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Summary. We present techniques for creating an approximate implégtesentation of
space curves and of surfaces of revolution. In both casegrtsposed techniques reduce the
problem to that of implicitization of planar curves. For spaurves, which are described as
the intersection of two implicitly defined surfaces, we shaw to generate an approximately
orthogonalized implicit representation. In the case ofax@s of revolution, we address the
problem of avoiding unwanted branches and singular paintise region of interest.

12.1 Introduction

Traditionally, most CAD (Computer Aided Design) systemy o piecewise ratio-
nal parametric representations, such as NURBS (Non-Unifeational B—Spline)
curves and surfaces. The parametric representation @ffatsnber of advantages,
such as simple sampling techniques, which can be used fdklggjenerating an ap-
proximating triangulation for visualization. On the othiemnd, the use of implicitly
defined curves/surfaces also offers a number of advantaggsfor solving inter-
section problems, or for visualization via ray—tracing.

In order to exploit the potential benefits of using the imipliepresentation of
curves and surfaces, methods for conversion from parasrtetimplicit form (im-
plicitization) are needed. As an alternative to exact mésh@uch as resultants,
Grobner bases, moving curves and surfaces, etc. [2, 4, B4]8a number of ap-
proximate techniques have emerged [3, 7, 10, 11]. As demaiadtin the frame of
the European GAIA Il project [6, 15, 17], these techniques\wsell suited to deal
with general free—form curve and surface data arising imdnstrial environment.

On the other hand, CAD objects typically involve many splecisives and sur-
faces, such as natural quadrics, sweep surfaces, surfaceghuition, etc. While
implicit representations of simple surfaces are readililable, this paper studies
approximate approximation of two special objects, namgcs curves and surfaces
of revolution. Space curves arise frequently in geometodeting. An implicit rep-
resentation of a space curve is given by the intersectiomofimplicitly defined
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surfaces. A surface of revolution is created by rotating gp2@file curve about an
axis in space. Rotation is one of the standard geometricatipas defined in any
CAD/CAM interface.

This paper presents techniques for approximate implatitin of space curves
and of surfaces of revolution, which are based on the (apmate) implicitization of
planar curves. The proposed techniques are fully genetta¢isense that they can be
combined with any (exact or approximate) implicitizatioetimod for planar curves.
For creating the examples shown in this paper, we used aitpehfor simultaneous
approximation of points and associated normal vectors]1016].

This paper is organized as follows. First we summarize tipecgmate implici-
tization method for planar curves. Section 12.3 presentmigues for approximate
implicitization of space curves, first as the intersectibtwm general cylinders, and
later as the intersection of two general surfaces whichrgetg approximately or-
thogonal. Representing the space curve by two ‘orthogsnaiaces provides a more
robust definition for the curve. Finally, in Section 12.4ptwmethods for approx-
imate implicitization of surfaces of revolution are pretsegh It is shown that — in
many cases — only approximate implicitization is capableroflucing an implicit
representation that is free of unwanted branches and singes.

12.2 Simultaneous approximation of pointsand normals

For the sake completeness, we give a short description cifgheoximate implic-
itization method presented in [10] (see also [11] for theecab surfaces). This
method is characterized by the simultaneous approximati@ampled point data
pi = (z;,v:),1 € Z = {1,..., N}, and estimated unit normalg at these points.
The method consists of three main steps:

e Step 1 — Preprocessindf no other information is available (e.g., from a given
parametric or procedural description of the curve), theshemit normal vector
n; is estimated from the nearest neighbors of the ppintA consistent orien-
tation of the normals is achieved by a region—growing—tyeess. If the data
have been sampled from a curve with singularities, then it beanecessary to
organize the data into several segments, see [16] for detalil

e Step 2 — FittingMWe generate an approximate implicit representation ofdhe f

flx) = Z ¢ (%) (12.1)

JjET

with certain coefficients; € R, finite index set7 and suitable basis functions
;. For instance, one may choose tensor—product B-splinésrespect to suit-
able knot sequences, or Bernstein polynomials with regpectriangle contain-
ing the data.

The coefficients off are obtained as the minimum of

D ) +wn|IVF(Pi) — il +we T, (12.2)
€T
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wherew; andw- are positive weights satisfyiny > w; >> wy > 0. The first
weight controls the influence of the estimated normal veaigito the resulting
curve. As observed in our experiments, increasing the weigh or w, can be
used to ‘push away’ unwanted branches of the curve from tjiemef interest.
The tension terni” in (12.2) is added in order to control the shape of the result-
ing curve. It pulls the approximating curve towards a simpleape. A possible
quadratic tension term is

T = // foe+2f2,+ f2, dovdy (12.3)
(93

This choice of the tension term leads to a positive definitadgatic objective
function. Consequently, the coefficiemfsare found by solving a system of linear
equations. In the case of tensor—product B-splines, thsi®Bryis sparse.

e Step 3 — IterationOne may iterate the second step, by replacing the normals
n; with the gradientsV f(p;), and re—computing the result. One the one hand,
this may help to improve the result of the fitting. On the otth&nd, it can create
problems with unwanted branches. This is described in satal éh [10].

Example 1We illustrate the behaviour of exact and approximate inmtetion by

an example. Figure 12.1 shows the results (algebraic cofwesder 4) of both meth-
ods (thin curves) for a segment of a rational planar curveegfee 4 (bold curves).
The approximate implicitization produces an exact img#ation, but with addi-
tional branches and even a singular point in the region @&fré@st. Depending on
the choice ofw, the fitting method produces implicit approximations wiilffed-

ent level of accuracy. The weight; can be used to control unwanted branches and
singular points. In this exampley, ~ 0 has been chosen, and three iterations were
applied to improve the result.

Remark 2As described in [11], the distance between a parametricequft) and
its approximate implicitization can essentially be bouhbg

max(f o p)(t)/ min VA ()] (12.4)

wherel and(? are the domains of the parametric curve and its approximgiéd-
tization, respectively. Upper resp. lower bounds on nuioei@d denominator can
be obtained by using the convex—hull property of B-splind B@zier representa-
tions. At the same time, the lower bound p¥ f (x)|| certifies the regularity of the
approximate implicitization within the region of interefitthe accuracy is insuffi-
cient or the regularity is violated, then one may (semi—aattically) adjust the input
parameters (number of sampled data, knots, degrees, agttaei
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exact w; = 1.0 wy = 0.0001

Fig. 12.1. Exact (left) vs. approximate (center and right) impliction (thin curves) of a
given parametric curve (bold curves), see Example 1.

12.3 Approximateimplicitization of space curves

After presenting some preliminaries, we discuss the apprabe implicitization of
two space curves as the intersection of two generalizedasis and as the intersec-
tion of algebraic surfaces which are approximately ortmagto each other.

12.3.1 Preliminaries

For any functionf : R® — R, the zero contour (or zero level se) f) is the set

Z(f) ={x| f(x) =0} = F~'({0}) (12.5)

A space curv&’ can be defined as the intersection curve of two zero sets ofituns
fandg,
C(f.9) = Z2(f) N Z(g). (12.6)

If both f andg can be chosen as polynomials, theéff, ¢) is called analgebraic
curve. A pointx € C(f,g) is said to be aegular point of the space curve, if the
gradient vectord/ f(x) andVg(x) are linearly independent. The tangent vector of
the space curve is then perpendicular to both gradient kgecto
The two zero contourg (/) and andZ (¢) intersecobrthogonallyalong the space
curveC'(f,g), if
Vf(x) - Vg(x)=0 (12.7)

holds for allx € C(f, g).
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Fig. 12.2. Two surfaces, their intersection curve and a level set ofuhetion L, see Exam-
ple 3.

Representing the space curve by two surfaces which intersthogonally pro-
vides a more robust definition for the curve [1], since smalitgrbations of the
defining two surfaces have less impact on the space curvaslséveral additional
advantages, e.g., for estimating theclidean distancef a point to the curve. As a
natural generalization of the so—call8dmpson distancg(p)/||V f(p)||. see [13],
this distance can be estimated as

B f? g*
L= \/ VI T Vel (12.8)

In the case of two surfaces which intersect each other oothalty, .. provides a good
local (i.e., in the vicinity of the intersection curve) apgimation of the distance
field. In a different context, orthogonalization of impt&has also been used in [12].

Example 3Fig. 12.2 visualizes this observation. Two surfaces, th@grsection
curve and a level set of the functidn are shown. In the case of two orthogonal
surfaces (right), the level set is more similar to a pipeaefthan in the general
situation (left).

12.3.2 Intersection of generalized cylinders

A generalized cylinder is obtained by extruding a profilevel ( /) along a straight
line. If the straight line is parallel to one of the coordimakes, say the—axis, then
the zero contour of any function of the form,y,2) — f(z,y) defines such a
generalized cylinder.

This simple observation leads to algorithm 2 which generate approximate
implicit representation of a space curve. If step 2 uses aatéxplicitization method
(instead of an approximate one), then the algorithm geegeat exact implicitization
of the space curve.

Remark 4Instead of the the:y and thezz plane, any two orthogonal planes can
be used. Clearly, one could try to choose them such that thieqtion becomes
as simple as possible. As an important condition, no chortth@fcurve should be
orthogonal to one of the two planes.
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Algorithm 2 Approximate implicitization by generalized cylinders

Input A parametric space curv@ or a set of sampled poinis;.
Output An implicit representation of the given space curve as thergection of two gener-
alized cylinders.

1: Project the parametric space cu@e(the pointsp;) orthogonally into two orthogonal
planes (e.gry-plane andcz-plane).

2: Apply an approximate implicitization method to the datacy-plane andcz-plane. Let
the bivariate functiong'(z, y) andg(z, z) define the implicit curves iny-plane andrz-
plane respectively.

3: Define the two generalized cylinders by the polynomfdls, y) andg(x, y) respectively.

4: Represent the cun@(z, y, z) as the intersection of the two generalized cylind&ts, v)
andg(zx, z).

Example 5The left plot in Figure 12.4 (see page 222) shows a space ¢wiviee)
which is represented as the intersection of two generaliyéddersZ(f) (black)
andZ(g) (grey), wheref = f(x,y) andg = g(z, 2).

12.3.3 Approximately orthogonal representation

Our method for generating an approximate implicitizatigriwo approximately or-
thogonal surfaces is based on the following simple obsienvat

Lemma 6. At all regular pointsx € C(f, g), the gradients of the two functions

F(x) = V&) 9(x) + [[Vg(x)[| f(x) (12.9)
G(x) = [[VIX)| 9(x) = [[Vg)Il f(x) (12.10)

are orthogonal.
This observation can be verified by a direct computation.

Remark 7This result cannot be used at points where the two origindhses in-
tersect each other tangentially. In the case of two gezedbylinders produced by
Algorithm 2, this happens only if the cure@ has a tangent which lies in a plane that
is perpendicular to both projection planes. One may eabkibpse the two projection
planes such that this is not the case.

Clearly, even if the functiorf andg are piecewise polynomials, neithEmor GG
are piecewise polynomialsin general. We propose to appraba them by piecewise
polynomials, as follows.

The functiond|V f|| and||Vg|| depend on:, y andz, z respectively. We would
like to approximate them by two piecewise polynomiga(s:, y) andg(z, z) in the
area of interest, which is the region near the zero contdutgedfunctionsf andg.
(See [9] for more information and references on surfacedtji The two approxi-
mating functions are to minimize
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Fig. 12.3. Approximation of the scalar fieldV f||, see Example 8.

/ / w(f) (F — |V£])? dedy and / / w(g) (5 — [Vgl)? dedz  (12.11)
IoZ ol

wherew is a suitable weight function. For instance, one may use

1

 R2 €
wheree > 0 is used in order to avoid division by zero.

Note that the objective functions depend quadratically @mdg. Consequently,
if these approximants are represented as a linear comisinatticertain basis func-
tions (such as tensor—product B-splines), similar to (12len the minimizers of
(12.11) can be computed by solving symmetric positive defiaystems of linear
equations. In the B-spline case, these systems are spdrsecoEfficients of the
equations have to be evaluated by numerical integratign, lgy Gaussian quadra-
tures.

w(h) (12.12)

Example 8 We consider the gradient field ¢f= 422 + 8y — 1 on|0, 1] x [0, 0.6]
and approximate the scalar figld’ f|| = 8+/x2 + 4y by a quadratic polynomial.
For different values ot we obtain different approximations. The white regions in
Fig. 12.3 show where the relative error is less than For smaller values of, this
region follows the elliptic arcZ( f), which is shown as a black line.

Algorithm 3 combines the previous algorithm with the appnoation of the
norms of the gradients. The degree ggg) and deg(G) of the surfacesd” and
G with respect tar equalsmax(deg, (f) + deg,(g),deg,(g) + deg,(f)). The de-
gree with respect tg (and similarly forz) is max(deg,(f),deg,(f)). In order to
reduce the total degree, one may consider to choose theedefitee factorsf, g as

small as possible. Alternatively, one may use (tensor-ymt)dpline functions.

Example 9We consider a given space curve and apply the two algoritbritsRig-
ure 12.4 shows the approximate implicitization by two gelieed cylinders (left)
and by two approximately orthogonal algebraic surfacegh()i For the latter two
surfaces, the angle between the tangent planes along ¢nedntion curves deviates
less ther2.5° from orthogonality.
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Algorithm 3 Approximate implicitization by approximately orthogorsalrfaces
Input A parametric space curn@ or a set of sampled poinis;.
Output An approximate implicit representation as the intersectibtwo approximately or-
thogonal surfaces.
1: Run Steps 1, 2, 3 of Algorithm 2.
2: Approximate||V f|| and ||Vg]|| by polynomials or piecewise polynomiajéand g by
minimizing (12.11).
3: Introduce the two auxiliary functiof” andG as in (12.9) and (12.10), where the norms
of the gradients are replaced by their piecewise polynoapaloximants.
4: Represent the given curve as the intersection of the tywooajpmately orthogonal alge-
braic surfaced”, GG.

1270

Fig. 12.4. Approximate implicitization of a space curve using Algbnit 2 (left, intersection
of two generalized cylinders) and 3 (right, intersectiorivad approximately orthogonal sur-
faces).

12.4 Approximate Implicitization of Surfaces of Revolution

A surface of revolution is obtained by rotating a profile @ig(v) about (e.g.) the
z—axis. We propose two techniques for generating an appadgiimplicit repre-
sentation by a piecewise polynomial. Both techniques redhe problem to the
implicitization problem of a planar curve.

12.4.1 Implicitization via elimination

First we apply a method for approximate (or exact) impligition to the profile curve
in therz—plane, where the radiusdenotes the distance to theaxis. For example,
one may use the method which was described in Section 12.abtsé an implicit
representation of the forrfi(r, z) = 0, wheref is a (piecewise) polynomial.

In order to obtain an implicit representation of the fogta, y, z) = 0, one could
substituter = /22 + y2. However, the resulting scalar field
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Fig. 12.5. Approximate implicitization of a surface of revolution ngielimination, see Ex-
ample 10. Left: profile curve, right: the surface.

(x,y,2) = f(V22 + 92 2) (12.13)

is no longer given by a piecewise polynomial representatioe to the square root.
Instead, we eliminate using a resultant,

g(z,y,2) = Res.(f(r,2),r* — 2% — y?). (12.14)

The degree of will be twice the degree of. Clearly, the resultant can be evaluated
only if f is a polynomial. In the case of a piecewise polynomial (gfumnction),
this approach has to be applied to the polynomial segments.

Example 10We apply the technique of Section 12.2 to the profile curvadbline)
shown in Figure 12.5 (left) and obtain an approximate iniitiation by a bi—quartic
tensor—product polynomial (grey curve). After computihg tesultant, this leads to
an approximate implicit representation of the the corresipty surface of revolution
(right). The functiong is a tensor—product polynomial in, 3, = of degree (8,8,8).
Only even powers of andy are present. Note that the approximate implicitization
produces two additional branches, which do not intersecstiface.

This method for approximate implicitization of surfacesrefolution has two
major drawbacks.

e First, in the case of a piecewise polynomial representafionz) = 0 of the
profile curve, the resulting piecewise polynomgalill not necessarily inherit
the smoothness properties bfE.g., if f is aC* spline function, them will not
necessarily bé&'!.

e Second, even if the approximate implicitization of the peofiurve has no un-
wanted branches and singular points in the region of intetfesse problems may
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be introduced by the eliminating see Example 11. Indeed, this elimination is
equivalent to computing the polynomigafrom

g(x,y,2) = f(=Va? + 92, 2) - f(Va? + 12, 2). (12.15)

Note that this produces indead a polynomial, since only peavrers of the square
root are present! The product (12.15) leads &ymmetrized versioof the ap-
proximate implicitization of the profile curve. Consequgradditional branches
from the half-plane < 0 may cause problems.

Example 11Approximate implicitization of the profile curve (a cubieBér curve)
by a cubic polynomial using the method described in Secti® produces an im-
plicit curve without additional branches and singular pgjsee Fig. 12.6, left. How-
ever, these problems are present after the elimination (42@i4), see Fig. 12.6,
right. The reason for this phenomenon can be seen from tihalgleew (bottom row
in the picture): the elimination produces a symmetrizedieer of the approximate
implicitization. Note that methods for exact implicitizat of the profile curve have
similar problems.

Remark 12The first problem can be resolved by using Eq. (12.15) inst&fad
(12.14).

12.4.2 Implicitization via substitution

In order to avoid the problems of the first approach, we pregosmplicitize the
profile curveq(v) in therz-plane by the zero contour of a bivariate functijtia?, z).

The bivariate functiorf (r2, ) can be chosen from the space of all bivariate functions
with even power in~. We may use any basis (e.g., tensor—product B—splines) and
express the bivariate functigi{r2, ) as

F(r?,2) = Z ci pi(r?,2) (12.16)
i€Z

with real coefficients;, whereZ is a certain index set. The method for approximate
implicitization described in Section 12.2 is applied tosthépresentation. The ap-
proximate implicit representation of the surface of retioln is then obtained by a
substitution,

g(a,y,2) = F(a® +y*, 2). (12.17)
The degree of with respect tar andy is twice the degree of with respect ta-2,
while the degrees with respectiare equal.

Example 13We apply this approach to the profile curve of Example 11, qisin
polynomial F' of total degre&. The implicit equation of the profile curve has degree
(6,3), and the approximate implicit equation of the surfateevolution has degree
(6,3,3). As shown in Fig. 12.7, we may achieve a similar aacyin the region of
interest by using an approximate implicitization of theffjeocurve that is symmet-
ric with respect to the axis of revolution. Due to this symmeno problems with
unwanted branches and singular points are present.
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Fig. 12.6. The elimination ofr may produce additional branches and singular points. Twp ro
Region of interesf0, 2], Bottom row: global view. Left: Approximate implicitizath Z( f)

of the profile curve in the-z—plane. Right: Intersection of the approximate implictian
Z(g) with thexzz—plane. The original profile curve is shown in grey.

Example 14We consider the discretized profile curve shown in Fig. 12, and
apply the method of Section 12.2 to it. The functibnis a bi—quadratic tensor—
product spline function whose domain is the union of thescgtlown in the figure.
This leads to an approximate implicit representation ofgiedile curve (Fig. 12.8,
center) and of the surface (right) of degrgex4) x 2. In the surface case, the spline
function is defined with respect to ring—shaped cells, oletdiby rotating the cells
shown in the left figure.

12.5 Conclusion

Several techniques for approximate implicitization of gaurves and surfaces of
revolution have been presented. These techniques are trasdgbrithms for (exact
or approximate) implicitization of planar curves. In theseaf space curves, a repre-
sentation of two approximately orthogonal surfaces canttaimed, which provides
several advantages, such as a geometrically robust defirofi the curve and the
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Fig. 12.8. Approximate implicitization of a surface of revolution ofégreet x 4 x 2, using a

biguadratic spline functio#’, see Example 14.

possibility to obtain a good approximation of the distane&dfio a space curve. As
shown in the case of surfaces of revolution, only approxéenraplicitization is able
to produce a representation which is free of unwanted besahd singular points

in the region of interest.
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