
Evolution of T-spline Level Sets with Distance Field Constraints
for Geometry Reconstruction and Image Segmentation

Huaiping Yang†, Matthias Fuchs‡, Bert J̈uttler† and Otmar Scherzer‡
†Johannes Kepler University Linz,‡University of Innsbruck

{yang.huaiping,bert.juettler}@jku.at, {matz.fuchs,otmar.scherzer}@uibk.ac.at

Abstract

We study the evolution of T-spline level sets (i.e, im-
plicitly defined T-spline curves and surfaces). The use of
T-splines leads to a sparse representation of the geometry
and allows for an adaptation to the given data, which can
be unorganized points or images. The evolution process is
governed by a combination of prescribed, data-driven nor-
mal velocities, and additional distance field constraints. By
incorporating the distance field constraints we are able to
avoid additional branches and singularities of the T-spline
level sets without having to use re-initialization steps. Ex-
perimental examples are presented to demonstrate the ef-
fectiveness of our approach.

Keywords: T-spline, level sets, unorganized points, image
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1 Introduction

Implicitly defined curves and surfaces, i.e., curves and
surfaces which are described as the zero set of a scalar field,
have found numerous applications in Shape Modeling and
Geometric Computing. They have been used for geomet-
ric modeling [4, 12], for object reconstruction from unorga-
nized points [3, 8, 16, 17] and for improving the robustness
of algorithms for computing surface-surface intersections
[6]. Depending on the area of the application, different rep-
resentations of the underlying scalar fields have emerged.
These include functions obtained by hierarchically combin-
ing simpler ones [4], representations based on radial basis
functions [3], spline functions [8, 6, 12, 16], to grid–based
discretizations [17].

For various problems in image processing, many ap-
proaches are based on theevolution processesgenerating
time–dependent families of curves (and similarly for sur-
faces) by an implicit velocity field in the direction of its
normals. One example of this evolution is used for segmen-
tation. Kass et al. [9] proposed ‘snakes’, or active contours,

for boundary detection. They compute the boundary curve
of a given 2D object by minimizing an energy functional in
a space of admissible curves. Caselles et al. [5] proved that
this problem can be transformed to the problem of comput-
ing a geodesic curve in a Riemannian space with a metric
determined by the image data. Solving this problem us-
ing the steepest-descent method leads to an curve evolution
equation.

For implicitly defined curves and surfaces, one may for-
mulateevolution processesusing thelevel set approachof
Osher and Sethian [11]. As a major advantage in certain
applications, where the topology is not known a priori, the
level-set representation is parameter–free and it intrinsically
adapts to topological changes during the evolution. Conse-
quently, one can detect complex topological structures, such
as objects consisting of multiple components, without using
prior knowledge.

The problem of geometry reconstruction from point data
clouds involves similar equations. Zhao et al. [17] present
a convection model to compute an implicit surfaceS that
minimizes a global distance function to the input data set.
Allegre et al. [2] translates the convection scheme into
Computational Geometry terms.

While typical implementations of level set evolutions
rely on grid-based discretizations of the domain, this pa-
per proposes to represent the functionf by a bivariate or
trivariateT-splinefunction (see [13]). On the one hand, due
to the use of a piecewise rational scalar field, the result-
ing zero level sets are algebraic spline curves and surfaces,
which can be pieced together with any desired level of dif-
ferentiability. On the other hand, the use of T-splines leads
to a sparse representation of the geometry, which can, how-
ever, be refined locally, adapting the numbers of degrees of
freedom to the particular data.

The remainder of the paper is organized as follows. The
next section defines implicit T-spline curves and surfaces.
Section 3 formulates the evolution process for these geom-
etry representation. In particular, it is shown how to incor-
porate a distance field constraint, which makes it possible
to avoid (possibly time–consuming) renormalization steps.



The fourth section applies evolution of T-spline curves and
surfaces to the problem of geometry reconstruction, both
from unorganized point data and images. After presenting
some experimental results in Section 5, we conclude this
paper and discuss future work.

2 T-spline Level Sets

Sederberg et al. [13] generalized non-uniform B-spline
surfaces to so–called T-splines. In this section, we introduce
implicitly defined T-spline curves and surfaces. Let f(x, y)
be a bivariate T-spline function defined over some domain
D,

f(x, y) =
∑n

i=1 ciBi(x, y)∑n
i=1 Bi(x, y)

, (x, y) ∈ D ⊂ R2 (1)

with the real coefficients (control points)ci, i = 1, 2, ..., n,
where n is the number of control points. For cubic T-
splines, the basis functions areBi(x, y) = N3

i0(x)N3
i0(y)

where N3
i0(x) and N3

i0(y) are certain cubic B-splines,
whose are determined by the T-spline control grid (T-mesh).

The zero set of the functionf is defined by

C(f) = { (x, y) ∈ D ⊂ R2 | f(x, y) = 0 }, (2)

and it is called animplicit T-spline curve.
This definition can be easily generalized toimplicit T-

spline surfacesin 3D. Both implicit T-spline curves and sur-
faces are calledT-spline level setsin our paper.

In order to simplify the notation, we usex to uniformly
represent the pointx = (x, y) resp.x = (x, y, z), and gather
the control coefficients (in a suitable ordering) in a column
vectorc. The T-spline basis functions form another column
vectorb = [b1, b2, ..., bn]>, where

bi = Bi(x)/
n∑

i=1

Bi(x), i = 1, 2, ..., n.

TheT-spline level setΓ(f) is defined as the zero set of the
functionf(x) = b(x)>c. For a fixed set of basis functions
b, the T-spline level set is determined by the control coeffi-
cientsc.

Since a T-spline function is piecewise rational, the T-
spline level sets are piecewise algebraic curves and surfaces.
Moreover, if no singular points are present, they inherit the
order of differentiability of the basis functions, i.e., they are
C2 in the cubic case. Derivatives off , which will be needed
for formulating the evolution, can easily be evaluated.

3 T-spline Level Set Evolution

We describe the evolution process of the T-spline level
set, which is driven by normal velocities, combined with an
additional signed distance field constraint.

3.1 Evolution with Normal Velocity

Consider a T-spline level setΓ(f) defined as the zero set
of a time-dependent functionf(x, τ), where

f(x, τ) = b(x)>c(τ), (3)

with some time parameterτ . It will be subject to the evolu-
tion process

∂x/∂τ = v(x, τ)~n, x ∈ Γ(f), (4)

wherev is a scalar-valuedvelocity function(or speed func-
tion) along the normal direction~n = ∇f/|∇f | of Γ. A
short computation gives the evolution equation of T-spline
level sets under the normal velocityv,

∂f/∂τ = −v(x, τ)|∇f |, x ∈ Γ(f). (5)

In our case, however,f is a linear combination of the time-
dependent coefficientsc, see (3). In order to translate (5)
into an evolution equation for the coefficients, we use a
least–squares approach. More precisely, we choose the time
derivative of the T-splinef by solving

E0 =
∫

x∈Γ(f)

(
∂f(x, τ)

∂τ
+ v(x, τ) |∇f(x, τ)| )2ds → Min,

wheres represents the arc length or surface area of the T-
spline level set. For the actual computation, a discretized
version (which can be seen as a numerical integration) is
more appropriate, i.e., we replaceE0 with

E =
N0∑

j=1

(
∂f(xj , τ)

∂τ
+ v(xj , τ) |∇f(xj , τ)| )2, (6)

wherexj , j = 1, . . . , N0 (N0 >> n) is a sequence of sam-
pling points, which are uniformly distributed along the T-
spline level set. Finally, the substitution (cf. Eq. (3))

∂f(x, τ)/∂τ = b(x)>ċ(τ), (7)

where the doṫc indicates differentiation with respect toτ ,
leads to theevolution termE of the T-spline level set,

E =
N0∑

j=1

(b(x)>ċ(τ) + v(xj , τ) |∇f(xj , τ)| )2. (8)

The evolution termE is a non–negative definite quadratic
function of the derivativeṡc,

E = ċ>QE(c) ċ + lE(c)> ċ + kE(c). (9)

The coefficients of this function, which are collected in the
symmetric non–negative definite matrixQE , the vectorlE
and the scalarkE , depend on the coefficientsc and can be
found from (8). It should be noted that the matrixQE(c)
is likely to be singular. In particular, this is the case if the
support of at least one T-spline basis function and the T-
spline level set are disjoint.



3.2 Distance Field Constraint

For most existing level set evolutions, the initial func-
tion f is chosen as an approximation to thesigned distance
functionof its zero level set. But during the evolution,f
will drift away from this signed distance property, and cause
some flat and/or steep regions, which may dramatically de-
crease the accuracy of the computed solution [1]. This moti-
vates the use oflevel set reinitializationto restore thesigned
distanceproperty. However, the re-initialization procedure
is usually relatively expensive (especially in 3D) and has to
be applied frequently.

We will avoid the use of re-initialization by introduc-
ing an additionaldistance field constraint. Recently, similar
techniques have been proposed in the literature [10, 15].

Since an ideal signed distance functionφ satisfies
|∇φ| = 1 everywhere in the domain, we propose the con-
straint term

S0 =
∫

D

(
∂|∇f(x, τ)|

∂τ
+ |∇f(x, τ)| − 1 )2 dx → Min

as a penalty function which penalizes the deviation off
from a signed distance function. If – for some value of the
time parameterτ – the gradient length at some point is less
(resp. greater) than 1, then the time derivative of this length
will be forced to be positive (resp. negative), in order to re-
store the unit gradient property.

Once again, the actual computation is based on a dis-
cretized version. We uniformly sampleN1 pointsyj , j =
1, . . . , N1 (N1 >> n) in the domain of level set function
and use them to derive a discretized version ofS0,

S =
A(D)
N1

N1∑

j=1

(
∂|∇f(yj , τ)|

∂τ
+ |∇f(yj , τ)| − 1)2, (10)

whereA(D) is the area/volume of the domainD.
In our case, the level set functionf has the form (3),

hence the time derivative of the gradient length

∂|∇f(yj , τ)|
∂τ

=
2∇f(yj , τ)
|∇f(yj , τ)| (∇b(yj)

>ċ(τ)) (11)

depends linearly oṅc(τ).
By combining (10) and (11), we may represent the

signed distance field constraint term as a non–negative def-
inite quadratic function of the derivativesċ,

S = ċ>QS(c) ċ + lS(c)> ċ + kS(c). (12)

The coefficients of this function, which are collected in the
symmetric non–negative definite matrixQS , the vectorlS
and the scalarkS , depend on the coefficientsc and can be
found from (10) and (11). According to our numerical ex-
periments, the matrixQS(c) is generally positive definite,

i.e., non–singular, except for very rare special cases (such
as a T-splinef which represents the signed distance func-
tion with respect to a straight line).

3.3 Solving the Evolution Equation

For each evolution step of T-spline level sets, the time
derivativesċ(τ) are computed by minimizing the weighted
linear combination

F (ċ) = E(ċ) + ω S(ċ) → min, (13)

see (8) and (10), with a certain positive weightω. This leads
to a quadratic objective function of the unknown time deriv-
atives ċ = (ċi)i=1,2,...,n. The solutionċ(τ) is found by
solving a sparse linear system of equations,∇F = 0.

We then generate the updated control coefficients

c(τ + ∆τ) = c(τ) + ċ∆τ. (14)

simply by using an explicit Euler step∆τ . The step size
is chosen asmin(1, {C/v(xj , τ)}j=1,...,N0), whereC is a
user-defined value. The traveling distance (approximately
∆τ · v(xj , τ)) of each pointxj on the T-spline level set is
constrained to be (approximately) less than the constantC.

The combination of evolution termE and the signed dis-
tance field constraint termS helps to maintain the signed
distance property of the level set function during its evolu-
tion, without any additional re-initialization steps. Figure 1
illustrates the effects which can be achieved by using vari-
ous weight values ofω. A large value of the weight leads
to a T-spline function which is almost the signed distance
function of a circle (left). On the other hand, a very small
value produces a T-spline level set with additional branches
(right). In between these two extreme situations, a proper
choice of the weight gives the desired result (center).

4 Geometry Reconstruction through Evolu-
tion of T-spline Level Sets

We describe a unified algorithm for solving two prob-
lems: image segmentation (Problem 1), shape reconstruc-
tion from unorganized point data(Problem 2). The recon-
structed geometry (2D curves or 3D surfaces) may have
complex topology, which is unknown a priori. The algo-
rithm takes as input an image data or a set of unorganized
points (possibly with noise), and produces a T-spline level
set approximating the given image contour or unorganized
points with an appropriate number of control coefficients
(control points).

4.1 Outline of the Algorithm

The algorithm can be divided into three stages: initial-
ization, evolution, and refinement. Figure 2 shows the flow



(a)ω = 10 (b) ω = 0.1 (c) ω = 0.01

Figure 1. Influence of the weights ω. The fig-
ures show the graphs of the T-spline function
(top row), the T-spline level set (bottom row,
solid) and the target shape (dotted).

chart. In the initialization stage, the given image data (Prob-
lem 1) is pre-filtered or theunsigned distance field(UDF) of
the given unorganized points (Problem 2) is pre-computed,
e.g., by using the fast marching method [14]. In the 2D
case, we use graphics hardware acceleration [7].

The T-mesh (T-lattice) is automatically generated
through binary-tree (octree) subdivision of those cells con-
taining data points or high gradient image pixels, in order
to adapt it to the input data. Then the T-spline level set is
initialized to be a circle-shaped curve, or sphere shaped sur-
face, containing all data points, or the interesting parts of
the image.

During the evolution stage, the T-spline level set is
evolved towards the desired result step by step, guided by
an intelligent data-driven speed function, until some stop-
ping criteria is satisfied.

4.2 Speed Function

For image segmentation (Problem 1), we use a similar
speed function as that proposed by Caselles et al. [5],

v = g(I)(γ + κ)− (1− g(I))(∇g(I) · ~n) (15)

whereγ is a constant velocity (which is also known as a
balloon force), κ = div(∇f/|∇f |) is the curvature (resp.
mean curvature in the surface case) of the level sets off ,
and g(I) = exp(−η|∇I|2) is an edge detectorfunction,
whereη > 0 is a constant.

This speed function can be easily extended for shape re-
covery from unorganized points (Problem 2):

v = e(d)(γ + κ)− (1− e(d))(∇d · ~n) (16)

whered is the unsigned distancefunction of the unorga-
nized points, ande(d) = 1 − e−ηd2

is another edge detec-

Pre-filter the given  image data or
pre-compute the UDF of PC data.
Generate T-Mesh or T-Lattice.
Initialize the T-spline level set.

Final refinement ( )See 4.3

Stopping criterion
satisfied?

start

done

yes

no

Compute speed function ( )
Solve the evolution equation
Update the T-spline level set

See 4.2 .

.

.
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2

3

Figure 2. Flow chart of the algorithm.

tor function. Note that a discretized version of theunsigned
distancefunctiond is already pre-computed in the initializa-
tion stage, thusd(x) (and∇d(x)) can be efficiently acquired
by bi-linear or tri-linear interpolation from the neighboring
grid points ofx.

In our experiments, all data points are contained in the
bounding box (−1 ≤ x, y, z ≤ 1), and we choseη = 1.

4.3 Final Refinement

In the case of given unorganized data points (Problem 2),
the final refinement is achieved by replacing the evolution
termE in (6) with

Ẽ =
M∑

k=1

(
∂f(xk, τ)

∂τ
+ ṽk|∇f(xk, τ)|)2 → min, (17)

wherexk are the closest points on the T-spline level set to
the given data pointspk, andṽk = (xk − pk) · ~nk.

Again,Ẽ is combined with the signed distance field con-
straintS, and the updated T-spline level set can be obtained
(see Section 3.3). Then the closest pointsxk are recom-
puted, and Eq. (17) is reconfigured for the next iteration.
The above procedure is repeated until the approximation er-
ror (maximum distance between the T-spline level set and
the data pointspk) cannot be reduced further.

For the given image data (Problem 1), the evolution re-
sult can be improved in a similar way. A set of sharp edge
points are detected within a narrow band region of the T-
spline level set, and then served as the target data points to
be approximated by the final refinement.



final

result

intermediate curve

initial solution

Figure 3. 2D Geometry reconstruction. The
data points, the T-mesh, and 3 T-spline level
sets are shown.

5 Experimental results

We present some examples to demonstrate the effective-
ness of our method. All the experiments are run on a PC
with AMD Opteron(tm) 2.20GHz CPU and 3.25G RAM.
All the given image or data points are contained in a square
or cubic domain (−1 ≤ x, y, z ≤ 1).

Example 1: 2D geometry reconstruction. In the first ex-
ample (see Figure 3), the data set consists of 940 points in
2D, and the approximating T-spline level set is described
by 272 coefficients. We start with a circumscribed level
set and apply the evolution. The level set splits into three
components which approximate the given data. The entire
computation took about 8 seconds.

Example 2: 2D image segmentation. The second exam-
ple (Figure 4) demonstrates the use of a T-spline level set for
image segmentation. Again, we start with a circumscribed
level set and apply the evolution. The level set splits into
two components which identify the two objects in the fig-
ure, along with the shadows. The entire computation took
about 10 seconds.

Example 3: 3D geometry reconstruction. The third ex-
ample (Figure 5) deals with the reconstruction of 3D objects
from unorganized point data. In this simple case, the data
are taken from four ellipsoids. The level set evolution starts
with a circumscribed sphere, and the result correctly identi-
fies the four components.

c*: final result

initial solution

c*

intermediate curve

Figure 4. 2D Image segmentation. 3 T-spline
level sets (initial solution, intermediate result
and final solution) are shown.

6 Conclusion and future work

We have shown how to formulate evolution processes
for T-spline level sets that can be used to address prob-
lems of shape reconstruction from image data (Problem 1)
and from unorganized point clouds (Problem 2). These
processes are based on a least–squares approximation of
the velocity fields, which are derived from the given data.
We also propose the use of an additionaldistance field con-
straint, which is combined into the evolution equation to
avoid time-consuming re-initialization steps.

The T-spline representation of the level set function is
sparse and piecewise rational. For both geometry recon-
struction and image segmentation, we are able to generate
the T-mesh according to the distribution of the points or
edges respectively. This means that – in the ideal case –
the number of degrees of freedom increases only linearly
with the length (area) of the curve (surface) which is to be
reconstructed.

Since implicitly defined curves and surfaces cannot be
used directly in many applications such as Computer Aided
Design, we plan tocouple the evolution ofT-spline level
setswith parametric curves and surfaces. More precisely,
the evolving T-spline level set will guide the evolution of
the parametric representation. This is expected to lead to
approximation algorithms for self–adapting parametric rep-
resentations, which may automatically determine the cor-
rect topology.
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(a) (b) (c)

Figure 5. 3D Geometry reconstruction. The figure shows the initial level set (a), an intermediate level
set during the evolution (b), and the final result after refinement (c).
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