
9

Intersecting Biquadratic Bézier Surface Patches

Stéphane Chau1, Margot Oberneder2, André Galligo1, and Bert Jüttler2

1 Laboratoire J.A. Dieudonné, Université de Nice - Sophia-Antipolis, France
{chaus,galligo }@math.unice.fr

2 Institute of Applied Geometry, Johannes Kepler University, Austria
{margot.oberneder,bert.juettler }@jku.at

Summary. We present three symbolic–numeric techniques for computing the intersection
and self–intersection curve(s) of two Bézier surface patches of bidegree (2,2). In particular,
we discuss algorithms, implementation, illustrative examples and provide a comparison of the
methods.

9.1 Introduction

The intersection of two surfaces is one of the fundamental operations in Computer
Aided Design (CAD) and solid modeling. Closely related to it, the elimination of
self–intersections (which may arise. e.g., from offsetting) is needed to maintain the
correctness of a CAD model. Tensor–product Bézier surfacepatches, which are para-
metric surfaces defined by vector–valued polynomialsx : [0, 1]2 → R3 of certain
bidegree(m, n), are extensively used to model surfaces in CAD and solid model-
ing. However, even for relatively small bidegreesm, n ≤ 3, the intersection and
self–intersection loci of such patches can be fairly complicated. Consequently, stan-
dard algorithms for surface–surface intersections [24, 28] generally do not take the
properties of special classes of such tensor–product surfaces into account.

In the case of two general surfaces, abrute–force approachto compute the inter-
section curve(s) consists in (step 1) approximating the surface by triangular meshes
and (step 2) intersecting the planar facets of these meshes.Clearly, in order to achieve
high accuracy, a very fine approximation with a mesh may be needed. Alternatively,
one may consider to choose another, more complicated representation, where the ba-
sic elements are capable of capturing more of the geometric features. For instance,
one may choose quadratic triangular patches or biquadratictensor–product patches3.
Clearly, this approach would need robust intersection algorithms for the more com-
plicated basic elements.

3 In the same spirit, Reference [32] proposes to use triangular patches for efficient visualiza-
tion.

162 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

In this paper we address the computation of the intersectioncurve of two sur-
face patches of bidegree (2,2), i.e., biquadratic tensor–product patches. Our aim is to
compute the intersection by using – as far as possible –symbolictechniques, in order
to avoid problems with numerical robustness.

We chose the tensor–product representation, since it is more common in CAD en-
vironment. Approximations of general tensor–product surfaces by biquadratic ones
can easily be generated by combining degree reduction techniques with subdivision.
The techniques presented in this paper can immediately be extended to the case of tri-
angular patches. Indeed, tringular patches can be seen as degenerate tensor–product
patches, where one edge collapses into a single point.

The remainder of the paper is organized as follows. After some preliminaries,
Sections 9.3 to 9.5 present three different techniques for computing the intersection
curves, which are based onresultants, onapproximate implicitization(which was one
of the main research topics in the GAIA II project), and onintersections of parameter
lines, respectively. Section 9.6 discusses the computation of self–intersections. We
apply the three techniques to three representative examples and report the results in
Section 9.7. Finally, we conclude this paper.

9.2 Intersection and self–intersection curves

We consider the intersection curves of two biquadratic Bézier surfacesx(u, v) and
y(r, s), both with parameter domains[0, 1]2. They are assumed to be given by their
parametric representations with rational coefficients (control points). More precisely,
these representations have the form

x(u, v) =

2∑

i=0

2∑

j=0

ci,jBi(u)Bj(v) (9.1)

with certain rational control pointsci,j ∈ Q3 and the quadratic Bernstein polynomi-
alsBj(t) =

(
2
i

)
ti(1 − t)2−i (and similarly for the second patchy(r, s)).

The intersection curve is defined by the system of three non–linear equations

x(u, v) = y(r, s) (9.2)

which defines the intersection as a curve (in the generic case) in [0, 1]4. Similarly,
self intersections of one of the patches are characterized by

x(u, v) = x(ū, v̄). (9.3)

In this case, the set of solutions contains the 2–planeu = u∗, v = v∗ as a trivial
component.

While these equations could be solved by using numerical methods, we plan to
explore how far it is possible to compute the intersections by usingsymboliccompu-
tations, in order to avoid rounding errors and robustness problems.

The “generic” algorithm for computing the (self–) intersection curve(s), consists
of three steps:

9 Intersecting Biquadratic Patches 163

u

v

boundary points

turning points

Fig. 9.1.Intersection curves in one of the parameter domains.

1. Find at least one point on each component of the intersection,
2. trace the segments of the intersection curve, and
3. collect and convert the segments into a format that is suitable for further pro-

cessing (depending on the application).

We will focus on the first step, since the second step is a standard numerical prob-
lem, and step 3 depends on the specific background of the problem. Several parts of
the intersection curve may exist. Some possible types are shown in Fig. 9.1 in the
parameter domain of a Bézier surfacex(u, v). Points with horizontal or vertical tan-
gent are calledturning points, and intersections with the boundaries of the patches
generateboundary points. Note that also isolated points (where both surfaces touch
each other) may exist.

9.3 A resultant–based approach

In this section, we will use the resultant to compute the intersection locus between
x(u, v) andy(r, s). We consider the algebraic variety

C = {(u, v, r, s) | x(u, v) = y(r, s)} (9.4)

and we will suppose thatC ∩ [0, 1]4 is a curve.

9.3.1 Resultant basics

Let f1, f2 andf3 be three polynomials in two variables with given monomial sup-
ports andN the number of terms of these 3 supports. For eachi ∈ {1, 2, 3}we denote
by coeffs(fi) the sequence of the coefficients offi. The resultant off1, f2 andf3 is,
by definition, an irreducible polynomialR in N variables with the property, that

R(coeffs(f1), coeffs(f2), coeffs(f3)) = 0 (9.5)

if and only if these 3 polynomials have a common root in a specified domainD. For
a more precise description of resultants, see e.g. [2, 8, 9].

164 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

In our application to surface–surface–intersections, theresultant can be used as
a projection operator. Indeed, iff1, f2 andf3 are the three components ofx(u, v) −
y(r, s) which are considered as polynomials in the two variablesr ands, then the
resultant off1, f2 andf3 is a polynomialR(u, v) and it gives an implicit plane curve
which corresponds to the projection ofC in the(u, v) parameters. More precisely, if
f1, f2 andf3 are generic, then the two sets

{
(u, v) ∈ [0, 1]2 | R(u, v) = 0

}
(9.6)

and
{
(u, v) ∈ [0, 1]2 | ∃(r, s) ∈ D : x(u, v) = y(r, s)

}
(9.7)

are identical. Several families of multivariate resultants have been studied and some
implementations are available, see [5, 22].

9.3.2 Application to the intersection problem

A strategy to describe the intersection betweenx(u, v) andy(r, s) consists in pro-
jectingC on a plane (by using the resultant). Many authors propose to projectC on
the (u, v) (or (r, s)) plane and then the resulted plane curve is traced (see [16] and
[20] for the tracing method) and is lifted to the 3D space by the corresponding param-
eterization. Note that this method can give some unwanted components (the so called
“phantom components”) which are not inx([0, 1]2) ∩ y([0, 1]2). So, another step is
needed to cut off the extraneous branches. This last part canbe done with a solver for
multivariate polynomial systems (see [25]) or an inversionof parameterization (see
[3]).

As an alternative to these existing approaches, we propose to project the setC
onto the(u, r) space. Note that, in the equationsx(u, v) = y(r, s), the two variables
v ands are separated, so they can be eliminated via a simple resultant computation.
It turns out that such a resultant can be computed via the determinant of a Bezoutian
matrix (see [15]). First, consider the(3, 3) determinant:

b = det

(

x(u, v) − y(r, s),
x(u, v) − x(u, v1)

v − v1
,
y(r, s) − y(r, s1)

s − s1

)

. (9.8)

The determinantb is a polynomial and its monomial support with respect to(v, s)
is S = {1, v, s, vs} and similarly for(v1, s1), whereS1 = {1, v1, s1, v1s1}. So, a
monomial ofb is a product of an element ofS and of an element ofS1 . Then, we
form the4 × 4 matrix whose entries are the coefficients ofb indexed by the product
of the two setsS andS1. This matrix contains only the variablesu andr and is called
the Bezoutian matrix. In our case, its determinant is a polynomial in (u, r) equal to
the desired resultantR(u, r) (deg(R)=24 and degu(R)=degr(R)=16) and it gives an
implicit curve which corresponds to the projection ofC in the(u, r) space.

Then, we analyse the topology of this curve (see [17] and [30]) and we trace it
(see [16] and [20]). Finally, for each(u0, r0) ∈ [0, 1]2 such thatR(u0, r0) = 0, we
can determine if there exists a pair(v0, s0) ∈ [0, 1]2 such thatx(u0, v0) = y(r0, s0)

9 Intersecting Biquadratic Patches 165

(solve a polynomial system of three equations with two separated unknowns of bide-
gree (2,2)) and thus we can avoid the problem of the phantom components (see Fig.
9.2). We lift the obtained points in the 3D space to give the intersection locus. Note
that this method can also give the projection ofC in the(v, s) space by the same kind
of computation.

rr

uu

1

1

1

1

0.8

0.8

0.8

0.8

0.6

0.6

0.6

0.6

0.4

0.4

0.4

0.4

0.2

0.2

0.2

0.2 00

Fig. 9.2.Projection ofC in the (u, r) space with (left) and without (right) phantom compo-
nents. This curve corresponds to the example of Figure 9.6, page 175.

9.4 Approximate implicitization by a quartic surface

In this section, we apply the technique of approximate implicitization to compute the
intersection of two biquadratic patches.

9.4.1 Approximate implicitization

The implicitization problem – which consists in finding an implicit equation (an al-
gebraic representation) for a given parameterized rational surface – can be adressed
by using several approaches, e.g., using resultants or Groebner bases [8, 9, 18]. How-
ever, the implicitization is very time consuming because ofthe degree of the implicit
equation: for a generic parameterized surface of bidegree (n1,n2), the implicit equa-
tion has degree2n1n2. Also, all rational parametric curves and surfaces have an al-
gebraic representation, but the reverse is not true; the relationship between the para-
metric and the algebraic representations can be very complex (problem of “phantom
components”). Thus, we can try to find an algebraic approximation of a given pa-
rameterized surface for which the computation is more efficient and which contains
less phantom components.

Consider a polynomial parameterized surfacex(u, v) with the domain[0, 1]2,
and letd be a positive integer (the degree of the approximate implicit equation) and

166 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

ǫ ≥ 0 (the tolerance). Following [12], the approximate implicitization problem con-
sists in finding a non–zero polynomialP ∈ R[x, y, z] of degreed such that

∀(u, v) ∈ [0, 1]2, P (x(u, v) + α(u, v) g(u, v)) = 0 (9.9)

with |α(u, v)| ≤ ǫ and ||g(u, v)||2 = 1. Here,α is the error function andg is the
direction for error measurement, e.g., the unit normal direction of the surface patch.

9.4.2 Approximate implicitization of a biquadratic surface

The main question of the approximate implicitization problem is how to choose the
degree. A key ingredient for this choice seems to be the topology, especially if the ini-
tial surface has self–intersections. The use of degree 4 wassuggested by Tor Dokken;
after several experiments he concluded that the algebraic surfaces of degree 4 pro-
vide sufficiently many degrees of freedom to approximate most cases encountered in
practice. In the case of a biquadratic surface, where the exact implicit equation has
degree 8, using degree 4 seems to be a reasonable trade-off.

We describe two methods for approximate implicitization bya quartic for a bi-
quadratic surface. The approximate implicit equation is

P (x, y, z) =

4∑

i=0

4−i∑

j=0

4−i−j
∑

k=0

bijk xiyjzk (9.10)

with the unknown coefficientsb = (b000, b100, . . . , b004) ∈ R35. Let β(u, v) be the
vector formed by the tensor–product Bernstein polynomialsof bidegree (8,8).

Dokken’s method.

This method, which is described in more detail in [12], proceeds as follows:

1. FactorizeP (x(u, v)) = (Db)T β(u, v) whereD is a81 × 35 matrix.
2. Generate a singular values decomposition (SVD) ofD.
3. Chooseb as the vector corresponding to the smallest singular value of D.

Note that this method is general and does not use the fact thatwe have a biquadratic
surface. Hereafter, we use an adapted method based on the geometry of the surface
of bidegree (2,2). Also, the computation of the singular value decomposition needs
floating point numbers.

Geometric method using evaluation:

This approach consists in constructing some pertinent geometrical constraints to give
a linear system of equations (with the unknownsb000, b100, . . . , b004), and then solv-
ing the resulting system by a singular values decomposition. In our method, we char-
acterize some conics, especially the four border conics andtwo interior conics:

9 Intersecting Biquadratic Patches 167

Fig. 9.3.Characterization of a conic in a biquadratic patch by 9 points

C1 = x([0, 1] × {0}), C2 = x([0, 1] × {1})
C3 = x({0} × [0, 1]), C4 = x({1} × [0, 1])
C5 = x({ 1

2} × [0, 1]), C6 = x([0, 1] × { 1
2})

(9.11)

Lemma 1. If the quartic surface{P = 0} contains 9 points of any of the 6 conics
Ci, thenCi ⊂ {P = 0}, see Fig. 9.3.

Proof. Ci is of degree 2 andP is of degree 4, so by Bézout’s theorem, if there are
more than 8 elements inCi ∩ {P = 0}, thenCi ⊂ {P = 0}.

Using this geometric observation, we construct a linear system and solve it ap-
proximately via SVD; this leads to an algebraic approximation ofx(u, v) by a degree
4 surface.

9.4.3 Application to the intersection problem

In order to compute the intersection curves, we apply the approximate implicitization
to one of the patches and compose it with the second one. This leads to an implicit
representation of the intersection curve in one of the parameter domains, which can
then be traced and analyzed using standard methods for planar algebraic curves.

These two approximate implicitization methods are very efficient and suitable
for general cases, but the results are not always satisfactory. When the given bi-
quadratic patch is simple (i.e. with a certain flatness and without singularity and
self–intersection) the approximation is very close to the initial surface. So, to use this
method for a general biquadratic surface, we combine it, if needed, with a subdivi-
sion method (Casteljau’s algorithm). The advantage is twofold, we exclude domains
without intersections (by using bounding boxes) and avoid some unwanted config-
urations with a curve of self-intersection (use Hohmeyer’scriterion [19]). For more
complicated singularities, the results are definitively not satisfactory.

Note that even if we have a good criterion in the subdivision step, we still may
have problems with phantom components (but in general fewer), so we have to cut
off the extraneous branches as in the resultant method. Thishas to be done carefully

168 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

x(u, v)
π

ζ

π1

π2

r

s
kπ1

kπ2

kπ2

r1

s0 s1

Fig. 9.4.Left: Representation of a parameter line as the intersection of a plane and a quadratic
cylinder. Right: Identifying the intervals with feasible values ofs.

in order to not discard points which do not correspond to phantom components. As
another drawback – because of the various approximations – it is rather difficult to
obtain certified points on the intersection locus. The use ofapproximate implicitiza-
tion is clearly a numerical method, and it can give only approximate answers, even
in the case of exact input.

9.5 Tracing intersections of parameter lines

In order to be able to trace the (self–) intersection curve(s), we have to find at least
one point for each segment. We generate these points by intersecting the parameter
lines of the first Bézier surface with the second one (see also [19]).

9.5.1 Intersection of a parameter line

A parameter line ofx(u, v) for a constant rational valueu = u0 takes the form

p(v) = x(u0, v) = a0(u0) + a1(u0) v + a2(u0) v2

with certain rational coefficient vectorsai ∈ Q3. It is a quadratic Bézier curve, hence
we can represent it as the intersection of aplaneand aquadratic cylinder, see Fig.
9.4, left. Since we are only interested in the intersection of these two surfaces in a
certain region, we introduce two additionalbounding planesπ1 andπ2. In the par-
ticular case that the parameter line is a straight line, we represent it as an intersection
curve of two orthogonal planes.

In order to compute the intersection of the parameter line with the second surface
patchy(r, s), we use the following algorithm.

1. Describe the parameter line as the intersection of a planeand a cylinder.

9 Intersecting Biquadratic Patches 169

2. Intersect the plane with the second patchy(r, s) and compute the intersectionI.
3. Restrict the intersection curve(s)I to the region of interest.
4. Intersect the cylinder with the restricted intersectioncurve(s).

The four steps of the algorithm will now be explained in some more detail.

Defining the plane, the cylinder and the two bounding planes.

The parameter line and its three control points are coplanar. For computing the nor-
mal vectorn of the plane, we have to evaluate the cross product of two difference
vectors of the control points. The plane is given by the zero set of a linear polynomial

π(u0)(x, y, z) = e0(u0) + n1(u0)x + n2(u0) y + n3(u0) z. (9.12)

By extruding the parameter line in the direction of the normal vector of the plane,
we obtain the parametric form of the quadratic cylinder, which intersects the plane
orthogonally,

w(u0)(p, q) = x(u0, p) + q · n. (9.13)

The implicitation of the cylinder is slightly more complicated. There exist two pos-
sibilities: we can either use Sylvester resultants or the method of comparing coeffi-
cients. In both cases we will get an equation of the form

ζ(u0)(x, y, z) := a0(u0) + a1(u0)x + a2(u0) y + a3(u0) z

+ a4(u0)x y + a5(u0)x z + a6(u0) y z

+ a7(u0)x2 + a8(u0) y2 + a9(u0) z2 = 0. (9.14)

Now we have both the plane and the cylinder in their implicit representation. Note
that this is a semi-implicit representation in the sense of [6].

If the parameter line degenerates into a straight line, thenwe choose two planes
through it which intersect orthogonally. Note that we use exact rational arithmetic,
in order to avoid any robustness problems.

Finally, we create the two planesπ1(x, y, z) andπ2(x, y, z) which bound the
parameter line. For instance, one may choose the two normal planes of the parameter
line at its boundary points; this choice is always possible,provided that the curve
segment is not too long (which can be enforced by using subdivision). Alternatively
one may use the planes spanned by the boundary curves, but these planes may have
an additional intersection with the parameter line in the region of interest.

Intersection of the plane and the second patchy(r, s).

Substituting the second Bézier surfacey(r, s) into the equation (9.12) of the plane
leads to a biquadratic equation inr ands. We can treat it as a quadratic polynomial
in r with coefficients depending ons.

π(y(r, s)) = a(s) r2 + b(s) r + c(s) = 0. (9.15)

170 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

For each value ofs, we obtain two solutionsr1(s) andr2(s) of the form

r1,2(s) = − b(s)

2 a(s)
±

√

d(s) with d(s) =
b(s)2

4 a(s)2
− c(s)

a(s)
. (9.16)

These solutions parameterize the two branches of the intersection curveI in thers–
parameter domain of the second patch. By solving several quadratic equations we
determine the intervalsSi,j ⊂ [0, 1], whered(s) ≥ 0 and0 ≤ ri(s) ≤ 1 holds; this
leads to a (list of) feasible domain(s) (i.e., intervals) for each branch of the intersec-
tion curve.

By composing (9.16) withy we obtain the two branchesk1(s) andk2(s) of the
intersection curveI,

k1,2(s) = y(r1,2(s), s) =
1

a(s)2
h(s) ±

√

d(s)

a(s)
l(s) + d(s)m(s) (9.17)

where the components ofh(s), l(s) andm(s) are polynomials of degree6, 4, and2,
respectively.

Restriction to the region of interest.

Since the region of interest is located between the planesπ1(x, y, z) andπ2(x, y, z),
the two inequalities

π1(x, y, z) ≥ 0 and π2(x, y, z) ≤ 0 (9.18)

have to be satisfied. By intersecting each bounding plane with the second Bézier
surfacey(r, s) in a similar way as described forπ(u0)(x, y, z), we obtain

kπ1
(s) := π1(y(r(s), s)) ≥ 0 and kπ2

(s) := π2(y(r(s), s)) ≤ 0 (9.19)

This leads to additional constraints for the feasible values of the parameters. For
each branch of the intersection curve we create the (list of)feasible domain(s) and
store it. The bounds of the intervals can be computed by solving three systems of two
biquadratic equations or – equivalently – by solving a system of three polynomials
of degree 8, which are obtained after eliminating the parameterr. Here, we represent
the polynomials in Bernstein–Bézier form and use a Bézier–clipping–type technique
see [14, 25, 26, 28], applied to floating point numbers.

Example 2.For a parameter lineu = u0 of two biquadratic Bézier surface patches
x(u, v) andy(r, s), Fig. 9.4, right, shows thers–parameter domain of the second
patch. Only the first branchr1(s) of the intersection curve is present. The bounds0 ≤
r ≤ 1 do not impose additional bounds ons in this case. However, the intersection
with the bounding planesπ1 andπ2 produces two additional curves, which have to
be intersected with the curves = r1(s), leading to two boundss0 ands1 of the
feasible domain.

9 Intersecting Biquadratic Patches 171

Intersection of the cylinder and the intersection curves.

We substitute the parametric representation of the intersection curve into the implicit
equation (9.14) of the cylinder and obtain

ζ(u0)(s) = p1(s) + p2(s)
√

d(s) + p3(s)
(√

d(s)
)2

+

+ p4(s)
(√

d(s)
)3

+ p5(s)
(√

d(s)
)4

= 0 (9.20)

where the polynomialspj(s) are of degree 12. In order to eliminate the square root,
we use the following trick. We splitζ(s, d(s)) = A− B, whereA andB contain all
even and odd powers of

√
d, respectively. The equationA − B = 0 is then replaced

with A2 · d(s) − (B ·
√

d(s))2 = 0. This leads to a polynomial of degree 24 in one
variable. After factoring out the discriminant, we obtain apolynomial of degree 16 in
s. Note that this agrees with the theoretical number of intersections of a biquadratic
surface, which has algebraic order 8, with a quadratic curve.

Finally, we solve this polynomial within all the feasible intervals ofs, which were
detected in the previous steps. Until this point we used symbolic computations. Now
– after generating the Bernstein–Bézier representation –we change to floating-point
numbers and use a Bézier–clipping–type method to find all roots within the feasible
domain(s). These roots correspond to intersection points of the parameter line of the
first patch with the second patch.

9.5.2 Global structure of the intersection curve

For each valueu = u0, the parameter linex(u0, v) has a certain number of inter-
section points with the second patch. Ifu0 varies continuously, then the number of
intersection points may change only if

(1) one of the intersection points is at the boundary of one ofthe patches (boundary
points) or

(2) the parameter line of the first patch touches the second patch (turning points) .

The algorithm for analyzing the global structure of the intersection curve proceeds in
two steps: First we detect those values ofu0 where the number of intersection points
changes, and order them. This leads to a sequence of criticalu0– values,

0 = u
(0)
0 < u

(1)
0 < . . . < 1 = u

(K)
0 . (9.21)

In the second step, we analyze the intersection of the parameter linesu0 = (u
(i)
0 +

u
(i+1)
0)/2 with the second patch. Since the number of intersection points between

any two critical values remains constant, we can now either trace the segment us-
ing conventional techniques for tracing surface–surface intersections (see [20]) or
generate more points by analyzing more intersections with parameter lines.

In the remainder of this section we address the computation of the critical u0

values.

172 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

Boundary points.

Such points correspond to intersections of the boundary parameter lines of one sur-
face with the other one. In order to compute them, we apply thealgorithm for inter-
secting parameter lines with a biquadratic patch to the2 ·4 boundary parameter lines
of the two surfaces.

Turning points.

We consider the turning points ofx(u, v) in respect tou. Let yr andys denote the
partial derivatives ofy(r, s). Several possibilities for computing the turning points
exist.

1. The two surfacesx(u0, v) andy(r, s) intersect,x(u0, v) = y(r, s), and the
tangent vector of the parameter line lies in the tangent plane of the second patch,

xu · (yr × ys) = 0. (9.22)

These conditions lead to a system of four polynomial equations for four un-
knowns, which has to be solved foru.

2. By using the previous geometric result, we may eliminate the variablev, as fol-
lows. First, the plane spanned by the parameter line has to contain the point
y(r, s),

π(u0)(y(r, s)) = 0, (9.23)

which gives an equation of degree(6, 2, 2) in (u0, r, s). Second, the cylinder has
to contain the point,

ζ(u0)(y(r, s)) = 0, (9.24)

which leads to an equation of degree(16, 4, 4). Finally, the tangent vector of the
parameter line has to be contained in the tangent plane of thesecond patch. Since
the tangent of the parameter line is parallel to the cross product of the gradient of
the plane and the gradient of the cylinder, the third condition gives an equation
of degree(18, 5, 5),

det [yr, ys, ∇π(u0)(y(r, s)) ×∇ζ(u0)(y(r, s))] = 0. (9.25)

For solving either of these two systems of polynomial equations, we use again a
Bézier–clipping–type algorithm [14, 25, 28].

9.6 Self–intersections of biquadratic surface patches

In order to detect the self–intersection curves of any of thetwo patches, the methods
for surface–surface intersections have to be modified. The computation of the self–
intersection locus by using approximate implicitization is not discussed here, since
it was already treated in [31]. Instead we focus on the other two techniques.

9 Intersecting Biquadratic Patches 173

9.6.1 Resultant-based method

In the parameter domain[0, 1]4, the self–intersection curve of the first patch forms
the set

{
(u1, v1, u2, v2) ∈ [0, 1]4 | (u1, v1) 6= (u2, v2) andx(u1, v1) = x(u2, v2)

}
.

(9.26)
This locus is the real trace of a complex curve. We assume thatit is either empty or of
dimension 0 or 1. We do not consider degenerate cases, such asa plane which is cov-
ered twice. In the examples presented below (see Section 9.7), the self–intersection
locus is a curve inR4.

We use the following change of coordinates to discard the unwanted trivial com-
ponent(u1, v1) = (u2, v2). Let (u2, v1) be a pair of parameters in[0, 1]2, (l, k) ∈ R2

and letu1 = u2 + l, v2 = v1 + lk. If we suppose that we have(u1, v1) 6= (u2, v2),
thenl 6= 0. Hencex(u1, v1) = x(u2, v2) if and only ifx(u2+l, v1) = x(u2, v1+lk).
We suppose now that(u2, v1, l, k) verifies this last relation.

Let T̃ (u2, v1, l, k) be the polynomial1
l
[x(u2 + l, v1) − x(u2, v2 + lk)], its de-

gree in(u2, v1, l, k) is (2, 2, 1, 2) and the monomial support with respect to(l, k)
contains onlyk2l, k, l and1. We can decrease the degree by introducing

T (u2, v1, m, k) = mT̃ (u2, v1,
1

m
, k). (9.27)

Then inT (u2, v1, m, k), the monomial support in(m, k) consists only of1, m, k2

andkm. So, we can writeT in a matrix form:

T (u2, v1, m, k) =





a1(u2, v1) b1(u2, v1) c1(u2, v1) d1(u2, v1)
a2(u2, v1) b2(u2, v1) c2(u2, v1) d2(u2, v1)
a3(u2, v1) b3(u2, v1) c3(u2, v1) d3(u2, v1)











1
m
k2

km







(9.28)
By Cramer’s rule, we get

m =
D2

D1
, k2 =

D3

D1
, and km =

D4

D1
(9.29)

with

D1 =

∣
∣
∣
∣
∣
∣

b1 c1 d1

b2 c2 d2

b3 c3 d3

∣
∣
∣
∣
∣
∣

, D2 =

∣
∣
∣
∣
∣
∣

−a1 c1 d1

−a2 c2 d2

−a3 c3 d3

∣
∣
∣
∣
∣
∣

, D3 =

∣
∣
∣
∣
∣
∣

b1 −a1 d1

b2 −a2 d2

b3 −a3 d3

∣
∣
∣
∣
∣
∣

, D4 =

∣
∣
∣
∣
∣
∣

b1 c1 −a1

b2 c2 −a2

b3 c3 −a3

∣
∣
∣
∣
∣
∣

.

Let Q(u2, v1) be the polynomialQ = D2
4D1 − D2

2D3.

Lemma 3. The implicitly defined curve
{
(u2, v1) ∈ [0, 1]2 | Q(u2, v1) = 0

}
is the

projection of the self–intersection locus (given by the set(9.26) but inC4) into the
parameters domain(u2, v1) ∈ [0, 1]2.

174 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

Fig. 9.5.A self–intersection of a surface with a cuspidal point

Proof. Q(u2, v1) = 0 is the only algebraic relation (of minimal degree) betweenu2

andv1 such that

∀(u2, v1) ∈ [0, 1]2, Q(u2, v1) = 0 ⇒ ∃(m, k) ∈ C2, T (u2, v1, m, k) = 0.

This lemma provides a method to compute the self–intersection locus, we just
have to trace the implicit curveQ(u2, v1) = 0 and for every point(u2, v1) on this
curve, we obtain by continuation the corresponding point(u1, v2) ∈ [0, 1]2 if it
exists (see the results on Fig. 9.9). So it suffices to characterize the bounds of these
segments of curves.

9.6.2 Parameter-line-based method

For computing the self–intersection curves, we use the samealgorithm as described
in Section 9.5. We intersect the surfacex(u0, v) with itself x(r, s). In this case, both
the “plane” equation (9.23) and the “cylinder” equation (9.24) contain the linear
factor(r−u0), which has to be factored out. The computation of turning points as in
section 9.5.2 leads us to two different types: the usual onesand cuspidal points (see
Fig. 9.5).

9.7 Examples

The three methods presented in this paper (using resultants, via approximate implici-
tization, and by analyzing the intersections with parameter lines) work well for most
standard situations usually encountered in practice. In this section, we present three
representative examples. Additional ones are available at[21].

9 Intersecting Biquadratic Patches 175

Fig. 9.6.First example. Left and center: Result of the resultant method after and before elimi-
nating phantom branches. Right: result of the approach using approximate implicitization.

u

v
x(u, v)

r

s
y(r, s)

Fig. 9.7. First example. The intersection curves in the parameter domains of both surface
patches, generated by the parameter–line based technique.Boundary points and turning points
have been marked by grey circles.

9.7.1 First example

We consider two biquadratic surfaces with an open and a closed component of the
intersection curve. The two surfaces have the control points






(
1
7 , 0, 3

5

) (
3
5 , 1

5 , 3
4

) (
1, 0, 7

10

)

(
3
8 , 4

9 , 2
3

) (
2
3 , 3

4 , 1
3

) (
6
7 , 3

8 , 5
7

)

(
1
5 , 6

7 , 4
7

) (
3
4 , 7

8 , 3
4

) (
7
8 , 7

9 , 5
8

)






︸ ︷︷ ︸

x(u,v)

and






(
2
7 , 1

7 , 2
5

) (
3
5 , 1

10 , 2
3

) (
1, 0, 4

5

)

(
3
8 , 4

9 , 2
3

) (
1
3 , 1

2 , 1
) (

5
7 , 3

8 , 2
7

)

(
1
5 , 6

7 , 3
7

) (
3
4 , 7

8 , 5
8

) (
7
8 , 4

7 , 1
2

)






︸ ︷︷ ︸

y(r,s)

.

By using theresultant method, a phantom component appears (see Fig. 9.6, center).
It can be cut off as described in Section 9.3.2 (see Fig. 9.6, left).

Similar to the resultant method, theapproximate implicitizationproduces a phan-
tom component (see Fig. 9.6, right). However, when we cut it off, we obtain only very
few certified points on the intersection locus as described in section 9.4.3.

The parameter-line-based approachfinds both parts of the intersection curve,
but no phantom components. One segment is closed and has two turning points with
respect to each parameteru, v, r ands. The other segment has two boundary points

176 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

u = 0 ands = 1 and also possesses a turning point with respect tov and another one
with respect tor (see Fig. 9.7).

9.7.2 Second example

The control points of the two biquadratic surfaces





(
501
775 , 388

775 , 588
775

) (
347
775 , 276

775 , 479
775

) (
309
775 , 604

775 , 498
775

)

(
553
775 , 454

775 , 293
775

) (
336
775 , 382

775 , 469
775

) (
1, 426

775 , 137
775

)

(
337
775 , 308

775 , 258
775

) (
517
775 , 0, 367

775

) (
533
775 , 492

775 , 564
775

)






︸ ︷︷ ︸

x(u,v)






(
492
775 , 67

155 , 522
775

) (
543
775 , 322

775 , 117
775

) (
346
775 , 13

155 , 4
5

)

(
113
155 , 392

775 , 58
155

) (
632
775 , 469

775 , 413
775

) (
307
775 , 514

775 , 564
775

)

(
602
775 , 129

775 , 274
775

) (
669
775 , 692

775 , 53
155

) (
488
775 , 219

775 , 412
775

)






︸ ︷︷ ︸

y(r,s)

were generated by using a pseudo–random number generator.
The resultant–based techniqueleads to several phantom components (see Fig.

9.8, center), which can be cut off as described previously (see Fig. 9.8, left).
The combined use ofsubdivisionandapproximate implicitizationproduces even

more phantom components (see Fig. 9.8, right). This is due tothe fact that the subdi-
vision generates more implicitly defined surfaces. Eventually we obtain sufficiently
many points to draw the correct intersection curves.

We also computed the self–intersection curve (see Fig. 9.9)with the help of the
method described in Section 9.6.1.

When using theparameter–line based approach, this example does not lead to
any difficulties. The intersection curve consists of three segments (see Fig. 9.10). The
first Bézier surface patchx(u, v) has one self–intersection curve, while the second
oney(r, s) intersects itself three times and has two cuspidal points.

9.7.3 Third example

The two biquadratic surface patches with the control points





(
0, 1

7 , 4
5

) (
3
5 , 1

13 , 1
3

) (
1, 0, 4

5

)

(
1
8 , 4

9 , 11
40

) (
1
3 , 34

65 , 3
4

) (
6
7 , 3

8 ,− 16
35

)

(
1
5 , 6

7 , 4
5

) (
3
4 , 443

520 , 3
8

) (
7
8 , 1, 14

15

)






︸ ︷︷ ︸

x(u,v)

and






(
0, 1

7 , 1
5

) (
3
5 , 1

10 , 1
3

) (
1, 0, 1

5

)

(
1
8 , 4

9 , 7
8

) (
1
3 , 1

2 , 3
4

) (
6
7 , 3

8 , 1
7

)

(
1
5 , 6

7 , 1
5

) (
3
4 , 7

8 , 3
8

) (
7
8 , 1, 1

3

)






︸ ︷︷ ︸

y(r,s)

touch each other along a parameter line.
The resultant-based approachleads to an implicitly defined curve which de-

scribes the intersection. Due to the special situation, it contains the square of this

9 Intersecting Biquadratic Patches 177

Fig. 9.8. Second example: Left and center: result of the resultant method after and before
eliminating phantom branches. Right: result obtained by using approximate implicitization.

Fig. 9.9.Second example: Self intersections, computed with the method described in Section
9.6.1.

u

v x(u, v)

r

s y(r, s)

Fig. 9.10. Second example: Intersection (solid, black) and self–intersection (dashed, grey)
curves in the parameter domains of both surface patches, generated by the parameter–line
based technique. Boundary points and turning points have been marked by grey circles.

178 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

equation. A direct tracing of the curve is difficult, since the use of a standard predic-
tor/corrector method is numerically unstable. However, one may factorize the equa-
tion, and apply the tracing to the individual factors without probems. This leads to
the curve shown in Fig. 9.11, left.

The technique ofapproximate implicitizationis not well suited to deal with this
very specific situation: the approximation produces eitheran empty intersection or
two curves which are close to each other (see Fig. 9.11, right).

Fig. 9.11.Third example. Left: Result of the resultant method and of the parameter–line based
approach. Right: result of the use of approximate implicitization.

Theparameter-line-based approachfinds two boundary points and it produces
– for each value ofu = u0 – the correct intersection point of the parameter line
with the other patch. The convergence of the Bézier clipping slows down to a linear
rate, due to the presence of a double root. Also, it is difficult to trace the intersection
curve by using a geometric predictor/corrector technique.Instead, we computed the
intersection points for many values ofu0 and arrived at a result which is very similar
to Fig. 9.11, left.

9.8 Conclusion

We presented three different algorithms for computing the intersection and self–
intersection curves of two biquadratic Bézier surface patches. We implemented the
methods and applied them to many test cases. Three of them have been presented in
this paper.

Theresultant–based techniquewas able to deal with all test cases. It may produce
additional ‘phantom’ branches, which have to be eliminatedby carefully analyzing
the result of the elimination. As an advantage, one may – in the case of two surface
patches that touch each other – factorize the implicit equation of the intersection
curve, in order to obtain a stable representation, which canthen be traced robustly.

After experimenting withapproximate implicitizationwe arrived at the conclu-
sion that this method is not to be recommended for biquadratic patches. On the one
hand, it is not suited for avoiding problems with phantom branches. On the other

9 Intersecting Biquadratic Patches 179

hand, the use of an approximate technique introduces inaccuracies, which may cause
problems with singular and almost singular situations. We feel that this price for
using a lower degree implicit representation is too high.

Theparameter–line based approachadds some geometric interpretations to the
process of eliminating variables from the problem. As an advantage, it is possible
to correctly establish the region(s) of interest. This avoids problems with unwanted
branches of the (self–) intersection curves. In the case of two touching surfaces,
using this approach becomes more expensive, since standardtechniques for tracing
the intersection cannot be applied.

Acknowledgment

This research was supported by the European Union through project IST 2001–
35512 ‘Intersection algorithms for geometry based IT applications using approxi-
mate algebraic methods’ (GAIA II), by the Austrian Science Fund through the Joint
Research Programme FSP S92 ‘Industrial Geometry’, and by Aim@Shape (IST NoE
506766).

References

1. L. Andersson, J. Peters, and N. Stewart, Self-intersection of composite curves and sur-
faces,Computer Aided Geometric Design, 15 (1998), pp. 507–527.

2. L. Busé, Etude du résultant sur une variété algébrique, PhD thesis, University of Nice,
December 2001.

3. L. Busé and C. D’Andrea, Inversion of parameterized hypersurfaces by means of subre-
sultants,Proceedings ACM of the ISSAC 2004, pp. 65–71.

4. L. Busé, M. Elkadi, and B. Mourrain, Using projection operators in Computer Aided
Geometric Design,In Topics in Algebraic Geometry and Geometric Modeling, pp. 321–
342, Contemporary Mathematics, AMS, 2003.

5. L. Busé, I.Z. Emiris and B. Mourrain,MULTIRES, http://www-sop.inria.
fr/galaad/logiciels/multires.

6. L. Busé and A. Galligo, Using semi-implicit representation of algebraic surfaces,Pro-
ceedings of the SMI 2004 conference, IEEE Computer Society, pp. 342–345.

7. E.W. Chionh and R.N. Goldman, Using multivariate resultants to find the implicit equa-
tion of a rational surface,The Visual Computer 8 (1992), pp. 171–180.

8. D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms,Springer-Verlag, New
York, 1992 and 1997.

9. D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry,Springer-Verlag, New York,
1998.

10. C. D’Andrea, Macaulay style formulas for sparse resultants, Trans. Amer. Math. Soc.,
354(7) (2002), pp. 2595–2629.

11. T. Dokken, Aspects of Intersection Algorithms and Approximation,Thesis for the doctor
philosophias degree, University of Oslo, Norway 1997.

12. T. Dokken, Approximate implicitization,Mathematical Methods for Curves and Surfaces,
T. Lyche and L.L. Schumaker (eds.), Vanderbilt University Press, 2001, pp. 81–102.

180 S. Chau, M. Oberneder, A. Galligo and B. Jüttler

13. T. Dokken and J.B. Thomassen, Overview of Approximate Implicitization,Topics in Al-
gebraic Geometry and Geometric modeling, ed. Ron Goldman and Rimvydas Krasauskas,
AMS series on Contemporary Mathematics CONM 334, 2003, pp. 169–184.

14. G. Elber and M-S. Kim, Geometric Constraint Solver usingMultivariate Rational Spline
Functions,The Sixth ACM/IEEE Symposium on Solid Modeling and Applications, 2001,
pp. 1–10.

15. M. Elkadi and B. Mourrain, Some applications of Bezoutians in Effective Algebraic Ge-
ometry,Rapport de Recherche 3572, INRIA, Sophia Antipolis, 1998.

16. G. Farin, J. Hoschek and M-S. Kim, Handbook of Computer Aided Geometric Design,
Elsevier, 2002.

17. L. González-Vega and I. Necula, Efficient topology determination of implicitly defined
algebraic plane curves,Comput. Aided Geom. Design, 19(9) (2002), pp. 719–743.

18. C. M. Hoffmann, Implicit Curves and Surfaces in CAGD,Comp. Graphics and Appl.
(1993), pp. 79–88.

19. M. E. Hohmeyer, A Surface Intersection Algorithm Based on Loop Detection,ACM Sym-
posium on Solid Modeling Foundations and CAD/CAM Applications, 1991, pp. 197–207.

20. J. Hoschek and D. Lasser, Fundamentals of Computer AidedGeometric Design,A.K.
Peters, 1993.

21. S. Chau and M. Oberneder,http://www.ag.jku.at/˜margot/biquad
22. A. Khetan, The resultant of an unmixed bivariate system,J. of Symbolic Computation, 36

(2003), pp. 425–442. http://www.math.umass.edu/∼khetan/software.html
23. S. Krishnan and D. Manocha, An Efficient Surface Intersection Algorithm Based on

Lower-Dimensional Formulation,ACM Transactions on Graphics, 16(1) (1997), pp. 74–
106.

24. L. Kunwoo, Principles of CAD/CAM/CAE Systems,Addison-Wesley, 1999.
25. B. Mourrain and J.-P. Pavone, Subdivision methods for solving polynomial equations,

Technical Report 5658, INRIA Sophia-Antipolis, 2005.
26. T. Nishita, T.W. Sederberg and M. Kakimoto, Ray tracing trimmed rational surface

patches,Siggraph, 1990, pp. 337–345.
27. N.M. Patrikalakis, Surface-to-surface intersections, IEEE Computer Graphics and Appli-

cations, 13(1) (1993), pp. 89–95.
28. N. Patrikalakis and T. Maekawa, Chapter 25: Intersection problems, Handbook of Com-

puter Aided Geometric Design (G. Farin and J. Hoschek and M.-S. Kim, eds.),Elsevier,
2002.

29. J.-P. Pavone, Auto-intersection des surfaces paramétrées réelles,Thèse d’informatique de
l’Université de Nice Sophia-Antipolis, Décembre 2004.

30. J.P. Técourt, Sur le calcul effectif de la topologie de courbes et surfaces implicites,PhD
thesis in Computer Science at INRIA Sophia-Antipolis, Décembre 2005.

31. J.B. Thomassen, Self-Intersection Problems and Approximate Implicitization,Computa-
tional Methods for Algebraic Spline Surfaces, Springer, pp. 155–170, 2005.

32. A. Vlachos, J. Peters, C. Boyd and J. L. Mitchell, Curved PN Triangles, Symposium on
Interactive 3D Graphics, Bi-Annual Conference Series, ACMPress, 2001, 159–166.

