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C2 HERMITE INTERPOLATION BY PYTHAGOREAN

HODOGRAPH SPACE CURVES

ZBYNĚK ŠÍR AND BERT JÜTTLER

Abstract. We solve the problem of C2 Hermite interpolation by Pythagorean

Hodograph (PH) space curves. More precisely, for any set of C2 space bound-

ary data (two points with associated first and second derivatives) we construct

a four–dimensional family of PH interpolants of degree 9 and introduce a ge-

ometrically invariant parameterization of this family. This parameterization

is used to identify a particular solution, which has the following properties.

Firstly, it preserves planarity, i.e., the interpolant to planar data is a planar

PH curve. Secondly, it has the best possible approximation order 6. Thirdly, it

is symmetric in the sense that the interpolant of the “reversed” set of boundary

data is simply the “reversed” original interpolant. This particular PH inter-

polant is exploited for designing algorithms for converting (possibly piecewise)
analytical curves into a piecewise PH curve of degree 9 which is globally C2,
and for simple rational approximation of pipe surfaces with a piecewise an-
alytical spine curve. The algorithms are presented along with an analysis of
their error and approximation order.

1. Introduction

Pythagorean Hodograph (PH) curves (see the survey [12] and the references
cited therein) form a remarkable subclass of polynomial parametric curves. They
have a piecewise polynomial arc length function and, in the planar case, rational
offset curves. These curves provide an elegant solution of various difficult problems
occurring in applications, in particular in the context of CNC (computer-numerical-
control) machining.

In the planar case, the properties and various constructions of PH curves have
thoroughly been studied, e.g., [1, 7, 8, 9, 18, 25]. Due to the constrained nature
of PH curves, all constructions – which are linear in the case of polynomial curves
– become nonlinear in the PH case. Consequently, they may have more than one
solution, and the problem of choosing the ‘best’ solution has to be addressed, e.g.
by analyzing the approximation order or using the rotation index [18, 20, 22, 24].

Spatial PH curves were introduced by Farouki and Sakkalis in 1994 [6], and
they have later been characterized using results about Pythagorean quadruples in
the ring of polynomials and quaternion calculus [2, 4, 11]. Spatial PH curves are
automatically equipped with rational frames, which were studied e.g. in [3, 14, 17].

Various constructions were also given, e.g. a global method for C2 interpolation
of point data by quintic splines has been presented in [13]. Hermite interpolation
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of G1 boundary data was addressed in [17], and C1 Hermite interpolation by PH
quintics was discussed in [10, 23]. In the latter case, there exists a family of inter-
polants to any C1 Hermite data which depends on two free parameters. Later, this
result has also been related to helical interpolants [15].

The present paper is devoted to the problem of C2 Hermite interpolation by
spatial PH curves of degree 9 and it is organized as follows. First we recall some
basic facts about quaternion algebra and PH curves. In the Section 3 we solve
the C2 interpolation problem and introduce a parameterization of the family of
interpolants with respect to a standard position. We prove that this parameteriza-
tion is geometrically invariant and symmetric. We also describe how C2 Hermite
interpolation in the plane is included in the spatial construction.

Section 4 provides a qualitative analysis of the solutions. We give an asymptotical
analysis, including approximation order. Based on these results, in the Section 5 we
use the “best” solution for converting analytical curves into piecewise PH quintic
curves and for the approximation of pipe surfaces. Finally, we conclude the paper.

2. Preliminaries

First we recall some basic facts about quaternions and Pythagorean Hodograph
curves.

2.1. Quaternions. Quaternions (see e.g. [19] for an elementary introduction) are
elements

(2.1) A = a + axi + ayj + azk

of a 4–dimensional real linear space Q with basis 1, i, j,k. The space Q has the
structure of a non-commutative field, where the multiplication is defined by the
relations

(2.2) i2 = j2 = k2 = ijk = −1

of the basis elements, which imply

(2.3) ij = −ji = k, jk = −kj = i, ki = −ik = j.

The conjugate of any quaternion (2.1) is defined as A∗ = a − axi− ayj− azk, and
its absolute value is the non-negative real number

(2.4) |A| =
√
AA∗ =

√
A∗A =

√

a2 + a2
x + a2

y + a2
z.

Unit quaternions, which are characterized by |A| = 1, form a multiplicative
group. We will use the notation

(2.5) Q(φ) = (cos φ + i sin φ)

for unit quaternions with vanishing j and k components.
Pure quaternions are distinguished by having a vanishing scalar part. In the

sequel we will make use of the two following mappings.

Definition 2.1. We define mappings Ξθ,Ξk : Q → Q by

(2.6) Ξθ(A) = Q(θ)AQ(−θ), and Ξk(A) = kAk.
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The mappings Ξθ, Ξk preserve pure quaternions and have the following geo-
metrical meaning. Any vector [ax, ay, az]

> ∈ R3 can be identified with the pure
quaternion axi + ayj + azk. Then Ξθ : R3 → R3 is the rotation through the angle
2θ about the i axis and Ξk : R3 → R3 is the reflection with respect to the plane
spanned by i, j.

Definition 2.2. We define on the quaternions the commutative multiplication

(2.7) A ? B :=
1

2
(A iB∗ + B iA∗).

Corresponding n-th powers will be denoted An? = A ? A ? . . . ? A
︸ ︷︷ ︸

n×

.

Remark 2.3. Note, that A ? B is in fact equal to the vector part of A iB∗ and
therefore is always a pure quaternion.

Lemma 2.4. The multiplication ? is invariant under mappings Ξθ and Ξk, i.e. for
any quaternions A, B

(2.8) Ξθ(A ? B) = Ξθ(A) ? Ξθ(B) and Ξk(A ? B) = Ξk(A) ? Ξk(B).

Proof. The proof follows directly from the definitions.

Ξθ(A) ? Ξθ(B) =
Q(θ)AQ(−θ)iQ(θ)B∗Q(−θ) + Q(θ)BQ(−θ)iQ(θ)A∗Q(−θ)

2
=

= Q(θ)
AiB∗ + BiA∗

2
Q(−θ) = Ξθ(A ? B).

Similarly,

Ξk(A) ? Ξk(B) =
kAki(−k)B∗(−k) + kBki(−k)A∗(−k)

2
=

= k
AiB∗ + BiA∗

2
k = Ξk(A ? B).

¤

As we will see later, the solutions of the quaternion counterparts of quadratic
and linear equations are essential for the construction of PH Hermite interpolants.
We describe these solutions in the following lemmas.

Lemma 2.5. Let a be a given pure quaternion and B a given non-zero quaternion.
Then all solutions of the linear equation

(2.9) X ? B = a

form the one–parameter family

(2.10) Xτ = − (τ + a)B i

|B|2 with the parameter τ ∈ R.

Moreover this parameterization of the system of solutions is compatible with the
mappings Ξθ and Ξk in the following way. If Ãτ denotes the solutions for the data
transformed by Ξθ and Āτ for the data transformed by Ξk, then for any τ

(2.11) Ãτ = Ξθ(Aτ ) and Āτ = Ξk(A−τ ).
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Proof. Due to Remark 2.3, Eq. (2.9) is equivalent to AiB∗ = τ +a for some τ ∈ R,
which is a simple modification of (2.10). Moreover for any fixed value of τ we have

X̃τ = −
[τ + Ξθ(a)] Ξθ(B) i

|Ξθ(B)|2
= −

Ξθ(τ + a) Ξθ(B) Ξθ(i)

|B|2
= Ξθ

„

−
(τ + a)B i

|B|2

«

= Ξθ(Xτ )

and

X̄τ = −
[τ + Ξk(a)] Ξk(B) i

|Ξk(B)|2
= −

(τ + kak) (kBk) i

|kBk|2
= k

„

−
(−τ + a)B i

|B|2

«

k = Ξk(X−τ ).

¤

Lemma 2.6. Let a be a given pure quaternion, which is not a negative multiple
of i. Then all solutions of the quadratic equation

(2.12) X 2? = a

form the one–parameter family

(2.13) Xφ =
√

|a|
a
|a| + i
∣
∣
∣

a
|a| + i

∣
∣
∣

Q(φ), with the parameter φ ∈ [0, 2π).

Moreover this parameterization of the system of solutions is compatible with the
mappings Ξθ and Ξk in the following way. If X̃ (φ) denotes the solutions for the
data transformed by Ξθ and X̄ (φ) for the data transformed by Ξk, then for any φ

(2.14) X̃φ = Ξθ(Xφ) and X̄φ = Ξk(X−φ).

Proof. The formula (2.13) is given with a proof in [10, section 3.2]. For the proof
of invariance consider that

(2.15)

X̃φ =
√

|Ξθ(a)|
Ξθ(a)
|Ξθ(a)| + i
∣
∣
∣

Ξθ(a)
|Ξθ(a)| + i

∣
∣
∣

Q(φ) =
√

|a|
Ξθ

(
a
|a| + i

)

∣
∣
∣

a
|a| + i

∣
∣
∣

Ξθ (Q(φ))

= Ξθ




√

|a|
a
|a| + i
∣
∣
∣

a
|a| + i

∣
∣
∣

Q(φ)



 = Ξθ(Xφ).

Similarly, due to kik = i and kQ(φ) = Q(−φ)k,
(2.16)

X̃φ =
√

|Ξk(a)|
Ξk(a)
|Ξk(a)| + i
∣
∣
∣

Ξk(a)
|Ξk(a)| + i

∣
∣
∣

Q(φ) = k




√

|a|
a
|a| + i
∣
∣
∣

a
|a| + i

∣
∣
∣



kQ(φ) = Ξk(X−φ).

¤

Definition 2.7. The set of all quaternions of the form ai + bj, a, b ∈ R will be
denoted by Qij.

The following lemma can be verified directly:

Lemma 2.8. Qij is preserved by the multiplication ?. Moreover Qij together with
the multiplication ? and the standard addition is isomorphic to the field of complex
numbers.

Lemma 2.9. If B,a ∈ Qij, then

(1) X0 is the only solution of Eq. (2.9) which is contained in Qij.
(2) X0 and Xπ are the only solutions of Eq. (2.12) which are contained in Qij.
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Proof. The results can be proved in a straightforward way by expressing B and a

using their i and j parts. ¤

2.2. Pythagorean Hodograph curves. The hodograph of a space curve p(t) =
[x(t), y(t), z(t)]> of degree n is the curve h(t) = [x′(t), y′(t), z′(t)]> of degree n− 1,
where ′ denotes the first derivative. Recall that a polynomial curve is called
Pythagorean Hodograph (PH), if the length of its tangent vector depends in a (piece-
wise) polynomial way on the parameter. In particular, p(t) = [x(t), y(t), z(t)]> is
called space PH curve if there exists a polynomial σ(t) such that

(2.17) x′(t)2 + y′(t)2 + z′(t)2 = σ2(t).

If all real roots of gcd(x′(t), y′(t), z′(t)) have even multiplicity 1, then equation (2.17)
holds if and only if there exist polynomials u(t), v(t), p(t), q(t) such that

(2.18)

x′(t) = u2(t) + v2(t) − p2(t) − q2(t),
y′(t) = 2u(t)q(t) + 2v(t)p(t),
z′(t) = 2v(t)q(t) − 2u(t)p(t),
σ(t) = u2(t) + v2(t) + p2(t) + q2(t),

see [4]. This result can be reformulated using quaternions [2, 11]. Any spatial
polynomial curve p(t) = [x(t), y(t), z(t)]> is identified with the pure–quaternion–
valued function p(t) = x(t)i + y(t)j + z(t)k. The PH curves are then characterized
as follows.

Lemma 2.10. Let p(t) = x(t)i+y(t)j+z(t)k be a space polynomial curve, such that
all real roots of gcd(x′(t), y′(t), z′(t)) have even multiplicity. Then p(t) is PH if and
only if there exists a quaternion-valued polynomial A(t) = u(t)+v(t)i+p(t)j+q(t)k
such that

(2.19) h(t) = A(t) iA∗(t) = A(t)2?

The arc length function of the PH curve is a polynomial obtained by integrating
|A(t)|2 = A(t)A∗(t).

Consequently, the construction of a PH curve is reduced to the construction of
a suitable curve A(t). This curve will be called the preimage.

Remark 2.11. The general form of the hodograph of a PH curve (without imposing
the condition concerning the common factors in Lemma 2.10) is

(2.20) h(t) = (t − t1)(t − t2) . . . (t − tk)A(t)2?,

where ti are distinct real numbers [2]. However, the common factors (t − ti) raise
the degree of the curve without yielding more geometric flexibility (they do not
modify tangent directions) and moreover they introduce cusps at parameter values
ti, which can be in the region of interest (see Figure 2). For this reason these
“spurious” solutions are not likely to be useful for applications and we will omit
them in the remainder of the paper.

1This includes the generic case gcd(x′(t), y′(t), z′(t)) = 1.
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2.3. Pythagorean Hodograph curves of degree 9. In the sequel we will use
PH curves of degree 9. The PH curves, their hodograph h(t) = p′(t) and the
preimage A(t) will be expressed in the Bernstein-Bézier representation [16]
(2.21)

p(t) =

9∑

i=0

piB
9
i (t), h(t) =

8∑

i=0

hiB
8
i (t), A(t) =

4∑

i=0

AiB
4
i (t), t ∈ [0, 1],

where pi, hi (pure quaternions) and Ai (quaternions) are the control points and
Bn

j (t) =
(
n
j

)
tj(1 − t)n−j are the Bernstein polynomials. The relation between the

hodograph and the preimage

(2.22) h(t) = A(t)2?

can be expressed using the control points as

h0 = A2?
0(2.23)

h1 = A0 ? A1(2.24)

h2 = (4A2?
1 + 3A0 ? A2)/7(2.25)

h3 = (A0 ? A3 + 6A1 ? A2)/7(2.26)

h4 = (18A2?
2 + A0 ? A4 + 16A1 ? A3)/35(2.27)

h5 = (A1 ? A4 + 6A2 ? A3)/7(2.28)

h6 = (4A2?
3 + 3A2 ? A4)/7(2.29)

h7 = A3 ? A4(2.30)

h8 = A2?
4 .(2.31)

The PH curve is obtained by integrating the hodograph and it possesses the control
points

(2.32) pj = p0 +
1

9

j−1
∑

i=0

hi, j = 1, . . . , 9.

3. C2 Hermite interpolation

We construct a spatial PH curve p(t) which matches given C2 Hermite boundary
data. More precisely, the curve is to interpolate the end points pb, pe, the first de-
rivative vectors (velocities) vb, ve and the second derivative vectors (accelerations)
ab, ae.

In all we have 18 scalar conditions. Three of them are satisfied by choosing the
first control point of the curve p0 = pb. The remaining 15 conditions must be
satisfied by determining the control points of the preimage. As the preimage has
4 components (quaternions), apparently the 15 conditions could be satisfied by 4
control points leading to the preimage of degree 3 and PH curves of degree 7. But
our experiments showed, that the resulting system of equations is highly nonlinear
and does not have solutions for all input data - see section 3.4. Therefore we will
use PH interpolants of degree 9, for which the problem always has solutions forming
a 4 parameter family.
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3.1. Construction of the interpolants. Two curves p(t), p̃(t) share the same
hodograph if and only if they differ only by a translation. Consequently, a space
PH curve p(t) is fully determined by the preimage A(t) and by the location of its
starting point p(0).

Using the curves of degree 9, the interpolation conditions lead to the equations

(3.1) h0 = vb, h8 = ve, 8(h1 − h0) = ab, 8(h8 − h7) = ae,

(3.2)
1

9

8∑

i=0

hi = (pe − pb).

Substituting into (2.23)–(2.31) we get after some simplifications
(3.3)

(12A2 + 10A1 + 5A0 + 5A4 + 10A3)
2?

=
2520(pe − pb) − 435(ve + vb) + 45

2 (ae − ab)
−(60A2?

1 − 60A0 ? A3 − 60A1 ? A4 + 60A2?
3 − 42A0 ? A4 − 72A1 ? A3).

Algorithm 3.1 (Construction of PH interpolants).

(1) Compute the control points h0, h1, h7 and h8 from the equations (3.1).
(2) The control points A0, A4 can be computed from the equations (2.23),

(2.31), which are of type (2.12) and therefore each of A0, A4 depends on
one free parameter, say on θ0 and θ4.

(3) The control points A1, A3 can be computed from equations (2.24), (2.30),
which are of type (2.9). The control point A1 depends on the parameter θ0

via the point A0 and on a new parameter τ1. Similarly A3 depends on the
parameter θ4 via the point A4 and on a new parameter τ3.

(4) The control point A2 can be computed from (3.3), which is essentially of
type (2.12). This control point will depend on all previous control points
and therefore on all parameters θ0, θ4, τ1 and τ3 and on a new parameter θ2.

(5) Compute control points h2, h3, h4, h5, h6 from equations (2.25)–(2.29),
set p0 = pb and compute the remaining control points of p(t) from the
equation (2.32).

Summing up, we arrive successively at families of suitable preimages AΦ(t),
hodographs hΦ(t) and PH curves pΦ(t) depending on parameter vectors Φ =
[θ0, τ1, θ2, τ3, θ4].

Remark 3.2. Let us make more explicit the step 4 of the Algorithm 3.1. Denoting
the right-hand side of the equation (3.3) by rΦ and using Lemma (2.6) we obtain
the control point A2 depending on Φ:

(3.4) A2 =
1

12




√

|rΦ|
rΦ

|rΦ| + i
∣
∣
∣

rΦ

|rΦ| + i

∣
∣
∣

Q(θ2) − 10A1 − 5A0 − 5A4 − 10A3



 .

As in the case of the C1 Hermite interpolation [10, 23], one of the angular param-
eters, say θ2, can be chosen to be zero due to the nontrivial fibers of the mapping
preimage → hodograph (2.19). This fact is formally proved in the following lemma.

Lemma 3.3. If two parameter vectors differ only by the same angle for the three
angular parameters

Φ = [θ0, τ1, θ2, τ3, θ4] and Φ̃ = [θ0 + α, τ1, θ2 + α, τ3, θ4 + α],
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Figure 1. 32 representants of the four dimensional sys-
tem of PH interpolants of the data (3.9). The “best” in-
terpolant (see Theorem 4.2) is plotted in bold.

then hΦ(t) = hΦ̃(t) and therefore also pΦ(t) = pΦ̃(t).

Proof. Let Ai,hi and Ãi, h̃i denote the control points constructed with parameters
Φ and Φ̃, respectively. Considering the step 2 of the Algorithm 3.1 we have

(3.5) Ã0 = A0Q(α) and Ã4 = A4Q(α).

In step 3 we get

(3.6) Ã1 = − (τ + h1)BQ(α) i

|BQ(α)|2 = − (τ + h1)B i

|B|2 Q(α) = A1Q(α)

and in a similar way Ã3 = A3Q(α). Finally, due to the fact that for any X , Y
(3.7) [XQ(α)] ? [YQ(α)] = X ? Y
holds, we have rΦ = rΦ̃ (see Remark 3.2) and therefore Ã2 = A2Q(α). So, for the

whole preimage, Ã(t) = AQ(α) holds. Finally, (3.7) implies

(3.8) h̃(t) = h(t).

¤

Remark 3.4. As a consequence, all PH interpolants can be obtained using parameter
vectors with θ2 = 0. In the remainder of the paper we will suppose this choice
and we will omit θ2 in the parameter vector Φ, which will be now written as
Φ = [θ0, τ1, τ3, θ4].

Example 3.5. For any C2 Hermite data we thus obtain a four dimensional system
of PH interpolants of degree 9. As a first example, Figure 1 shows the system of
PH interpolants to the data
(3.9)

pb = [0, 0, 0], vb = [ 109 , 0, 0], ab = [ 256 ,− 10
3 , 0]

pe = [ 89
126 ,− 68

63 , 5
126 ], ve = [− 20

9 ,− 40
9 , 40

9 ], ae = [− 65
3 ,−10, 170

3 ].

In addition to the C2 interpolants constructed using the Algorithm 3.1, there
may exist so–called “spurious” PH interpolants of degree 9 (see Remark 2.11).
Figure 2 shows one of these interpolants to the data (3.9), having two cusps in the
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Figure 2. An example of a spurious interpolant of the
data (3.9) together with the “best” interpolant (see The-
orem 4.2).

region of interest. In the sequel we will ignore this kind of interpolants and will
restrict ourselves only to those constructed by the Algorithm 3.1.

3.2. Invariance of interpolants. Considered as a set, the system {pΦ(t)} of PH
interpolants of some Hermite data is invariant with respect to orthogonal transfor-
mations (including reflections). More precisely, if we apply an orthogonal transfor-
mation Ξ to the Hermite data, we get modified data p̃b, p̃e, ṽb, ṽe, ãb, ãe. The
associated systems of interpolants satisfy

{p̃Φ(t)} = Ξ({pΦ(t)}).

On the other hand, this transformation does not preserve the parameterization
of the solutions: In general

(3.10) p̃Φ̃(t) = Ξ(pΦ(t))

is not valid for Φ̃ = Φ.
The relation between Φ̃ and Φ ensuring (3.10) is rather complicated. Still, it can

be formulated easily in the following cases.

Lemma 3.6. For any Φ:

(1) If Ξθ is a rotation about the i-axis, then

p̃Φ(t) = Ξθ(pΦ(t)).

(2) If Ξk is the reflection with respect to the ij plane, then

p̃Φ(t) = Ξk(p−Φ(t)).

Proof. Consider a fixed parameter vector Φ and let Ai denote the control points of
the preimage for some data pb, pe, vb, ve, ab, ae and Ãi for the transformed data
p̃b = Ξθ(pb), p̃e = Ξθ(pe), ṽb = Ξθ(vb), ṽe = Ξθ(ve), ãb = Ξθ(ab), ãe = Ξθ(ae).

1) Due to Lemma 2.6 we have in the step 2 of the Algorithm 3.1

(3.11) Ã0 = Ξθ(A0) and Ã4 = Ξθ(A4).

Then due to Lemma 2.5 we have in the step 3

(3.12) Ã1 = Ξθ(A1) and Ã3 = Ξθ(A3).
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Finally, in step 4, we have r̃Φ = Ξθ(rΦ), due to Lemma 2.4. Hence, Ã3 = Ξθ(A3)

and thus for the whole preimage curve Ã(t) = Ξθ(A(t)). Finally due to Lemma 2.4
we obtain in step 5 p̃i = Ξθ(pi) and therefore p̃(t) = Ξθ(p(t)).

2) Due to the same lemmas, the previous argument holds also for Ξk if the

control points Ãi are constructed with parameters −Φ, while the control points Ai

are constructed with the parameters Φ. ¤

A fully invariant parameterization of interpolants is obtained by considering a
standard position.

Definition 3.7. The given C2 spatial Hermite data are said to be in a standard
position if vb + ve is a positive multiple of i and pb = 0.

This choice of standard position express an “algebraic symmetry” of the data
and therefore allows a simple identification of the symmetric solution in the Theo-
rem 3.10. Moreover it is very simple from the computational point of view. Other
definitions of a standard position would be possible. For instance one could require
the i-axis to be the bisector of the angle between the vectors vb and ve, or pe −pb

to be a positive multiple of i.
From now on, we will use the following parameterization of the system of inter-

polants.

Definition 3.8. The system of interpolants is parameterized by the parameters
Φ as follows. Firstly, we transform the data to a standard position by a rotation
and translation. Secondly, we construct the interpolants pΦ, as described before.
Finally, we transform the solution back to the original position.

Note that parameterization is well–defined, since Lemma 3.6 ensures that the
particular choice of a standard position (which may vary by a rotation about i

axis) does not matter.
The only case in which the Definition 3.8 fails is that of “antipodal” velocities

vb + ve = 0. This case will not be analyzed in detail, since it can be avoided in
subdivision-based algorithms by using a sufficiently small stepsize (see Section 5).
However, the parameterization defined in Definition 3.8 can be extended to the case
vb+ve = 0, but not in a continuous way. The discontinuity in the parameterization
of the interpolants turns out to be an inevitable feature, as explained in more detail
for the planar case in [22].

Theorem 3.9. The parameterization of the solutions, according to Definition 3.8,
is invariant with respect to rigid body motions (special orthogonal transformations),
whereas reflections change the signs of all parameters. Consequently, the interpolant
obtained for Φ = [0, 0, 0, 0] is invariant with respect to all orthogonal transforma-
tions.

The proof results from Lemma 3.6.
In addition, the parameterization of the solutions is symmetric with respect to

swapping the “direction” or the given data in the following sense.

Theorem 3.10. Let pΦ(t) be the interpolants of data pb,pe,vb,ve,ab,ae and p̄Φ(t)
the interpolants of the “reversed” data

(3.13) p̄b = pe, p̄e = pb, v̄b = −ve, v̄e = −vb, āb = ae, āe = ab,
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respectively. Then for any parameter vector Φ = [θ0, τ1, τ3, θ4] we have

(3.14) p̄[θ0,τ1,τ3,θ4](1 − t) = p[−θ4,−τ3,−τ1,−θ0](t).

Consequently, the solutions p[0,0,0,0] and p̄[0,0,0,0] are identical.

Proof. Suppose that the given data are in a standard position, i.e. vb + ve is a
positive multiple of i and pb = 0. Then the reversed data (3.13) are not in a
standard position, but applying the translation by the vector −pe and the symmetry
S : c → −c we obtain new data

(3.15) p̃b = 0, p̃e = pe, ṽb = ve, ṽe = vb, ãb = −ae, ãe = −ab,

which are in a standard position. Now using the Algorithm 3.1 we obtain in step 1

(3.16)
h̃0 = ṽb = ve = h8, h̃8 = ṽe = vb = h0

h̃1 =
ãb

8
+ h̃0 = −ae

8
+ h8 = h7, h̃7 = − ãe

8
+ h̃8 =

ab

8
+ h0 = h1.

Due to the symmetry of the construction of the control points hi, and h8−i in the

steps 1-3 of the Algorithm 3.1, we obtain h̃[θ0,τ1,τ3,θ4](1 − t) = h[θ4,τ3,τ1,θ0](t) and
therefore also

(3.17) p̃[θ0,τ1,τ3,θ4](1 − t) = p[θ4,τ3,τ1,θ0](t).

The data (3.15) are in a standard position, which is not associated with the re-
versed data (3.13) according to the definition 3.8, since they differ not by a rota-
tion, but by the symmetry S changing orientation. A standard position associated
with the reversed data (3.13) can be obtained from the data (3.15) applying ad-
ditional reflection Ξk (2.6). Then following lemma 3.6 (2) we have p̄[θ0,τ1,τ3,θ4] =
p̃[−θ0,−τ1,−τ3,−θ4] and together with (3.17) we obtain (3.14). ¤

3.3. The case of planar data. As a natural question, one may ask whether
the PH interpolants pΦ of C2 Hermite data lying in a plane P are planar. Our
experiments show that this is not the case. Due to the C2 conditions, the 6 control
points (three extremal points at each side) of all interpolants (of degree 9) must lie
in the plane P . However, the remaining 4 control points use the three dimensions
in order to satisfy the PH conditions.

It is known [8, 22] that there are four planar C2 (non-spurious) PH interpolants
of degree 9 for planar data. The following theorem shows how these interpolants
are reproduced by the general spatial construction.

Theorem 3.11. For given C2 Hermite data contained in a plane P ⊂ R3, the
interpolants

(3.18) p[0,0,0,0](t), p[π,0,0,0](t), p[0,0,0,π](t), p[π,0,0,π](t)

are contained in P . Moreover, if any other interpolant pΦ is contained in P , it is
identical with one of interpolants (3.18).

Proof. We can suppose without loss of generality that P = Qij and that the data
are in a standard position. Then the control points Ai constructed in the Algorithm
3.1 with parameter values

τ1 = τ3 = 0, θ0, θ4 ∈ {0, π}
are contained in Qij due to Lemma 2.8 and from the same lemma follows that the
hodograph will be contained in Qij, too. Therefore the constructed PH curves are
planar.
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Moreover, restricted to Qij, the characterization mapping (2.19) is isomorphic to
the complex squaring, which is a representation of planar PH curves [5]. Then the
equations (2.23)–(2.31) and (3.3) become the complex equations due to Lemma 2.8
and are identical with the complex equations describing C2 Hermite interpolation
problem in the plane - see [22, equations (4)–(7)]. For this reason, the four inter-
polants (3.18) reproduce the four planar interpolants described in [22, Table 2]. As
there are no other (non-spurious) planar interpolants of planar data [22], any other
interpolant pΦ must coincide with one of (3.18). ¤

3.4. Reducing the degree of the interpolants. In principle, the four parame-
ters [θ0, τ1, τ3, θ4] could be used to reduce the degree of the PH interpolants. More
precisely, one might try to reduce the degree of the quaternion–valued preimage
AΦ(t) from 4 to 3, order to obtain interpolants of degree 7. The conditions of
degree reduction lead to four equations, which can – in some cases – be solved to
determine suitable values of the parameters θ0, τ1, τ3, θ4.

However, the system of equations for the parameters θ0, τ1, τ3, θ4 is highly non-
linear and we were not able to obtain an explicit characterization of the set of data
admitting PH interpolants of degree 7. Let us demonstrate the complexity of this
problem on the following example. Consider the boundary data

(3.19)
pb = [0, 0, 0], vb = [3, 4, 0], ab = [0, 0, 0],

ve = [3,−4, 0], ae = [0, 0, 0],

while the position pe of the end-point remains free. This is a particularly simple
set of boundary data, since both boundary accelerations vanish. For these data we
were able to characterize the values of pe which admit a degree 7 PH interpolant.

The control points A0,A1,A3,A4 can be determined from (3.19), depending on 4
free parameters θ0, τ1, τ3, θ4. If the degree of the preimage is to be reduced to 3
then the control point A2 is also determined as A2 = (−A0 + 4A1 + 4A3 −A4)/6
and the whole preimage depends on θ0, τ1, τ3, θ4. It can be shown that the resulting
PH curve depends only on τ1, τ3 and goniometric functions of the difference θ4−θ0.
Using the standard rational parameterization cos(θ4 − θ0) = (1 − τ2)/(1 + τ2) and
sin(θ4−θ0) = 2τ/(1+ τ2) we obtain a rational parametric expression of all possible
end points positions pe.

By using elimination techniques from computer algebra we were able to derive
(with a help of a computer algebra tool) the implicit equation of the boundary of
the set of all end point positions. The algebraic degree of the boundary is 28, and
its implicit equation contains 2, 360 terms. It is therefore virtually impossible, even
for these simple data, to understand the geometry of the set of possible positions
of pe. For general data, the problem becomes even more complex and we were even
not able to obtain an implicit equation of the boundary.

As another serious problem with degree reduction, the PH interpolants of de-
gree 7 do not preserve planarity of the data. Only for very exceptional planar data
one of the four planar interpolants (see Theorem 3.11) has degree 7. As an example,
consider the boundary data, (with undetermined position of pe)

pb = [0, 0, 0], vb = [3, 4, 0], ab = [2, 3, 0],
ve = [3,−4, 0], ae = [3, 2, 0].
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A careful inspection of the non-linear system of equations reveals that only for 4
discrete positions of the end point,

pe ∈
{[

2497
700 ,− 1081

21000

]
,
[
2497
700 , 1577

12000

]
,
[
1649
2100 ,− 5357

28000

]
,
[
1649
2100 , 1243

7000

]}
,

one of the planar PH interpolants has degree 7 instead of 9. Hence, planar PH
interpolants of degree 7 to planar data do not always exist.

Due to these very complicated existence conditions and the lack of planarity
preservation, the degree 7 PH interpolants do not seem to be suitable for applica-
tions. If the high degree 9 causes problems, one could instead design an interpola-
tion scheme using two PH curves of degree 7, or three PH curves of degree 5, joined
together with C2 continuity. Such schemes might be a subject of future research.

4. Qualitative analysis of the interpolants

In this section we give a qualitative analysis of the system of PH quintic inter-
polants, in order to identify the ‘best’ values of the parameter vector Φ0. These
parameters yield the interpolants suitable for applications.

4.1. Asymptotic behavior. In order to fix the free parameters θ0, θ4, τ1, τ3, we
will now study the asymptotic behavior of the solutions pΦ(t). More precisely, we
assume that the C2 Hermite data are taken from a small segment of an analytical
curve, and we investigate the asymptotic behavior of the solutions for decreasing
step-size.

We assume that the curve is given by its Taylor expansion. Without loss of
generality,

(4.1) C(T ) = (T +
∞∑

i=2

xi

i!
T i,

∞∑

i=2

yi

i!
T i,

∞∑

i=2

zi

i!
T i)>

with arbitrary coefficients xi, yi, zi, i = 2, 3, . . ..
For any step–size h we pick the segment c(t) = C(ht), t ∈ [0, 1]. This segment

has the expansion

(4.2) c(t) = (th +

∞∑

i=2

xi

i!
tihi,

∞∑

i=2

yi

i!
tihi,

∞∑

i=2

zi

i!
tihi)>.

Now we interpolate the C2 Hermite boundary data at the points c(0) = C(0) and
c(1) = C(h). Depending on the interval size h, different PH curves interpolating
the data behave as described in the following theorem.

Theorem 4.1. The error of the PH interpolation

(4.3) E = max
t∈[0,1]

||c(t) − pΦ(t)||

converges to 0 for h → 0 if and only if τ1 = τ3 = 0. Moreover, if θ0 = θ4 = 0, then
E = O(h6). Otherwise E = O(h1).

Proof. The proof consists in evaluating the power series of all quantities occurring
in the interpolation process with respect to the step size h. This can be done by a
suitable computer algebra tool. Due to the space limitation and the complexity of
the expressions, we show only the leading terms of certain quantities, in order to
illustrate the idea of our approach.
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We derive the Taylor expansions of the Hermite boundary data at t = 0 and
t = 1 of the curve (4.2),

(4.4)

pb =





0
0
0



 , pe =





h + 1
2x2h

2 + 1
6x3h

3 + . . .
1
2y2h

2 + 1
6y3h

3 + . . .
1
2z2h

2 + 1
6z3h

3 + . . .



 ,

vb =





h
0
0



 , ve =





h + x2h
2 + 1

2x3h
3 + . . .

y2h
2 + 1

2y3h
3 + . . .

z2h
2 + 1

2z3h
3 + . . .



 ,

ab =





x2h
2

y2h
2

z2h
2



 , ae =





x2h
2 + x3h

3 + 1
2x4h

4 + . . .
y2h

2 + y3h
3 + 1

2y4h
4 + . . .

z2h
2 + z3h

3 + 1
2z4h

4 + . . .



 .

This data can be transformed into a standard position by the rotation U given by
the matrix






1 − y2
2+ z2

2

8 h2 + . . . y2

2 h + y3−y2x2

4 h2 + . . . z2

2 h + z3−z2x2

4 h2 + . . .

−y2

2 h − y3−y2x2

4 h2 + . . . 1 − y2
2

8 h2 + . . . 0

− z2

2 h − z3−z2x2

4 h2 + . . . − z2y2

4 h2 + . . . 1 − z2
2

8 h2 + . . .




 .

Then we compute the Taylor expansions of the control points of the preimage for
the transformed data U(pb), U(pe), U(vb), U(ve), U(ab), U(ae). Using the formula
(3.1) we derive in the Step 1 of Algorithm 3.1 the expansions of the control points
h0, h1, h7 and h8. Then using (2.13), we derive in the Step 2 the expansions of
the control points A0 and A4

(4.5)

A0 =







− sin (θ0)
√

h + O
(
h3/2

)

cos (θ0)
√

h + O
(
h3/2

)

O
(
h3/2

)

O
(
h3/2

)







A4 =







− sin (θ4)
√

h + O
(
h3/2

)

cos (θ4)
√

h + O
(
h3/2

)

O
(
h3/2

)

O
(
h3/2

)







.

Using formula (2.10) we derive in the Step 3 the expansions of the control points
A1 and A3

(4.6) A1 =











τ1 cos(θ0)√
h

+ O
(√

h
)

τ1 sin(θ0)√
h

+ O
(√

h
)

O
(√

h
)

O
(√

h
)











A3 =











τ3 cos(θ4)√
h

+ O
(√

h
)

τ3 sin(θ4)√
h

+ O
(√

h
)

O
(√

h
)

O
(√

h
)











.

At this stage we can already fix the free parameters τ1, τ3. For h → 0 the curve
c(t) converges to (0, 0, 0)> on the whole interval [0, 1]. Therefore, if the error
(4.3) should converge to 0, the curve pΦ(t) must converge to to (0, 0, 0)> on the
whole interval [0, 1], too. Hence, its hodograph must converge to (0, 0, 0)> and the
preimage AΦ(t) must converge to (0, 0, 0, 0)> on the interval [0, 1]. This implies
that the control points of the preimage, in particular A1 and A3 have to converge
to (0, 0, 0, 0)>, and therefore τ1 and τ3 must vanish.



C2 HERMITE INTERPOLATION BY PYTHAGOREAN HODOGRAPH SPACE CURVES 15

After setting τ1 = τ3 = 0 we derive in the Step 4 the expansion of the control
point A2

(4.7) A2 =








5 sin(θ4)+5 sin(θ0)
4

√
h + O

(
h3/2

)

√
170+26 cos(θ0−θ4)−5 cos(θ0)−5 cos(θ4)

4

√
h + O

(
h3/2

)

O
(
h3/2

)

O
(
h3/2

)








.

Finally, in the Step 5 using (2.25)–(2.29) we get the expansions of the remain-
ing control points h2, h3, h4, h5 and h6 of the hodograph and using (2.32) the
expansions of the control points of the PH curve and of the PH curve pΦ(t) itself.
Comparing the expansion of pΦ(t) with the expansion (4.2) of c we obtain

(4.8)

pΦ(t)−c(t) =








([X − 5Y − 9] t3 + 1
2 [3X − 19Y − 23] t4 +

9∑

i=5

rit
i)h + O

(
h2
)

O
(
h2
)

O
(
h2
)








,

where

(4.9) X = cos (θ0)
√

170 + 26 cos (θ0 − θ4) and Y = cos (θ0 − θ4) .

Therefore the error (4.3) converges to 0 only as O(h) unless

(4.10) X − 5Y − 9 = 0 and 3X − 19Y − 23 = 0,

which holds only for X = 14 and Y = 1 implying θ0 = θ4 = 0.
After setting θ0 = θ4 = 0 the Taylor expansion of pΦ(t) simplifies enormously

and matches the Taylor expansion of c(t) up to h5. ¤

Theorems 3.10, 3.11 and 4.1 imply that the interpolant obtained for the parame-
ter vector Φ = [0, 0, 0, 0] is particularly well suited for applications. We will denote
this interpolant as p0(t) and summarize its properties in the following theorem.

Theorem 4.2. The C2 Hermite PH interpolant p0(t) preserves planarity of the
input data, is invariant under all orthogonal transformation, under scaling and
under reversion of the input data and has approximation order 6.

5. Applications

We apply the previous results in order to design an algorithm converting any
analytical curve into a piecewise PH curve of degree 9. This conversion is then
used for approximation of pipe surfaces.

5.1. Conversion of analytical curves. The result described in Theorem 4.1 al-
lows us to design an algorithm for the conversion of any analytical curve into a
piecewise PH curve. Let the parameter domain of the analytical curve be [0, 1].
We split this interval into 2n subintervals [ i

2n , i+1
2n ], i = 0..2n − 1. For each subin-

terval we construct the PH Hermite interpolant p0(t) and obtain a C2 continuous
piecewise PH curve of degree 9. If the error from the original analytical curve is
not sufficiently small, we continue the subdivision. Due to the Proposition 4.1, the
error will converge to 0 as O

(
1

64n

)
under subdivision.
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Figure 3. Analytical curve with its projection into the
xy plane (gray line).

#Segments Error Ratio #Segments Error Ratio

1 1.449 32 1.144 10−5 27.33×
2 8.816 10−1 1.643× 64 2.287 10−7 50.04×
4 6.963 10−2 12.66× 128 3.770 10−9 60.65×
8 7.243 10−3 9.613× 256 6.027 10−11 62.56×
16 3.128 10−4 23.16× 512 9.436 10−13 63.87×

Table 1. The error of piecewise PH approximation via Hermite interpolation.

The relatively high rate of convergence is demonstrated by the following example.
Figure 3 shows the segment of the analytical curve

(5.1) c(t) = (1.5 sin(7.2t), cos(9t), ecos(1.8t))>, t ∈ [0, 1].

We construct the PH Hermite interpolants for the whole segment and the piece-
wise PH interpolants obtained after splitting the parameter into 2, 4, 8, ... ,29

subintervals (the shape of first four piecewise interpolants can be seen from the
associated pipe surfaces shown on the Figure 4). The maximal approximation error
and its improvement (ratio) in each step are shown in Table 1. The ratio of the
improvement is closer and closer to 64. As we have observed in [23], in the case of
C1 interpolation the ratio of the improvement converges to 16.

Clearly, instead of the simple uniform subdivision, using an adaptive subdivision
scheme would reduce the number of segments.

5.2. Approximation of pipe surfaces. PH curves possess a simple low degree
rational adapted frame, which has been called the Euler-Rodrigues frame [3]. Based
on this construction, Farouki proposed a rational approximation of the rotation
minimizing frame for any space PH curve [14].

Both frames can be used for the approximation of pipe surfaces, or – more gen-
erally – of sweep surfaces. First we convert a given analytical curve into a piecewise
PH curve using the algorithm of section 5.1 and then we construct a pipe surface
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Figure 4. Analytical curve (5.1) and rational approxi-
mations of the associated pipe surface with the radius 0, 5.
Piecewise PH curves of degree 9 constructed in the para-
graph 5.1 and composed of 1, 2, 4 and 8 segments are used
as spine curves of the approximations.

for this PH curve. It can be shown, that the error of the pipe surface approximation
behaves as O(h5) (see [23] for similar result using C1 Hermite interpolation).

As an example, Figure 4 shows approximations of the pipe surface with the spine
curve c(t) defined by (5.1). Piecewise PH curves with 1, 2, 4 and 8 segments are
used as spine curves of the rational pipe surfaces.

6. Conclusion

We have solved the C2 Hermite interpolation problem by space Pythagorean
Hodograph curves. As observed in our previous research [21], the interpolation by
curves of degree 7 leads to a highly nonlinear system of equations which does not
always produce real solutions (see also section 3.4 of this paper). In the present pa-
per we have used PH curves of degree 9 and we have shown that a four–dimensional
family of interpolants always exist and can be constructed explicitly.

By using a standard position and by fixing the four free parameters we have iden-
tified the C2 Hermite interpolant p0(t) (see Theorem 4.2) which preserves planarity
of the input data, is invariant under all orthogonal transformation, under scaling
and under reversion of the input data and has approximation order 6. Therefore,
it is the most suitable for applications.
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We have explicitly addressed its use for the conversion of analytical curves into
piecewise PH curves of degree 9 and for approximation of pipe surfaces. Another
natural application of the C2 Hermite interpolation is an acceleration smoothening
of tool paths described in the standard G-code, which is a subject of our current
research and of industrial tests performed by Dr. Elmar Wings at the CNC depart-
ment of ProCom GmbH (Aachen, Germany).

In our constructions, we have used quaternion calculus, as usual for the de-
scription of space PH curves, but we have clarified and simplified the quaternion
manipulations by introducing the commutative multiplication ? (see Def. 2.2) es-
sential for the representation of PH curves. This multiplication also allowed us to
understand planar PH curves as embedded among the space ones via the inclusion

(6.1) (C, ·) ∼= (Qij , ?) ⊂ (Q, ?)

(see Def. 2.7, Lemma 2.8 and Theorem 3.11). This approach is very general and
can be exploited for a systematic unified treatment of space and planar PH curves.
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[17] B. Jüttler and C. Mäurer (1999), Cubic Pythagorean Hodograph Spline Curves and Appli-

cations to Sweep Surface Modeling, Comp.–Aided Design 31, 73–83.



C2 HERMITE INTERPOLATION BY PYTHAGOREAN HODOGRAPH SPACE CURVES 19
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