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Summary. We present techniques for creating an approximate implicitrepresentation of
space curves and of surfaces of revolution. In both cases, the proposed techniques reduce the
problem to that of implicitization of planar curves. For space curves, which are described as
the intersection of two implicitly defined surfaces, we showhow to generate an approximately
orthogonalized implicit representation. In the case of surfaces of revolution, we address the
problem of avoiding unwanted branches and singular points in the region of interest.

12.1 Introduction

Traditionally, most CAD (Computer Aided Design) systems rely on piecewise ratio-
nal parametric representations, such as NURBS (Non–Uniform Rational B–Spline)
curves and surfaces. The parametric representation offersa number of advantages,
such as simple sampling techniques, which can be used for quickly generating an ap-
proximating triangulation for visualization. On the otherhand, the use of implicitly
defined curves/surfaces also offers a number of advantages,e.g., for solving inter-
section problems, or for visualization via ray–tracing.

In order to exploit the potential benefits of using the implicit representation of
curves and surfaces, methods for conversion from parametric to implicit form (im-
plicitization) are needed. As an alternative to exact methods, such as resultants,
Gröbner bases, moving curves and surfaces, etc. [2, 4, 5, 8,14], a number of ap-
proximate techniques have emerged [3, 7, 10, 11]. As demonstrated in the frame of
the European GAIA II project [6, 15, 17], these techniques are well suited to deal
with general free–form curve and surface data arising in an industrial environment.

On the other hand, CAD objects typically involve many special curves and sur-
faces, such as natural quadrics, sweep surfaces, surfaces of revolution, etc. While
implicit representations of simple surfaces are readily available, this paper studies
approximate approximation of two special objects, namely space curves and surfaces
of revolution. Space curves arise frequently in geometric modeling. An implicit rep-
resentation of a space curve is given by the intersection of two implicitly defined
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surfaces. A surface of revolution is created by rotating a 2Dprofile curve about an
axis in space. Rotation is one of the standard geometric operations defined in any
CAD/CAM interface.

This paper presents techniques for approximate implicitization of space curves
and of surfaces of revolution, which are based on the (approximate) implicitization of
planar curves. The proposed techniques are fully general inthe sense that they can be
combined with any (exact or approximate) implicitization method for planar curves.
For creating the examples shown in this paper, we used a technique for simultaneous
approximation of points and associated normal vectors [10,11, 16].

This paper is organized as follows. First we summarize the approximate implici-
tization method for planar curves. Section 12.3 presents techniques for approximate
implicitization of space curves, first as the intersection of two general cylinders, and
later as the intersection of two general surfaces which intersect approximately or-
thogonal. Representing the space curve by two ‘orthogonal’surfaces provides a more
robust definition for the curve. Finally, in Section 12.4, two methods for approx-
imate implicitization of surfaces of revolution are presented. It is shown that – in
many cases – only approximate implicitization is capable ofproducing an implicit
representation that is free of unwanted branches and singularities.

12.2 Simultaneous approximation of points and normals

For the sake completeness, we give a short description of theapproximate implic-
itization method presented in [10] (see also [11] for the case of surfaces). This
method is characterized by the simultaneous approximationof sampled point data
pi = (xi, yi), i ∈ I = {1, . . . , N}, and estimated unit normalsni at these points.
The method consists of three main steps:

• Step 1 – Preprocessing:If no other information is available (e.g., from a given
parametric or procedural description of the curve), then each unit normal vector
ni is estimated from the nearest neighbors of the pointpi. A consistent orien-
tation of the normals is achieved by a region–growing–type process. If the data
have been sampled from a curve with singularities, then it may be necessary to
organize the data into several segments, see [16] for details.

• Step 2 – Fitting:We generate an approximate implicit representation of the form

f(x) =
∑

j∈J

cj ϕj(x) (12.1)

with certain coefficientscj ∈ R, finite index setJ and suitable basis functions
ϕj . For instance, one may choose tensor–product B-splines with respect to suit-
able knot sequences, or Bernstein polynomials with respectto a triangle contain-
ing the data.
The coefficients off are obtained as the minimum of

∑

i∈I

f(pi)
2 + w1||∇f(pi) − ni||

2 + w2 T, (12.2)
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wherew1 andw2 are positive weights satisfying1 > w1 >> w2 > 0. The first
weight controls the influence of the estimated normal vectorsni to the resulting
curve. As observed in our experiments, increasing the weights w1 or w2 can be
used to ‘push away’ unwanted branches of the curve from the region of interest.
The tension termT in (12.2) is added in order to control the shape of the result-
ing curve. It pulls the approximating curve towards a simpler shape. A possible
quadratic tension term is

T =

∫∫

Ω

f2

xx + 2 f2

xy + f2

yy dx dy (12.3)

This choice of the tension term leads to a positive definite quadratic objective
function. Consequently, the coefficientscj are found by solving a system of linear
equations. In the case of tensor–product B-splines, this system is sparse.

• Step 3 – Iteration:One may iterate the second step, by replacing the normals
ni with the gradients∇f(pi), and re–computing the result. One the one hand,
this may help to improve the result of the fitting. On the otherhand, it can create
problems with unwanted branches. This is described in some detail in [10].

Example 1.We illustrate the behaviour of exact and approximate implicitization by
an example. Figure 12.1 shows the results (algebraic curvesof order 4) of both meth-
ods (thin curves) for a segment of a rational planar curve of degree 4 (bold curves).
The approximate implicitization produces an exact implicitization, but with addi-
tional branches and even a singular point in the region of interest. Depending on
the choice ofw1, the fitting method produces implicit approximations with differ-
ent level of accuracy. The weightw1 can be used to control unwanted branches and
singular points. In this example,w2 ≈ 0 has been chosen, and three iterations were
applied to improve the result.

Remark 2.As described in [11], the distance between a parametric curve p(t) and
its approximate implicitization can essentially be bounded by

max
t∈I

(f ◦ p)(t)/ min
x∈Ω

‖∇f(x)‖, (12.4)

whereI andΩ are the domains of the parametric curve and its approximate implic-
tization, respectively. Upper resp. lower bounds on numerator and denominator can
be obtained by using the convex–hull property of B-spline and Bézier representa-
tions. At the same time, the lower bound on‖∇f(x)‖ certifies the regularity of the
approximate implicitization within the region of interest. If the accuracy is insuffi-
cient or the regularity is violated, then one may (semi–automatically) adjust the input
parameters (number of sampled data, knots, degrees, and weights).
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exact w1 = 1.0 w1 = 0.0001

Fig. 12.1. Exact (left) vs. approximate (center and right) implicitization (thin curves) of a
given parametric curve (bold curves), see Example 1.

12.3 Approximate implicitization of space curves

After presenting some preliminaries, we discuss the approximate implicitization of
two space curves as the intersection of two generalized cylinders and as the intersec-
tion of algebraic surfaces which are approximately orthogonal to each other.

12.3.1 Preliminaries

For any functionf : R3 → R, the zero contour (or zero level set)Z(f) is the set

Z(f) = {x | f(x) = 0} = f−1({0}) (12.5)

A space curveC can be defined as the intersection curve of two zero sets of functions
f andg,

C(f, g) = Z(f) ∩ Z(g). (12.6)

If both f andg can be chosen as polynomials, thenC(f, g) is called analgebraic
curve. A pointx ∈ C(f, g) is said to be aregular point of the space curve, if the
gradient vectors∇f(x) and∇g(x) are linearly independent. The tangent vector of
the space curve is then perpendicular to both gradient vectors.

The two zero contoursZ(f) and andZ(g) intersectorthogonallyalong the space
curveC(f, g), if

∇f(x) · ∇g(x) = 0 (12.7)

holds for allx ∈ C(f, g).
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Fig. 12.2. Two surfaces, their intersection curve and a level set of thefunctionL, see Exam-
ple 3.

Representing the space curve by two surfaces which intersect orthogonally pro-
vides a more robust definition for the curve [1], since small perturbations of the
defining two surfaces have less impact on the space curve. It has several additional
advantages, e.g., for estimating theEuclidean distanceof a point to the curve. As a
natural generalization of the so–calledSampson distancef(p)/||∇f(p)||, see [13],
this distance can be estimated as

L =

√

f2

‖∇f‖2
+

g2

‖∇g‖2
(12.8)

In the case of two surfaces which intersect each other orthogonally,L provides a good
local (i.e., in the vicinity of the intersection curve) approximation of the distance
field. In a different context, orthogonalization of implicits has also been used in [12].

Example 3.Fig. 12.2 visualizes this observation. Two surfaces, theirintersection
curve and a level set of the functionL are shown. In the case of two orthogonal
surfaces (right), the level set is more similar to a pipe surface than in the general
situation (left).

12.3.2 Intersection of generalized cylinders

A generalized cylinder is obtained by extruding a profile curveZ(f) along a straight
line. If the straight line is parallel to one of the coordinate axes, say thez–axis, then
the zero contour of any function of the form(x, y, z) → f(x, y) defines such a
generalized cylinder.

This simple observation leads to algorithm 2 which generates an approximate
implicit representation of a space curve. If step 2 uses an exact implicitization method
(instead of an approximate one), then the algorithm generates an exact implicitization
of the space curve.

Remark 4.Instead of the thexy and thexz plane, any two orthogonal planes can
be used. Clearly, one could try to choose them such that the projection becomes
as simple as possible. As an important condition, no chord ofthe curve should be
orthogonal to one of the two planes.
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Algorithm 2 Approximate implicitization by generalized cylinders

Input A parametric space curveC or a set of sampled pointspi.
Output An implicit representation of the given space curve as the intersection of two gener-
alized cylinders.

1: Project the parametric space curveC (the pointspi) orthogonally into two orthogonal
planes (e.g.xy-plane andxz-plane).

2: Apply an approximate implicitization method to the data in xy-plane andxz-plane. Let
the bivariate functionsf(x, y) andg(x, z) define the implicit curves inxy-plane andxz-
plane respectively.

3: Define the two generalized cylinders by the polynomialsf(x, y) andg(x, y) respectively.
4: Represent the curveC(x, y, z) as the intersection of the two generalized cylindersf(x, y)

andg(x, z).

Example 5.The left plot in Figure 12.4 (see page 222) shows a space curve(white)
which is represented as the intersection of two generalizedcylindersZ(f) (black)
andZ(g) (grey), wheref = f(x, y) andg = g(x, z).

12.3.3 Approximately orthogonal representation

Our method for generating an approximate implicitization by two approximately or-
thogonal surfaces is based on the following simple observation.

Lemma 6. At all regular pointsx ∈ C(f, g), the gradients of the two functions

F (x) = ‖∇f(x)‖ g(x) + ‖∇g(x)‖ f(x) (12.9)

G(x) = ‖∇f(x)‖ g(x) − ‖∇g(x)‖ f(x) (12.10)

are orthogonal.

This observation can be verified by a direct computation.

Remark 7.This result cannot be used at points where the two original surfaces in-
tersect each other tangentially. In the case of two generalized cylinders produced by
Algorithm 2, this happens only if the curveC has a tangent which lies in a plane that
is perpendicular to both projection planes. One may easily choose the two projection
planes such that this is not the case.

Clearly, even if the functionf andg are piecewise polynomials, neitherF norG
are piecewise polynomials in general. We propose to approximate them by piecewise
polynomials, as follows.

The functions‖∇f‖ and‖∇g‖ depend onx, y andx, z respectively. We would
like to approximate them by two piecewise polynomialsf̄(x, y) and ḡ(x, z) in the
area of interest, which is the region near the zero contours of the functionsf andg.
(See [9] for more information and references on surface fitting.) The two approxi-
mating functions are to minimize
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Fig. 12.3. Approximation of the scalar field||∇f ||, see Example 8.

∫∫

Ω′

w(f) (f̄ − ‖∇f‖)2 dxdy and
∫∫

Ω′′

w(g) (ḡ − ‖∇g‖)2 dxdz (12.11)

wherew is a suitable weight function. For instance, one may use

w(h) =
1

h2 + ǫ
, (12.12)

whereǫ > 0 is used in order to avoid division by zero.
Note that the objective functions depend quadratically onf̄ andḡ. Consequently,

if these approximants are represented as a linear combination of certain basis func-
tions (such as tensor–product B-splines), similar to (12.1), then the minimizers of
(12.11) can be computed by solving symmetric positive definite systems of linear
equations. In the B-spline case, these systems are sparse. The coefficients of the
equations have to be evaluated by numerical integration, e.g., by Gaussian quadra-
tures.

Example 8.We consider the gradient field off = 4x2 + 8y2 − 1 on [0, 1] × [0, 0.6]

and approximate the scalar field||∇f || = 8
√

x2 + 4y2 by a quadratic polynomial.
For different values ofǫ we obtain different approximations. The white regions in
Fig. 12.3 show where the relative error is less than2%. For smaller values ofǫ, this
region follows the elliptic arcZ(f), which is shown as a black line.

Algorithm 3 combines the previous algorithm with the approximation of the
norms of the gradients. The degree degx(F ) and degx(G) of the surfacesF and
G with respect tox equalsmax(degx(f̄) + degx(g), degx(ḡ) + degx(f)). The de-
gree with respect toy (and similarly forz) is max(degx(f), degx(f̄)). In order to
reduce the total degree, one may consider to choose the degree of the factors̄f, ḡ as
small as possible. Alternatively, one may use (tensor–product) spline functions.

Example 9.We consider a given space curve and apply the two algorithms to it. Fig-
ure 12.4 shows the approximate implicitization by two generalized cylinders (left)
and by two approximately orthogonal algebraic surfaces (right). For the latter two
surfaces, the angle between the tangent planes along the intersection curves deviates
less then2.5◦ from orthogonality.



222 M. Shalaby and B. Jüttler

Algorithm 3 Approximate implicitization by approximately orthogonalsurfaces
Input A parametric space curveC or a set of sampled pointspi.
Output An approximate implicit representation as the intersection of two approximately or-
thogonal surfaces.

1: Run Steps 1, 2, 3 of Algorithm 2.
2: Approximate‖∇f‖ and ‖∇g‖ by polynomials or piecewise polynomials̄f and ḡ by

minimizing (12.11).
3: Introduce the two auxiliary functionF andG as in (12.9) and (12.10), where the norms

of the gradients are replaced by their piecewise polynomialapproximants.
4: Represent the given curve as the intersection of the two approximately orthogonal alge-

braic surfacesF , G.
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Fig. 12.4. Approximate implicitization of a space curve using Algorithm 2 (left, intersection
of two generalized cylinders) and 3 (right, intersection oftwo approximately orthogonal sur-
faces).

12.4 Approximate Implicitization of Surfaces of Revolution

A surface of revolution is obtained by rotating a profile curve q(v) about (e.g.) the
z–axis. We propose two techniques for generating an approximate implicit repre-
sentation by a piecewise polynomial. Both techniques reduce the problem to the
implicitization problem of a planar curve.

12.4.1 Implicitization via elimination

First we apply a method for approximate (or exact) implicitization to the profile curve
in therz–plane, where the radiusr denotes the distance to thez–axis. For example,
one may use the method which was described in Section 12.2. Weobtain an implicit
representation of the formf(r, z) = 0, wheref is a (piecewise) polynomial.

In order to obtain an implicit representation of the formg(x, y, z) = 0, one could
substituter =

√

x2 + y2. However, the resulting scalar field
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Fig. 12.5. Approximate implicitization of a surface of revolution using elimination, see Ex-
ample 10. Left: profile curve, right: the surface.

(x, y, z) 7→ f(
√

x2 + y2, z) (12.13)

is no longer given by a piecewise polynomial representation, due to the square root.
Instead, we eliminater using a resultant,

g(x, y, z) = Resr(f(r, z), r2 − x2 − y2). (12.14)

The degree ofg will be twice the degree off . Clearly, the resultant can be evaluated
only if f is a polynomial. In the case of a piecewise polynomial (spline function),
this approach has to be applied to the polynomial segments.

Example 10.We apply the technique of Section 12.2 to the profile curve (black line)
shown in Figure 12.5 (left) and obtain an approximate implicitization by a bi–quartic
tensor–product polynomial (grey curve). After computing the resultant, this leads to
an approximate implicit representation of the the corresponding surface of revolution
(right). The functiong is a tensor–product polynomial inx, y, z of degree (8,8,8).
Only even powers ofx andy are present. Note that the approximate implicitization
produces two additional branches, which do not intersect the surface.

This method for approximate implicitization of surfaces ofrevolution has two
major drawbacks.

• First, in the case of a piecewise polynomial representationf(r, z) = 0 of the
profile curve, the resulting piecewise polynomialg will not necessarily inherit
the smoothness properties off . E.g., iff is aC1 spline function, theng will not
necessarily beC1.

• Second, even if the approximate implicitization of the profile curve has no un-
wanted branches and singular points in the region of interest, these problems may
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be introduced by the eliminatingr, see Example 11. Indeed, this elimination is
equivalent to computing the polynomialg from

g(x, y, z) = f(−
√

x2 + y2, z) · f(
√

x2 + y2, z). (12.15)

Note that this produces indead a polynomial, since only evenpowers of the square
root are present! The product (12.15) leads to asymmetrized versionof the ap-
proximate implicitization of the profile curve. Consequently, additional branches
from the half–planer < 0 may cause problems.

Example 11.Approximate implicitization of the profile curve (a cubic B´ezier curve)
by a cubic polynomial using the method described in Section 12.2 produces an im-
plicit curve without additional branches and singular points, see Fig. 12.6, left. How-
ever, these problems are present after the elimination step(12.14), see Fig. 12.6,
right. The reason for this phenomenon can be seen from the global view (bottom row
in the picture): the elimination produces a symmetrized version of the approximate
implicitization. Note that methods for exact implicitization of the profile curve have
similar problems.

Remark 12.The first problem can be resolved by using Eq. (12.15) insteadof
(12.14).

12.4.2 Implicitization via substitution

In order to avoid the problems of the first approach, we propose to implicitize the
profile curveq(v) in therz-plane by the zero contour of a bivariate functionf(r2, z).
The bivariate functionf(r2, z) can be chosen from the space of all bivariate functions
with even power inr. We may use any basis (e.g., tensor–product B–splines) and
express the bivariate functionf(r2, z) as

F (r2, z) =
∑

i∈I

ci ϕi(r
2, z) (12.16)

with real coefficientsci, whereI is a certain index set. The method for approximate
implicitization described in Section 12.2 is applied to this representation. The ap-
proximate implicit representation of the surface of revolution is then obtained by a
substitution,

g(x, y, z) = F (x2 + y2, z). (12.17)

The degree ofg with respect tox andy is twice the degree ofF with respect tor2,
while the degrees with respect toz are equal.

Example 13.We apply this approach to the profile curve of Example 11, using a
polynomialF of total degree3. The implicit equation of the profile curve has degree
(6,3), and the approximate implicit equation of the surfaceof revolution has degree
(6,3,3). As shown in Fig. 12.7, we may achieve a similar accuracy in the region of
interest by using an approximate implicitization of the profile curve that is symmet-
ric with respect to the axis of revolution. Due to this symmetry, no problems with
unwanted branches and singular points are present.
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Fig. 12.6. The elimination ofr may produce additional branches and singular points. Top row:
Region of interest[0, 2]2, Bottom row: global view. Left: Approximate implicitizationZ(f)
of the profile curve in therz–plane. Right: Intersection of the approximate implicitization
Z(g) with thexz–plane. The original profile curve is shown in grey.

Example 14.We consider the discretized profile curve shown in Fig. 12.8,left, and
apply the method of Section 12.2 to it. The functionF is a bi–quadratic tensor–
product spline function whose domain is the union of the cells shown in the figure.
This leads to an approximate implicit representation of theprofile curve (Fig. 12.8,
center) and of the surface (right) of degree4(×4)× 2. In the surface case, the spline
function is defined with respect to ring–shaped cells, obtained by rotating the cells
shown in the left figure.

12.5 Conclusion

Several techniques for approximate implicitization of space curves and surfaces of
revolution have been presented. These techniques are basedon algorithms for (exact
or approximate) implicitization of planar curves. In the case of space curves, a repre-
sentation of two approximately orthogonal surfaces can be obtained, which provides
several advantages, such as a geometrically robust definition of the curve and the
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Fig. 12.8. Approximate implicitization of a surface of revolution of degree4 × 4 × 2, using a
biquadratic spline functionF , see Example 14.

possibility to obtain a good approximation of the distance field to a space curve. As
shown in the case of surfaces of revolution, only approximate implicitization is able
to produce a representation which is free of unwanted branches and singular points
in the region of interest.
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