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Summary. We present three symbolic—humeric techniques for comgutie intersection
and self—intersection curve(s) of two Bézier surface lpegoof bidegree (2,2). In particular,
we discuss algorithms, implementation, illustrative epbea and provide a comparison of the
methods.

9.1 Introduction

The intersection of two surfaces is one of the fundamentatatjpns in Computer
Aided Design (CAD) and solid modeling. Closely related tatlite elimination of
self—intersections (which may arise. e.g., from offseftiis needed to maintain the
correctness of a CAD model. Tensor—product Bézier sugatehes, which are para-
metric surfaces defined by vector—valued polynomiats|0, 11> — RR3 of certain
bidegree(m, n), are extensively used to model surfaces in CAD and solid trode
ing. However, even for relatively small bidegreesn < 3, the intersection and
self-intersection loci of such patches can be fairly coogtéd. Consequently, stan-
dard algorithms for surface—surface intersections [2} g&8erally do not take the
properties of special classes of such tensor—productcasfato account.

In the case of two general surfacedfrate—force approacto compute the inter-
section curve(s) consists in (step 1) approximating théasarby triangular meshes
and (step 2) intersecting the planar facets of these meShezsly, in order to achieve
high accuracy, a very fine approximation with a mesh may bdexteAlternatively,
one may consider to choose another, more complicated egeg®n, where the ba-
sic elements are capable of capturing more of the geomeitaitifes. For instance,
one may choose quadratic triangular patches or biquadeaisor—product patchés
Clearly, this approach would need robust intersectionrélyos for the more com-
plicated basic elements.

% In the same spirit, Reference [32] proposes to use triangalahes for efficient visualiza-
tion.
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In this paper we address the computation of the intersectiove of two sur-
face patches of bidegree (2,2), i.e., biquadratic tensodtzt patches. Our aim is to
compute the intersection by using — as far as possibiembolictechniques, in order
to avoid problems with numerical robustness.

We chose the tensor—product representation, since it is oionmon in CAD en-
vironment. Approximations of general tensor—productaces by biquadratic ones
can easily be generated by combining degree reductionitpegswith subdivision.
The techniques presented in this paper can immediatelytbadad to the case of tri-
angular patches. Indeed, tringular patches can be seelgasatate tensor—product
patches, where one edge collapses into a single point.

The remainder of the paper is organized as follows. Afteres@meliminaries,
Sections 9.3 to 9.5 present three different techniquesdiompaiting the intersection
curves, which are based agsultantsonapproximate implicitizatiowhich was one
of the main research topics in the GAIA |l project), anditersections of parameter
lines respectively. Section 9.6 discusses the computationlbfistersections. We
apply the three techniques to three representative exarapbtéreport the results in
Section 9.7. Finally, we conclude this paper.

9.2 Intersection and self—intersection curves

We consider the intersection curves of two biquadratici®ézurfacesc(u, v) and
y(r, s), both with parameter domairig, 1]2. They are assumed to be given by their
parametric representations with rational coefficientsi{ja points). More precisely,
these representations have the form

X(U,’U) = ZZC1]B7(U)BJ(U) (91)

i=0 j=0

with certain rational control points; ; € Q* and the quadratic Bernstein polynomi-
als B;(t) = (3)t'(1 — t)>~* (and similarly for the second patgfr, s)).
The intersection curve is defined by the system of three foeed equations

x(u,v) =y(r,s) (9.2)

which defines the intersection as a curve (in the generic) ¢age, 1]*. Similarly,
self intersections of one of the patches are characteriged b

x(u,v) = x(u, v). (9.3)

In this case, the set of solutions contains the 2—plane v*, v = v* as a trivial
component.

While these equations could be solved by using numericahodst we plan to
explore how far it is possible to compute the intersectignasingsymboliccompu-
tations, in order to avoid rounding errors and robustnesklpms.

The “generic” algorithm for computing the (self-) interen curve(s), consists
of three steps:
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Fig. 9.1.Intersection curves in one of the parameter domains.

=

Find at least one point on each component of the intersecti

trace the segments of the intersection curve, and

3. collect and convert the segments into a format that isabl@tfor further pro-
cessing (depending on the application).

N

We will focus on the first step, since the second step is a atdmtlimerical prob-
lem, and step 3 depends on the specific background of thegmnoleveral parts of
the intersection curve may exist. Some possible types awrsim Fig. 9.1 in the
parameter domain of a Bézier surfade:, v). Points with horizontal or vertical tan-
gent are calledurning points, and intersections with the boundaries of the patches
generatdoundary points Note that also isolated points (where both surfaces touch
each other) may exist.

9.3 A resultant—based approach

In this section, we will use the resultant to compute therggetion locus between
x(u,v) andy(r, s). We consider the algebraic variety

C ={(u,v,r,s) | x(u,v) =y(r,s)} (9.4)

and we will suppose thatn [0, 1]* is a curve.

9.3.1 Resultant basics

Let f1, fo and f3 be three polynomials in two variables with given monomigd-su
ports andV the number of terms of these 3 supports. For éaeH 1, 2, 3} we denote
by coeffs(f;) the sequence of the coefficients4f The resultant of, fo andf5 is,
by definition, an irreducible polynomid in N variables with the property, that

R(coeffq f1), coeffq f2), coeff{ f3)) = 0 (9.5)

if and only if these 3 polynomials have a common root in a dggtdomainD. For
a more precise description of resultants, see e.g. [2, 8, 9].
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In our application to surface—surface—intersectionsydiseltant can be used as
a projection operator. Indeed, ff, f> and f5 are the three componentsxfu, v) —
y(r, s) which are considered as polynomials in the two variablesds, then the
resultant off,, f> andfs is a polynomialR(u, v) and it gives an implicit plane curve
which corresponds to the projection®fn the (u, v) parameters. More precisely, if
f1, f2 and f3 are generic, then the two sets

{(u,v) e [o, 1]2 | R(u,v) = O} (9.6)

and
{(u,v) €0, 11?1 3(r,s) € D : x(u,v) = y(r,s)} (9.7)

are identical. Several families of multivariate resulsmave been studied and some
implementations are available, see [5, 22].

9.3.2 Application to the intersection problem

A strategy to describe the intersection betwe€n, v) andy(r, s) consists in pro-
jectingC on a plane (by using the resultant). Many authors proposedieqiC on
the (u,v) (or (r, s)) plane and then the resulted plane curve is traced (see fith] a
[20] for the tracing method) and is lifted to the 3D space ®/dbrresponding param-
eterization. Note that this method can give some unwantegbooents (the so called
“phantom components”) which are notit[0, 1]2) Ny ([0, 1]?). So, another step is
needed to cut off the extraneous branches. This last paltecdone with a solver for
multivariate polynomial systems (see [25]) or an inversibparameterization (see
(3]).

As an alternative to these existing approaches, we propopeject the sef
onto the(u, ) space. Note that, in the equation@:, v) = y(r, s), the two variables
v ands are separated, so they can be eliminated via a simple resatienputation.
It turns out that such a resultant can be computed via therdetant of a Bezoutian
matrix (see [15]). First, consider tl{8, 3) determinant:

b = det (X(u, v) —y(r,s), x(u,0) = x(u,v) y(rs) = y(r 51)) . (9.8)

v — v ’ 5— 51

The determinant is a polynomial and its monomial support with respectos)
isS = {1,v,s,vs} and similarly for(v1, s1), whereS; = {1,v1, s1,v181}. So, a
monomial ofb is a product of an element of and of an element of; . Then, we
form the4 x 4 matrix whose entries are the coefficientdahdexed by the product
of the two setsS andS; . This matrix contains only the variablesandr and is called
the Bezoutian matrix. In our case, its determinant is a patyial in (u, ) equal to
the desired resultai?(u, ) (deg(R)=24 and deg(R)=deg.(R)=16) and it gives an
implicit curve which corresponds to the projectiontoin the (u, ) space.

Then, we analyse the topology of this curve (see [17] and)[80§ we trace it
(see [16] and [20]). Finally, for eadug, 7o) € [0, 1]? such thatR(ug, o) = 0, we
can determine if there exists a péif, so) € [0, 1]? such that(ug, vo) = y(ro, s0)
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(solve a polynomial system of three equations with two sajearunknowns of bide-
gree (2,2)) and thus we can avoid the problem of the phantenpoaents (see Fig.
9.2). We lift the obtained points in the 3D space to give thersection locus. Note
that this method can also give the projectior€afi the (v, s) space by the same kind
of computation.

1 1
0.8 0.8
0.6 0.6
r T
0.4 0.4
0.2 0.2
o 0.2 0.4 ,06 0.8 1 0 0.2 0.4 ,06 0.8 1
u u

Fig. 9.2. Projection ofC in the (u,r) space with (left) and without (right) phantom compo-
nents. This curve corresponds to the example of Figure ade p75.

9.4 Approximate implicitization by a quartic surface

In this section, we apply the technique of approximate ioigiiation to compute the
intersection of two biquadratic patches.

9.4.1 Approximate implicitization

The implicitization problem — which consists in finding angiicit equation (an al-
gebraic representation) for a given parameterized rdtsuréace — can be adressed
by using several approaches, e.g., using resultants ob@eobases [8, 9, 18]. How-
ever, the implicitization is very time consuming becausthefdegree of the implicit
equation: for a generic parameterized surface of bidegrged), the implicit equa-
tion has degreen,ns. Also, all rational parametric curves and surfaces havd-an a
gebraic representation, but the reverse is not true; tiadisakhip between the para-
metric and the algebraic representations can be very carfipleblem of “phantom
components”). Thus, we can try to find an algebraic approtionaf a given pa-
rameterized surface for which the computation is more efficand which contains
less phantom components.

Consider a polynomial parameterized surfage, v) with the domain|0, 1],
and letd be a positive integer (the degree of the approximate int@ipuation) and
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e > 0 (the tolerance). Following [12], the approximate implizdtion problem con-
sists in finding a non—zero polynomiBl € R[z, y, z] of degreed such that

V(u,v) € [0,1]?, P (x(u,v) + a(u,v) g(u,v)) = 0 (9.9)

with |a(u, v)| < e and||g(u,v)||2 = 1. Here,« is the error function and is the
direction for error measurement, e.g., the unit normalddiioa of the surface patch.

9.4.2 Approximate implicitization of a biquadratic surface

The main question of the approximate implicitization peshlis how to choose the
degree. A key ingredient for this choice seems to be the tggypéspecially if the ini-
tial surface has self—intersections. The use of degree 4uggested by Tor Dokken;
after several experiments he concluded that the algebudiaces of degree 4 pro-
vide sufficiently many degrees of freedom to approximatetrmases encountered in
practice. In the case of a biquadratic surface, where thet @xglicit equation has
degree 8, using degree 4 seems to be a reasonable trade-off.

We describe two methods for approximate implicitizationebguartic for a bi-
quadratic surface. The approximate implicit equation is

4 4— 74—7—J

i=0 j=0 k=0

with the unknown coefficients = (booo, b100, - - -, boos) € R3®. Let B(u,v) be the
vector formed by the tensor—product Bernstein polynonufksidegree (8,8).

Dokken’s method.

This method, which is described in more detail in [12], pexteas follows:

1. FactorizeP(x(u,v)) = (Db)T 8(u,v) whereD is a81 x 35 matrix.
2. Generate a singular values decomposition (SVO) of
3. Choos# as the vector corresponding to the smallest singular vlde o

Note that this method is general and does not use the factvthhaive a biquadratic
surface. Hereafter, we use an adapted method based on timeiggof the surface

of bidegree (2,2). Also, the computation of the singulaueallecomposition needs
floating point numbers.

Geometric method using evaluation:

This approach consists in constructing some pertinent g&ial constraints to give
a linear system of equations (with the unknowgs, b100, - - - , boos), and then solv-
ing the resulting system by a singular values decompositioour method, we char-
acterize some conics, especially the four border conicswadhterior conics:



9 Intersecting Biquadratic Patches 167

An interior conic
|

A border conic
1

Fig. 9.3.Characterization of a conic in a biquadratic patch by 9 @oint

Cr = x(0,1] x {0)), C =x(0,1] x {1})
Cy = x({0} x [0,1]), Cy = x({1} x [0,1]) (9.11)
Cs = x({1} x [0,1]), Cs =x([0.1] x {3})

Lemma 1. If the quartic surface{ P = 0} contains 9 points of any of the 6 conics
C;, thenC; C {P = 0}, see Fig. 9.3.

Proof. C; is of degree 2 and is of degree 4, so by Bézout’s theorem, if there are
more than 8 elements if; N {P = 0}, thenC; C {P = 0}.

Using this geometric observation, we construct a lineatesysand solve it ap-
proximately via SVD; this leads to an algebraic approxiwatfx(u, v) by a degree
4 surface.

9.4.3 Application to the intersection problem

In order to compute the intersection curves, we apply thea@mate implicitization
to one of the patches and compose it with the second one. dduils Ito an implicit
representation of the intersection curve in one of the patandomains, which can
then be traced and analyzed using standard methods for gllredraic curves.

These two approximate implicitization methods are veryciffit and suitable
for general cases, but the results are not always satisjadhen the given bi-
quadratic patch is simple (i.e. with a certain flatness antiouit singularity and
self—intersection) the approximation is very close to ttigl surface. So, to use this
method for a general biquadratic surface, we combine itedded, with a subdivi-
sion method (Casteljau’s algorithm). The advantage isaWipive exclude domains
without intersections (by using bounding boxes) and avoide unwanted config-
urations with a curve of self-intersection (use Hohmeyetiterion [19]). For more
complicated singularities, the results are definitively satisfactory.

Note that even if we have a good criterion in the subdivisitep swe still may
have problems with phantom components (but in general fewemwe have to cut
off the extraneous branches as in the resultant method h@kiso be done carefully
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Fig. 9.4.Left: Representation of a parameter line as the intersectia plane and a quadratic
cylinder. Right: Identifying the intervals with feasiblalues ofs.

in order to not discard points which do not correspond to pirarcomponents. As
another drawback — because of the various approximatiohs—+dther difficult to
obtain certified points on the intersection locus. The usgppiroximate implicitiza-
tion is clearly a numerical method, and it can give only agpnate answers, even
in the case of exact input.

9.5 Tracing intersections of parameter lines

In order to be able to trace the (self-) intersection cujy@&s have to find at least
one point for each segment. We generate these points bgécterg the parameter
lines of the first Bézier surface with the second one (sex[aB]).

9.5.1 Intersection of a parameter line
A parameter line ok(u, v) for a constant rational value = v, takes the form
p(v) = x(up,v) = ag(ug) + ay(up) v + as(ug) v2

with certain rational coefficient vectosas € Q3. Itis a quadratic Bézier curve, hence
we can represent it as the intersection glaneand aquadratic cylinder see Fig.
9.4, left. Since we are only interested in the intersectibthese two surfaces in a
certain region, we introduce two additiortadunding planesr; andr,. In the par-
ticular case that the parameter line is a straight line, weagent it as an intersection
curve of two orthogonal planes.

In order to compute the intersection of the parameter lirik thie second surface
patchy(r, s), we use the following algorithm.

1. Describe the parameter line as the intersection of a @ade cylinder.
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2. Intersect the plane with the second pat¢h s) and compute the intersecti@n
3. Restrict the intersection curve(g}o the region of interest.
4. Intersect the cylinder with the restricted intersectanve(s).

The four steps of the algorithm will now be explained in son@erdetail.

Defining the plane, the cylinder and the two bounding planes.

The parameter line and its three control points are copl&waircomputing the nor-
mal vectorn of the plane, we have to evaluate the cross product of twerdiffce
vectors of the control points. The plane is given by the zetofa linear polynomial

m(uo) (2, y,z) = eo(uo) + n1(uo) « + n2(uo) y + n3(uo) 2. (9.12)

By extruding the parameter line in the direction of the ndruetor of the plane,
we obtain the parametric form of the quadratic cylinder,akhintersects the plane
orthogonally,

w(uo)(p, q) = x(uo,p) + ¢ - n. (9.13)

The implicitation of the cylinder is slightly more compliea. There exist two pos-
sibilities: we can either use Sylvester resultants or ththoteof comparing coeffi-
cients. In both cases we will get an equation of the form

((uo)(z,y, 2) == ao(uo) + a1(uo) @ + az(uo) y + az(uo) 2
+as(up) xy + as(up) z z + ag(uo) y 2
+ar(ug) 2 + as(uo) y> + ag(ug) 2> = 0. (9.14)

Now we have both the plane and the cylinder in their impliefinesentation. Note
that this is a semi-implicit representation in the sensépf [

If the parameter line degenerates into a straight line, techoose two planes
through it which intersect orthogonally. Note that we usaatxational arithmetic,
in order to avoid any robustness problems.

Finally, we create the two planes (z,y, z) andm(z,y, z) which bound the
parameter line. For instance, one may choose the two notare of the parameter
line at its boundary points; this choice is always possipteyided that the curve
segment is not too long (which can be enforced by using sigidi). Alternatively
one may use the planes spanned by the boundary curves, batdlames may have
an additional intersection with the parameter line in thggae of interest.

Intersection of the plane and the second patcly(r, s).

Substituting the second Bézier surfage:, s) into the equation (9.12) of the plane
leads to a biquadratic equationsirands. We can treat it as a quadratic polynomial
in r with coefficients depending on

m(y(r,s)) = a(s)r* +b(s)r + c(s) = 0. (9.15)
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For each value of, we obtain two solutions; (s) andrs(s) of the form

s _ s)2  c(s
r1,2(s) = —;J;(Z) ++/d(s) with d(s) = 4b£(i)2 - %. (9.16)

These solutions parameterize the two branches of the éutigos curver in thers—
parameter domain of the second patch. By solving severalrgtia equations we
determine the intervals; ; C [0, 1], whered(s) > 0 and0 < r;(s) < 1 holds; this
leads to a (list of) feasible domain(s) (i.e., intervalg)dach branch of the intersec-
tion curve.

By composing (9.16) witly we obtain the two branchés (s) andks(s) of the
intersection curv&,

\(s) +d(s)m(s)  (9.17)

ki2(s) =y(r1,2(s),s) = (S)Qh(s) +

where the components bf s), 1(s) andm(s) are polynomials of degreg 4, and2,
respectively.

Restriction to the region of interest.

Since the region of interest is located between the planes y, z) andms (z, y, 2),
the two inequalities

m(z,y,2) >0 and mwa(z,y,2) <0 (9.18)

have to be satisfied. By intersecting each bounding planie thiZ second Bézier
surfacey(r, s) in a similar way as described fat(uo)(x, y, z), we obtain

kr (s) :==m(y(r(s),s)) >0 and  kn,(s) :=m(y(r(s),s)) <0 (9.19)

This leads to additional constraints for the feasible valokthe parametes. For
each branch of the intersection curve we create the (listea®ible domain(s) and
store it. The bounds of the intervals can be computed byrsplviree systems of two
biquadratic equations or — equivalently — by solving a systé three polynomials
of degree 8, which are obtained after eliminating the patameHere, we represent
the polynomials in Bernstein—Bézier form and use a Bézigrping—type technique
see [14, 25, 26, 28], applied to floating point numbers.

Example 2For a parameter line = ug of two biquadratic Bézier surface patches
x(u,v) andy(r, s), Fig. 9.4, right, shows thes—parameter domain of the second
patch. Only the first branch (s) of the intersection curve is present. The bounds

r < 1 do not impose additional bounds ern this case. However, the intersection
with the bounding planes, andm, produces two additional curves, which have to
be intersected with the curve = r(s), leading to two bounds, and s; of the
feasible domain.
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Intersection of the cylinder and the intersection curves.

We substitute the parametric representation of the intéosecurve into the implicit
equation (9.14) of the cylinder and obtain

C(u)(s) = pi(s) + pa(s) V/d(s) + ps(s) ( d(s))2—|—
+pals) ( d(s))3+p5(s) ( d(s))4 =0 (9.20)

where the polynomials;(s) are of degree 12. In order to eliminate the square root,
we use the following trick. We spli(s, d(s)) = A — B, whereA and B contain alll
even and odd powers afd, respectively. The equatiohh — B = 0 is then replaced
with A% . d(s) — (B - 1/d(s))? = 0. This leads to a polynomial of degree 24 in one
variable. After factoring out the discriminant, we obtaipaynomial of degree 16 in
s. Note that this agrees with the theoretical number of ietiens of a biquadratic
surface, which has algebraic order 8, with a quadratic curve

Finally, we solve this polynomial within all the feasiblaenvals ofs, which were
detected in the previous steps. Until this point we used sjimbomputations. Now
— after generating the Bernstein—Bézier representatioe ehange to floating-point
numbers and use a Bézier—clipping—type method to find atsraithin the feasible
domain(s). These roots correspond to intersection pofriteegparameter line of the
first patch with the second patch.

9.5.2 Global structure of the intersection curve

For each value: = wg, the parameter lin&(ug, v) has a certain number of inter-
section points with the second patchulf varies continuously, then the number of
intersection points may change only if

(1) one of the intersection points is at the boundary of onté@patches (boundary
points) or
(2) the parameter line of the first patch touches the secotath gairning points) .

The algorithm for analyzing the global structure of the iséetion curve proceeds in
two steps: First we detect those values@fivhere the number of intersection points
changes, and order them. This leads to a sequence of ctigicalalues,

0=ul” <ul’ <...<1=ul. (9.21)

In the second step, we analyze the intersection of the paeateesu, = (u((f) +
uff“))/Q with the second patch. Since the number of intersectiontpdiatween
any two critical values remains constant, we can now eitfametthe segment us-
ing conventional techniques for tracing surface—surfatersections (see [20]) or
generate more points by analyzing more intersections veathrpeter lines.

In the remainder of this section we address the computafidheocritical g
values.
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Boundary points.

Such points correspond to intersections of the boundanpeter lines of one sur-
face with the other one. In order to compute them, we applatperithm for inter-
secting parameter lines with a biquadratic patch t@theboundary parameter lines
of the two surfaces.

Turning points.

We consider the turning points afu, v) in respect tau. Lety, andy, denote the
partial derivatives ofy(r, s). Several possibilities for computing the turning points
exist.

1. The two surfacex(ug,v) andy(r,s) intersectx(ug,v) = y(r,s), and the
tangent vector of the parameter line lies in the tangentgptdithe second patch,

Xy (Yr X ys) = 0. (9.22)

These conditions lead to a system of four polynomial equatior four un-
knowns, which has to be solved for
2. By using the previous geometric result, we may eliminlageviariablev, as fol-
lows. First, the plane spanned by the parameter line hasritaicothe point
y(r,s),
W(UO)(Y(Ta S)) =0, (923)

which gives an equation of degrég 2, 2) in (uo, r, s). Second, the cylinder has
to contain the point,

C(uo)(y(r,s)) =0, (9.24)

which leads to an equation of degr@é, 4, 4). Finally, the tangent vector of the
parameter line has to be contained in the tangent plane séttend patch. Since
the tangent of the parameter line is parallel to the crosdumrioof the gradient of

the plane and the gradient of the cylinder, the third coadigives an equation
of degre€(18, 5, 5),

det [yr, ys, V(uo)(y(r; s)) x V((uo)(y(r,s))] = 0. (9.25)

For solving either of these two systems of polynomial equetj we use again a
Bézier—clipping—type algorithm [14, 25, 28].

9.6 Self—intersections of biquadratic surface patches

In order to detect the self—intersection curves of any otweepatches, the methods
for surface—surface intersections have to be modified. Dhepatation of the self—
intersection locus by using approximate implicitizatigmiot discussed here, since
it was already treated in [31]. Instead we focus on the othiettéchniques.
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9.6.1 Resultant-based method

In the parameter domai, 1]*, the self-intersection curve of the first patch forms
the set

{(ul,vl,ug,vg) € [o, 1]4 | (u1,v1) # (u2,ve) andx(uy,vy) = x(uz,vg)} .
(9.26)
This locus is the real trace of a complex curve. We assumd ibatither empty or of
dimension 0 or 1. We do not consider degenerate cases, sagilase which is cov-
ered twice. In the examples presented below (see Sectipnt®erself-intersection
locus is a curve ifR*.

We use the following change of coordinates to discard theamted trivial com-
ponent(uy,v1) = (u2,v2). Let(uz, v1) be a pair of parametersin, 1)2, (1, k) € R?
and letu; = us + [, v2 = v + k. If we suppose that we hayes,v1) # (u2,v2),
then! # 0. Hencex(u1, v1) = x(uz, v2) ifand only if x(ug+1, v1) = x(ug, v1 +1k).
We suppose now thdtis, vy, 1, k) verifies this last relation.

Let T(uz,v1,1, k) be the polynomial [x(uz + 1, v1) — x(uz, vz + k)], its de-
gree in(usq,v1,1, k) is (2,2,1,2) and the monomial support with respect(iok)
contains onlyk21, k, [ and1. We can decrease the degree by introducing

~ 1
T (ug,v1,m, k) = mT (uz, vy, — k). (9.27)

Then inT'(uz, vy, m, k), the monomial support im, k) consists only ofl, m, k2
andkm. So, we can writd" in a matrix form:

1
a1 (u2,v1) bi(ug,v1) c1(ug,v1) di(ug,v1) m

T(uz,v1,m, k) = | az(uz,v1) ba(ua,v1) ca(uz,v1) da(usz,vy) 2
as(uz,v1) bg(ug,v1) c3(uz,v1) ds(ug,v1)

km
(9.28)
By Cramer’s rule, we get
DQ 2 D3 D4
=== k== and km=—=" 9.29
m= Do m= (9.29)
with
b1 C1 d1 —al C1 d1 b1 —al d1 b1 C1 —ay
Dy =\|bycady|, Do =|—azcady|, D3g=|by —azda|, Dy=|ba o —asz|.
b3 C3 dg —as C3 d3 b3 —as d3 b3 C3 —as

Let Q(us,v1) be the polynomial) = D2D; — D2Ds.

Lemma 3. The implicitly defined curvé (uz,v1) € [0,1]% | Q(uz,v1) = 0} is the
projection of the self—intersection locus (given by the(8e26) but inC*) into the
parameters domaitus, v1) € [0,1]%.
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Fig. 9.5.A self—intersection of a surface with a cuspidal point

Proof. Q(u2,v1) = 0 is the only algebraic relation (of minimal degree) betwegn
andv; such that

Y(ug,v1) € [0,1]%, Q(uz,v1) = 0 = I(m, k) € C?, T(uz,v1,m, k) = 0.

This lemma provides a method to compute the self-intexsedticus, we just
have to trace the implicit curv@(u2,v1) = 0 and for every poinfus, v1) on this
curve, we obtain by continuation the corresponding péint v2) € [0,1]? if it
exists (see the results on Fig. 9.9). So it suffices to charaetthe bounds of these
segments of curves.

9.6.2 Parameter-line-based method

For computing the self-intersection curves, we use the sdgueithm as described
in Section 9.5. We intersect the surface:, v) with itself x(r, s). In this case, both
the “plane” equation (9.23) and the “cylinder” equation2@). contain the linear
factor(r — ug), which has to be factored out. The computation of turning{saas in
section 9.5.2 leads us to two different types: the usual andscuspidal points (see
Fig. 9.5).

9.7 Examples

The three methods presented in this paper (using resyltéaepproximate implici-
tization, and by analyzing the intersections with paramétes) work well for most
standard situations usually encountered in practice.ignséction, we present three
representative examples. Additional ones are availalj@&lt
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Fig. 9.6.First example. Left and center: Result of the resultant oeetfter and before elimi-
nating phantom branches. Right: result of the approactywgiproximate implicitization.

" x(u, v) 5 y(r,s)

\—o-—/

u T

Fig. 9.7. First example. The intersection curves in the parameteragttsnof both surface
patches, generated by the parameter—line based techBiowedary points and turning points
have been marked by grey circles.

9.7.1 First example

We consider two biquadratic surfaces with an open and adlosmponent of the
intersection curve. The two surfaces have the control point

(7:0.3) (3.5 1) (1,0 55) (3.7:2) (3:10:5) (1,0.5)
(5:9:3) 5:05) (7:5.3) | and | (§,5.5) (3:3:1) (3:5:7)
(3:%7) (G539 (53 (5:77) (153) §723)

x(u,0) D)

By using theresultant methogda phantom component appears (see Fig. 9.6, center).
It can be cut off as described in Section 9.3.2 (see Fig. &9, |

Similar to the resultant method, tAgproximate implicitizatioproduces a phan-
tom component (see Fig. 9.6, right). However, when we cut,itxe obtain only very
few certified points on the intersection locus as describhesction 9.4.3.

The parameter-line-based approadimds both parts of the intersection curve,
but no phantom components. One segment is closed and hagrtvirmgt points with
respect to each parameterv, r ands. The other segment has two boundary points
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u = 0 ands = 1 and also possesses a turning point with respectied another one
with respect ta- (see Fig. 9.7).

9.7.2 Second example

The control points of the two biquadratic surfaces

r (501 388 588) (347 276 479) (309 604 498) ]
7757 7757 775 7757 7757 775 7750 7757 775
(553 454 293) (336 382 469) (1 426 137)
7750 775 7T 7757 7757 775 77750 775
25

5
8

(327 308 ) (3L,0,36T) (333 492 504
L\775° 7757 775 77570 775 7750 7750 7757
x(u,v)

—(492 67 522) (& 322 117) (346 13 é) 7
7757 1557 775 7757 7757 775 7757 1557 5
(M 392 58) (@ 469 @) (ﬂ 514 564)
1557 7757 15 7750 7750 775 7750 7750 775

5
(602 129 274

775 7750 775) (669 692 53) (488 219 412)_

7757 7757 155

y(r,s)
were generated by using a pseudo—random number generator.

The resultant—based technigueads to several phantom components (see Fig.
9.8, center), which can be cut off as described previouslyg [8g. 9.8, left).

The combined use &fubdivisiorandapproximate implicitizatioproduces even
more phantom components (see Fig. 9.8, right). This is dtleetéact that the subdi-
vision generates more implicitly defined surfaces. Evdhjtuee obtain sufficiently
many points to draw the correct intersection curves.

We also computed the self-intersection curve (see Fig.vétB)the help of the
method described in Section 9.6.1.

When using thgarameter—line based approadtis example does not lead to
any difficulties. The intersection curve consists of thregnsents (see Fig. 9.10). The
first Bézier surface patck(u,v) has one self-intersection curve, while the second
oney(r, s) intersects itself three times and has two cuspidal points.

9.7.3 Third example

The two biquadratic surface patches with the control points

0.7.5) (513 (L03) (0,7,5) (5:15) (1,0,5)
(5:5:%) g3 1) (38 —%) [ and | (5.5.5) (5:2:9) (3:5:7)
(5735 (1505) L5 (5735 (155 L3

x(u,0) ¥(r,s)

touch each other along a parameter line.
The resultant-based approacleads to an implicitly defined curve which de-
scribes the intersection. Due to the special situationgiittains the square of this
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Fig. 9.8. Second example: Left and center: result of the resultanhodetfter and before
eliminating phantom branches. Right: result obtained liyguapproximate implicitization.

Fig. 9.9.Second example: Self intersections, computed with the odedlescribed in Section
9.6.1.

v X(U,U) S y(r,s)
ALY

1 K GRS
i — T~ 1 A
E ~ !
f 7

\ [ T

\ [

u T

Fig. 9.10. Second example: Intersection (solid, black) and selfréetetion (dashed, grey)
curves in the parameter domains of both surface patchesraged by the parameter—line
based technique. Boundary points and turning points hase ivarked by grey circles.
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equation. A direct tracing of the curve is difficult, since tiise of a standard predic-
tor/corrector method is numerically unstable. Howeveg oray factorize the equa-
tion, and apply the tracing to the individual factors withpuobems. This leads to
the curve shown in Fig. 9.11, left.

The technique oépproximate implicitizatioris not well suited to deal with this
very specific situation: the approximation produces eitreempty intersection or
two curves which are close to each other (see Fig. 9.11)right

Fig. 9.11.Third example. Left: Result of the resultant method and efgarameter—line based
approach. Right: result of the use of approximate impliatiion.

The parameter-line-based approadimds two boundary points and it produces
— for each value ofi = u( — the correct intersection point of the parameter line
with the other patch. The convergence of the Bézier cliggiows down to a linear
rate, due to the presence of a double root. Also, it is diffimitrace the intersection
curve by using a geometric predictor/corrector technitpstead, we computed the
intersection points for many values@f and arrived at a result which is very similar
to Fig. 9.11, left.

9.8 Conclusion

We presented three different algorithms for computing titersection and self—
intersection curves of two biquadratic Bézier surfacelpas. We implemented the
methods and applied them to many test cases. Three of thearblean presented in
this paper.

Theresultant—based techniques able to deal with all test cases. It may produce
additional ‘phantom’ branches, which have to be elimindigaarefully analyzing
the result of the elimination. As an advantage, one may —arcttse of two surface
patches that touch each other — factorize the implicit egoaif the intersection
curve, in order to obtain a stable representation, whichtzan be traced robustly.

After experimenting withapproximate implicitizatiorwe arrived at the conclu-
sion that this method is not to be recommended for biquadpatiches. On the one
hand, it is not suited for avoiding problems with phantomngfges. On the other
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hand, the use of an approximate technique introduces inagies, which may cause
problems with singular and almost singular situations. &l that this price for
using a lower degree implicit representation is too high.

The parameter—line based approadillds some geometric interpretations to the
process of eliminating variables from the problem. As anaatlvge, it is possible
to correctly establish the region(s) of interest. This dggiroblems with unwanted
branches of the (self-) intersection curves. In the casavoftouching surfaces,
using this approach becomes more expensive, since statedamiques for tracing
the intersection cannot be applied.
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