested, and errors measured for the re-
sulting implicit surface.

The quoted time is an approximation of the processor time used by the
program, and similarly for the memory. These quantities, in the case of PPL,
PPS and PS, were measured with standard Linux tools (time and top). In
the case of ML the ‘profile’ procedure of MAPLE was used.

For the error measurements, we consider a set of points p; on the paramet-
ric surface and compute their Euclidean distances with respect to the implicit
surface, using a Newton-like iteration procedure. In order to get a scale inde-
pendent measurement, we divide this by the length L of the shortest side of
the bounding box of the parameterized surface. In a nutshell, the value listed
for the error is a scaled version of the average Euclidean distances of the
sampled points p; from the implicit surface. The computation via footpoint
computation is conservative, hence it will overestimate the real error.

Clearly, the average footpoint distance does not reflect the reproduction
of singularities. A suitable error measure for singularities, which seems to be
currently unknown, would therefore be interesting.

All tests were performed on standard hardware. Both PPL and ML were
run on a computer with an Intel(R) Xeon(TM) CPU 2.40GHz, while the PPS
and PS were tested on an Intel Pentium IV 2.80 GHz processor. Both systems
had (approximately) the same operating system (Linux) and working memory.
According to the CPU benchmark tests [Hav05], both systems have almost
the same performance.

5 Results

For implicitizing multi-patch parametric surfaces, the two piecewise approx-
imate implicitization methods that are relevant are PPL and PPS. Even in
the case of single patch parametric surfaces, which can be handled with single
polynomial methods (ML, PL), these piecewise methods are able to produce
an algebraic representation of lower degree.

Both the PPL and PPS take as input the degree of the B-spline and
information about the number of cells in the input data bounding box. In
the case of PPL, the cell size is specified and the input data bounding box is
enlarged a bit in order to fit an integer number of cubic cells. In the case of
PPS, the input data bounding box is subdivided into n? cells, where n is a
user-defined integer.

The results given in Tables 1 were computed using cubic B-splines. For
both algorithms, almost the same “total” number of cells were used. However,
as described in Section 3, PPL considers only the “active cells”. Their number

M. Shalaby et al.

10

Example Degree PPL PPS Degree ML PS
(#Points for PPL) for # Active| Time Error ||# Cells| Time |Error for Time Time |Error
PPL&PPS|| Cells | Memory Memory ML&PS|| Memory [|Memory
Looped patch 3 84 3.72 sec. [0.000168|| 216 |[9.7 sec. | 0.02 3 4.64 sec. ~0 ~0
(2250) 18.41 MB 11 MB 11.75 MB || 0.9 MB
Nested nodal surface 3 101 6.96 sec. |0.005170|| 216 |6.9 sec. |0.029 6 48.76 sec. ||0.16 sec.| ~ 0
(2500) 17.90 MB 5.2 MB 45.79 MB || 1.3 MB
Quartic surface 3 168 5.52 sec. |0.000455|| 216 10 sec. |0.003 4 9.64 sec. |[0.01 sec.| ~0
(2500) 31.32 MB 9.3 MB 15.31 MB || 0.9 MB
Surface_7x7 3 93 4.70 sec. [0.000235|| 216 |9.9 sec. [0.008 5 failed 0.6 sec. [0.0249
(2500) 24.40 MB 12 MB 1.5 MB
Surface_6x5 3 111 4.35 sec. |0.000572|| 216 |8.7 sec. |0.013 5 126.99 sec. || 0.2 sec. |0.0161
(2500) 12.44 MB 8.5 MB 30.35 MB || 1.3 MB
Self_ucurves 3 154 4.77 sec. [0.000210|| 216 |7.8 sec. | 0.01 8 206.99 sec.||1.38 sec.| ~ 0
(2500) 30.70 MB 8.6 MB 129.95 MB|| 1.8 MB
Simplesweep 3 178 5.91 sec. |0.000026|| 216 12 sec. |0.008 6 30.14 sec. ||0.25 sec.| ~ 0
(2500) 38.02 MB 13 MB 47.98 MB || 1.2 MB
Self_sweep 3 168 6.34 sec. [0.002690|| 216 |[13.3 sec.|0.025 failed failed
(2500) 36.57 MB 14 MB
Self_pipe 3 174 5.28 sec. [0.002740(] 216 |16.7 sec.|0.055 failed failed
(2500) 30.64 MB 17 MB
Self_proport 3 172 6.29 sec. |0.004991|| 216 |16.9 sec.|0.035 failed failed
(2500) 37.68 MB 16 MB

Table 1. Result for the academic (upper part) and industrial (lower part) surfaces.

Piecewise approximate implicitization 11

is listed separately in the table. For PPL we list also the number of sampled
points for each test case.

The results of PPL and PPS , see table 1, show that piecewise approximate
implicitization is feasible. For all test cases, a tensor B—spline of degree (3 x 3 x
3) are used. For both algorithms, the implicitization is performed in reasonable
time, with reasonable memory usage, and with relatively small error. There
are some small differences between the algorithms.

The results of ML and PS are also shown in the same table. Both methods
take a parametric surface in terms of a single polynomial patch and a chosen
degree of the implicit representation as input. Hence some analysis of the
problem is required prior to performing an implicitization. The methods may
fail if the chosen degree was too low /high compared with the exact one.

The first three academic test cases and the first two industrial cases in table
1 were computed using the exact algebraic degree. In this case, PS computes
the exact implicit equation. ML, using the ‘numerical’ option, was able to
compute an approximation within tolerances.

For the test cases Surface_7x7 and Surface_6x5 the exact algebraic degrees
are too high. We computed these two examples using degree 5, for PS & ML,
as the degree of the implicit representation. ML, in the case of Surface_7x7,
failed to give an implicit representation due to the low degree specified. Both
methods, PS & ML cannot handle multi-patch parametric surfaces, and they
therefore fail to compute the last three test cases in table 1.

In order to demonstrate the feasibility of the methods, we plot the implicit
surface for two selected test cases: Quartic surface and Self_pipe, see Fig. 3.
PPL is able to generate surfaces without additional branches (cf. Fig. 3).

6 Qualitative comparisons

Finally we discuss some properties of the four techniques. Since pushing away
unwanted branches is the most important issue, we dedicate a separate sub-
section to this subject.

6.1 General criteria

e Both PPL and PPS are able to handle general surfaces. Consequently,
they can also be used to implicitize procedurally defined surfaces, since
they only need samples of points. In contrast, PS and ML can be applied
only to parametrically defined rational surfaces (patches of NURBS).

e Both PPL and PPS are able to compute an approximate implicitization
for all test cases with reasonable error.

e In the case of one-patch parametric surfaces, PS (and similarly PPS) is
able to reproduce the exact implicitization (within tolerances) if the exact
degree is chosen. ML reproduces the exact implicitization if the symbolic

12

M. Shalaby et al.

Quartic surface (PPL) Self_pipe(PPL) Cut-away view of
Self_pipe (PPL)

Quartic surface (PPS) Self_pipe (PPS)

Fig. 3. Results (PPL, PPS)

integration option is used. Using this option the computation is extremely
slow. For our test cases, we used the numerical option.

PPL does not reproduce the exact implicit representation, since it approx-
imates not only the points, but also the estimated unit normals.

In the case of spline surfaces, the notion of an exact implicitization does
not make much sense. In the case of one-patch parametric surface, PS is
the fastest and the most accurate method.

For both PPL and PPS one may increase the number of segments and use
a low degree, while maintaining the same level of accuracy. A trivariate
tensor-product spline function with k inner knots in each direction has
(k + 1)3 cells/segments and (k + d + 1)® scalar coefficients. In practice,
however, it is more important how many of the cells are aligned with the
surface (‘active cells’), and the number of degrees of freedom will be more
in the order of (k+ d+ 1)? (but depends on the geometry of the surface).

Piecewise approximate implicitization 13

e All methods need the degree as an input parameter. In addition, both PPL
and PPS need information about the number (or size) of the cells.
Currently, PPL is faster and more accurate than PPS for all test cases.
In order to implicitize with piecewise polynomials, it is necessary to regu-
larize the problem, since cells without or with only a small number of data
may cause numerical problems. In the case of PPL, this was achieved by
introducing an additional tension term. It is possible to develop (semi-)
automatic techniques for adjusting the influence of this term.

6.2 Avoiding unwanted branches and the reproduction of
singularities

All methods may produce unwanted branches of the surfaces, and possible
additional singularities. The latter ones can be detected by analyzing the sin-
gular points of the implicitly defined surface, along the parametric surface.
If one of these singular points corresponds to only one point on the para-
metric surface, which is not singularly parameterized, then it is an additional
singularity, which was produced by the implicitization process.

PPL provides two possibilities for pushing away these branches away from
the desired part of the surface. First, they can be avoided by exploiting the
simultaneous approximation of points sampled from the surface and the asso-
ciated unit normals. By increasing the number of sampled points and/or the
weight w in the objective function, the result of the approximation can be
modified so as to become more similar to the signed distance function of the
surface. Second, the tension term (3) can be used to avoid these unwanted
branches. However, this term tends to flatten the implicitly defined surface,
and it may therefore lead to poorer approximations.

It is hoped that an improved version of PPS can achieve similar effects
by taking the results for more than one singular value into account. This is
subject of on—going research.

The two goals of reproducing singularities and avoiding unwanted branches
are often in conflict with each other. This is illustrated by Fig. 4, which
shows two approximate implicitizations of the ‘nested nodal surface’. The
piecewise polynomial approximation (left) has no unwanted branches, but
the reproduction of the singularity is rather poor. On the other hand, the
implicitization by a single high degree polynomial produces many unwanted
branches, but it reproduces the double lines very well.

7 Conclusion
We have compared several algorithms for approximate implicitization by poly-

nomials and by piecewise polynomials. As demonstrated by the results, in-
dustrial data needs piecewise polynomials; in order to generate well-defined

14 M. Shalaby et al.

Fig. 4. Reproducing singularities vs. avoiding unwanted branches.

implicit representations of low degree. It was shown that approximate im-
plicitization of real-world surfaces is possible in reasonable time on standard
hardware. Further research will focus on the important issue of avoiding un-
wanted branches and additional singularities.

Acknowledgment. This research has been supported by the European Com-
mission through project IST-2001-35512 ‘Intersection algorithms for geometry
based IT-applications using approximate algebraic methods’ (GAIA II).

References

[Chu89] Chuang, J., Hoffmann, C.: On local implicit approximation and it’s ap-
plications. ACM Trans. Graphics 8, 4:298-324, (1989)

[Cor00] Corless, R., Giesbrecht, M., Kotsireas, I., Watt., S.: Numerical implici-
tization of parametric hypersurfaces with linear algebra. In: AISC’2000
Proceedings, Springer, LNAT 1930.

[Cox97] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, Springer,
New York 1997.

[Cox98] Cox, D., Little, J., O’Shea, D,: Using algebraic geometry, Springer Verlag,
New York 1998.

[Cox99] Cox, D., Goldman, R., Zhang, M.: On the validity of implicitization by
moving quadrics for rational surfaces with no base points, J. Symbolic
Computation, 11, (1999)

[Dok01] Dokken, T.: Approximate Implicitization, in: Lyche, T., Schumaker, L.
(eds.), Mathematical methods in CAGD, Nashboro Press, 2001, 1-25.

[Dok03] T. Dokken and J. Thomassen, Overview of Approximate Implicitization,
in: Topics in Algebraic Geometry and Geometric Modeling, AMS Cont.
Math. 334 (2003), 169-184.

[Dok05] Dokken, T., Thomassen, J.: Weak approximate implicitization, submitted
to these proceedings.

[Ek04] Elkadi M., Mourrain B.: Residue and Implicitization Problem for Ra-
tional Surfaces, Applicable Algebra in Engineering, Communication and
Computing, (2004), 361-379.

[Far02]

[Hav05]
[Hof93]

[Jiit02]
[Jiit03]
[Lee99]
[ThoO05]
[Sed95]
[Sir05)

[Veg9T]

[Wur05]

Piecewise approximate implicitization 15

Farin, G.: Curves and Surfaces for Computer Aided Geometric Design,
Academic Press, 2002.

PoVRAY Benchmarks, http://new.haveland.com/povbench/graph.php
Hoffmann, C.: Implicit Curves and Surfaces in CAGD, Comp. Graphics
and Applics. 13:79-88, (1993)

Jiittler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces,
Advances in Computational Mathematics 17:135-152, (2002)

Jiittler, B., Wurm, E.: Approximate implicitization via curve fitting, in
L. Kobbelt, P. Schréder, H. Hoppe (eds.), Symposium on Geometry Pro-
cessing, Eurographics / ACM Siggraph, New York 2003, 240-247.

Lee, K.W.: Principles of CAD/CAM/CAE Systems, Prentice Hall, 1999.
Thomassen, J., Self-intersection problems and approximate implicitiza-
tion, in: Dokken, T., Jiittler, B. (eds.), Computational Methods for Alge-
braic Spline Surfaces, Springer, Berlin 2005, 155-170.

Sederberg, T., Chen F.: Implicitization using moving curves and surfaces.
Siggraph 1995, 29:301-308, (1995)

Sir, Z.: Fitting of Piecewise Polynomial Implicit Surfaces, Proc. of the
24rd Conference on Geometry and Computer Graphics, Ostrava, in press.
Gonzalez-Vega, L.: Implicitization of parametric curves and surfaces by
using multidimensional Newton formulae. J. Symb. Comput. 23(2-3), 137-
151 (1997)

Wurm, E.; Thomassen, J., Jiittler, B., Dokken, T.: Comparative Bench-
marking of Methods for Approximate Implicitization, in: Neamtu, M., and
Lucian, M. (eds.), Geometric Design and Computing, Nashboro Press, in
press.

