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Abstract

Boundary approximation of planar shapes by circular arcs
has quantitive and qualitative advantages compared to us-
ing straight-line segments. We demonstrate this by way
of three basic and frequent computations on shapes – con-
vex hull, decomposition, and medial axis. In particular,
we propose a novel medial axis algorithm that beats ex-
isting methods in simplicity and practicality, and at the
same time guarantees convergence to the medial axis of
the original shape.

1 INTRODUCTION

The plain majority of algorithms in computational geom-
etry has been designed for processing linear objects, like
lines, planes, or polygons. On the one hand, this is cer-
tainly due to the fact that many interesting and deep com-
putational and combinatorial questions do arise already for
inputs of this simple form. Again, the pragmatic reason is
that algorithms for linear objects are usually both easier to
develop and simpler to implement. To make things work
for nonlinear objects, which arise frequently in practical
settings, such objects then have to be approximated in a
piecewise-linear manner and up to a tolerable error.

In its simplest form, the input is a single planar
shape, A, with curved and connected boundary ∂A. Fre-
quent tasks to be performed on A – each being prior to
a variety of more involved computations – are construct-
ing the convex hull of A, decomposing A into primitives,
and calculating the medial axis of A. These tasks are well
investigated in the case of polygonal shapes. In certain sit-
uations, however, the number of line segments required
for approximating ∂A with high accuracy may be pro-
hibitively large. Even more seriously, making a piecewise-
linear approximation of ∂A and invoking a polygonal-
shape algorithm may generate results that are topologi-
cally incorrect; the medial axis is a well-known example.

The intention of the present paper is to highlight the
use of circular arcs for boundary representation. It is well
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known that for nonlinear curve segments the approxima-
tion order increases in comparison to using straight-line
segments. In particular, if a given accuracy ε is achieved
by using N line segments, then as few as n = Θ(N 2/3)
circular arcs can accomplish the same. This has been an
issue in approximation theory, but in computational geom-
etry this gain seems to have been less valued than eliminat-
ing small factors in the complexity of the subsequently ap-
plied algorithm. Boundary approximation by circular arcs
may be of advantage also in a qualitative respect. For in-
stance, it avoids the mentioned topological inconsistencies
in medial axis computations, and it supports the computa-
tion of shape offsets, as the class of shapes bounded by
circular arcs is closed under offset operations.

We will show that for the three basic problems men-
tioned above – convex hull, triangulation, and medial axis
– simple and practical, though still efficient algorithms ex-
ist that work for circular arc inputs. The first two prob-
lems are less demanding; we treat them mainly to point out
the respective favorable (in our opinion) approach, whose
practicality shall encourage the use of circular arc bound-
ary representation. Nevertheless, substantial differences
to the polygonal case occur; see below. For computing
the medial axis, we propose a novel and extremely sim-
ple algorithm that is based on a known (though less rec-
ognized) decomposition lemma. After having computed
a purely combinatorial description of the medial axis us-
ing tailored shape splitting, its individual parts (conics and
line segments, like in the polygonal case) are re-assembled
without the need of merging.

Suitable circular arc approximations of shapes can be
found in linear time. In summary, the obtained shape pro-
cessing algorithms are superior in runtime to their line seg-
ment based counterparts, retain much (if not all) of their
simplicity, and are even more natural in some cases.

1.1 Outline and background

We briefly describe the contributions of this paper and re-
late them to existing literature.

Section 2 deals with approximating general curves by
suitable primitives. This is a topic of importance in
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geometric modeling and in CAD and NC applications,
and many quite recent results are available [23, 24, 26,
32, 16, 30]. Our aim is to approximate a paramet-
ric curve c(t) by circular arcs. We assume that c(t)
is piecewise-polynomial of constant degree, and we use
biarcs [29, 24, 30] as primitives. A straight-forward bi-
section algorithm for biarc generation already fits our pur-
poses. It uniquely assigns biarcs to parameter intervals,
which facilitates the error evaluation. An approximating
spline curve b of size n is computed in O(n) time. It fits
the input curve c(t) in slope at biarc endpoints, and can be
tuned to match c(t) in curvature at certain points (a fact
being important in subsequent medial axis computations).
Though not being optimal in the number of arcs, the ap-
proximation order of b is still three [23, 30]. In contrast,
with line segments one cannot exceed order two, and a
polyline of size N = Θ(n3/2) is needed to arrive at the
same precision.

The remaining sections propose algorithms for circu-
lar arc shapes A, where the boundary ∂A of A is given
as a simple curve composed of n circular arcs. Choice
is guided by efficiency as well as by reducibility to basic
operations that have robust implementations [10].

Section 3 outlines an algorithm for computing the con-
vex hull of A. This task is one of the most basic to be per-
formed for a given shape, and has a variety of applications
including shape fitting, motion planning, shape separation,
and many others. At least four linear-time algorithms have
been developed for polygonal shapes [4, 15, 22, 25]. The
incremental method by Melkman [25] stands out by its
simplicity, and it is this candidate we generalize for cir-
cular arc shapes. Compared to the original setting, two
difficulties arise. Deciding inclusion for a currently in-
serted arc in the convex hull constructed so far is no trivial
test, and the convex hull cannot be described by a sequence
of input vertices of the shape. We show that a runtime of
O(n) is still possible. The basic subroutine of the algo-
rithm computes the convex hull of only two circular arcs.

Section 4 deals with shape triangulation, a fundamental
building block in algorithms for decomposition, shortest
path finding, and visibility – to name a few. Most ex-
isting algorithms are meant for polygonal shapes. They
partition a given (simple) n-vertex polygon into triangles
without introducing Steiner points. Efficient candidates
are [13, 21, 3, 17, 7] which all show an O(n log n) run-
time. Theoretically more efficient methods do exist, but
when aiming at simplicity, choice should be made from
the list above.

When trying to generalize to shapes A bounded by cir-
cular arcs, we face two problems. First of all, if the use
of Steiner points is disallowed, then a partition of A into
primitives bounded by constantly many circular arcs need
not exist. Also, not all triangulation methods are suited
to generalization. This applies, for instance, to the ex-
tremely simple ear cutting method in [19] which runs in
time O(r · n), where r is the number of reflex vertices

of A. The triangulation algorithm we propose is clos-
est to Chazelle’s [7]. It manages with an (almost) worst-
case minimal number of Steiner points on ∂A, runs in
O(n log n) time, and uses a dictionary as its only nontriv-
ial data structure. The produced primitives are arc trian-
gles with at least one straight edge. The most complex
geometric operation is intersecting a circle with a line.

Section 5 is devoted to the medial axis, a frequently
used structure associated with a given input shape. Its
main applications include shape recognition, solid mod-
eling, pocket machining, and others. Interest in mathe-
matical properties of the medial axis for general shapes
found renewal in recent years [9, 27, 5, 6, 2]. In our
case, where the shape A is simply connected and ∂A con-
sists of n circular arcs, its medial axis M(A) is known
to be a tree composed of O(n) conic edges. Algorith-
mic work on the medial axis either concentrated on the
case where A is a polygon [20, 7, 8], or on general sets
of curved arcs [32, 18, 27, 1] (and their Voronoi diagram)
without, however, exploiting the fact that the input arcs
define a simple curve. (The various existing methods for
computing digital versions of the medial axis are not con-
sidered here.) Though theoretically efficient as O(n log n)
or better, these algorithms suffer from involved merge or
insertion steps which, even for straight arcs as input, are
difficult to implement. In addition, numerical stability is-
sues arise heavily; intersections of conics have to be deter-
mined repeatedly which, when not calculated exactly, are
bound to cumulate the error.

We present a simple randomized divide-and-conquer al-
gorithm for computing M(A) that overcomes these draw-
backs. In contrast to comparable algorithms, the costly
part is delegated to the divide step. The basic subroutine
there is an inclusion test for an arc in a circle. The merge
step is trivial: it concatenates two medial axes. The ex-
pected runtime is bounded by O(n3/2), but is provably
better for most types of shape. For example, O(n log n)
expected time suffices if the diameter of M(A) is Θ(n).
No nontrivial data structures are used.

To guarantee applicabiliy of our methods to approximat-
ing the medial axes of general shapes B, a convergence
result is needed. We prove in Section 6 that, for a suit-
able approximation of ∂B by biarcs, M(B) is the limit
of M(A) when the approximating arc shape A converges
to B. Related results exist, but either presuppose C2 con-
ditions on ∂A not attainable by circular arcs [6], or con-
cern subsets of the medial axis [5] that survive after prun-
ing the Voronoi diagram of point samples from ∂B. (As
a negative side effect, the medial axis approximation ob-
tained from a point sample is not C1.) It is well known [2]
that medial axis convergence is not given for polygonal
approximations of B. In conclusion, circular arcs are the
simplest possible tool for boundary conversion that guar-
antees a stable medial axis approximation.
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Figure 1: A biarc with the joint circle σ.

2 CIRCULAR ARCS

In order to represent a general shape A in a form suitable
for geometric computations, we discuss methods for ap-
proximating ∂A by circular arcs. We assume that ∂A is
given as a polynomial spline curve of constant degree. At-
tention is restricted to degree 3, as every free-form curve
can efficiently and with any desired precision be converted
into cubics [28], and in many applications the input will
already be available in this common form [11].

Several approaches to generating circular arc splines ex-
ist; see [23] for a review. We consider a simple bisection
algorithm consisting of two steps, approximation and error
measurement. A geometric primitive b (an arc or a biarc)
is fitted to a segment s of the given cubic curve c(t), and
the distance from b to s is computed. The algorithm is rel-
atively easy to implement and still adapts the degrees of
freedom to the input data. As a slight disadvantage, the
number of primitives (the resulting data volume) is mini-
mal only in the asymptotic sense.

Define the one-sided Hausdorff distance from a primi-
tive b to a segment s ⊆ c(t) as

δ(b, s) = max
p∈b

min
q∈s

||p − q||.

(We consider b and s as closed sets.) Let ε denote the error
tolerance to be met by the algorithm.

Algorithm BISECT(t0, t1)

Construct b
Compute δ = δ(b, c[t0, t1])

If δ ≤ ε then return {b}
Else return BISECT(t0,

t0+t1
2 ) ∪ BISECT( t0+t1

2 , t1)

Depending on the primitive b used, Algorithm BISECT
produces splines of different quality: merely continuous
(C0) circular arc splines, or tangent continuous (C1) arc
splines. When being content with the former type, we can
simply choose for b the unique circular arc passing through
the three points c(t0), c( (t0+t1)

2 ), and c(t1). To obtain C1

arc splines, so-called biarcs [29] are utilized.

n = 4, z = 10 n = 12, z = 100

Figure 2: z-magnified error for n biarcs

A biarc b consists of two circular arcs with common
unit tangent vector at their joint m. Usually, b is described
by its source x with associated unit tangent vector vx,
and its target y with unit tangent vector vy. Given these
data, there exists a one-parameter family of interpolating
biarcs. All possible joints are located on the circle σ pass-
ing through x and y and having the same oriented angles
with vx and vy , see Figure 1. Several ways for choosing
the joint m have been proposed; see e.g. [24, 30]. For
many applications, taking m = σ ∩ c[t0, t1] is appropri-
ate. To calculate m, a polynomial of degree 4 has to be
solved (where a closed-form solution is still available).
The output is a C1 arc spline with all arc endpoints sit-
ting on c(t).

In view of subsequent stable medial axis computations,
the choice of m has to be made more carefully. Define an
apex of c(t) as a local curvature maximum. The apices
split the curve c(t) into pieces of monotonic signed curva-
ture, so-called spirals. Following [24], we aim at approx-
imating spirals of c(t) by circular arc spirals. To this end,
we split c(t) at its apices. These points can be found by
solving polynomials of degree 5. Now, we exploit that
spiral biarcs can be constructed that connect two given
points x and y, match unit tangents there, and assume a
predefined curvature in one of them. Let kx and ky be
the curvature of c(t) at x and y, respectively, and sup-
pose kx < ky . To match curvature at x, we choose the
radius of the first arc, b1, equal to rx = 1/kx. The joint m
is obtained by intersecting the circle supporting b1 with
the joint circle σ. According to [24], the radii and curva-
tures satisfy rx > ry > 1/ky. When starting the next biarc
from y with ry = 1/ky (unless y is an apex), monotonicity
of signed curvature will be preserved.

Each arc is found in O(1) time, where the constant de-
pends on the degree of the polynomial to be solved. Fig-
ure 2 shows an example of a biarc conversion. The scaled
curve normals visualize the (magnified) error distribution.

Concerning the error measurement, each produced cir-
cular arc bi has to be matched to its corresponding seg-
ment s = c[t′0, t

′
1]. This is, of course, trivial when the

biarc joint m has been chosen to lie on c(t). In the case
of biarc spirals, we intersect c(t) with the normal of bi

at m. This leads to a cubic equation. If multiple solutions
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Figure 3: Measuring the error between a curve and an ap-
proximating arc.

within the total biarc interval [t0, t1] exist, then the error
is set to ∞. Otherwise, we compute the one-sided Haus-
dorff distance δ(bi, s) by substituting the parametric rep-
resentation of s into the implicit equation K (with leading
coefficients 1) of the circle supporting bi. If r is the radius
of K, and d and D are the minimum and maximum values
of (K ◦ c)(t) for t ∈ [t′0, t

′
1], we get

δ(bi, s) ≤ max{|
√

r2 − d − r|, |
√

r2 + D − r|}

and this bound is sharp. Consequently, δ(bi, s) can be
evaluated by solving a quintic polynomial equation on the
interval [t′0, t

′
1]. Alternatively, a simpler upper bound can

be calculated (without polynomial solving) by replacing
d and D with the minimum and maximum coefficient of
the Bernstein-Bézier representation [12] of (K ◦ c) with
respect to [t′0, t

′
1]. See Figure 3. As the length of s de-

creases, this bound converges to δ(bi, s). As another sim-
ple but important observation, the two-sided Hausdorff
distance between bi and s, max{δ(bi, s), δ(s, bi)}, van-
ishes with δ(bi, s) because bi and s are of constant degree.
Thus controlling the latter distance already ensures that bi

and s are ε-close.

In summary, when algorithm BISECT spans a binary
recursion tree with n leaves (the returned n primitives),
any of the described types of arc splines can be constructed
in O(n) time.

Let us discuss the asymptotic behaviour of the num-
ber n for decreasing tolerance ε. For a given curve c(t)
with domain [t0, t1], which is assumed to contain neither
inflections nor apices, we consider primitives having ap-
proximation order k. Adapting the analysis in [23, 30]
(as done in the Appendix), we get δ = Θ(hk) for the one-
sided Hausdorff distance δ, provided that c(t) is approx-
imated with (small) parameter step size h, and that k is
considered a constant.

This relation implies a general lower bound. For any
approximation of c(t) by n primitives of order k, the
largest step size satisfies ∆t ≥ t1−t0

n . Thus from ε ≥ δ,
which is to be achieved by the approximation, and from
δ = Θ((∆t)k), we get n = Ω(1/ε1/k). On the other hand,
the smallest step size ∆t taken by algorithm BISECT
satisfies ∆t ≤ t1−t0

n . When doubling the step size we
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have δ = Θ((2∆t)k) but ε < δ, as the tolerance is not yet
achieved. Thus n = O(1/ε1/k). We obtain:

Lemma 1 For sufficiently small tolerance ε, the number n
of primitives constructed by algorithm BISECT is asymp-
totically optimal.

Lemma 1 also holds in the general case where c(t) con-
tains inflections and apices, because the resulting num-
ber of spirals of c(t) is independent of n. In con-
clusion, to arrive at tolerance ε, Algorithm BISECT
needs n = Θ(1/ 3

√
ε) cicular arcs (order 3), whereas

N = Θ(1/
√

ε) line segments (order 2) have to be invested
by any polygonal approximation method.

Corollary 2 Compared to approximating c(t) with a
polyline, the data volume drops from N to Θ(N 2/3) when
circular arc splines are used.

Figure 4 shows the number of primitives of a curve-
approximation by polylines and biarcsplines for different
error thresholds ε. It should be observed that, the other
way round, when approximating c(t) with a point sample,
the data volume increases to Θ(n3) compared to n circular
arcs.

3 CONVEX HULL

Let A be some shape given in boundary representation.
More specifically, ∂A is approximated by a simple and
connected curve b composed of n circular arcs. Clearly,
if b converges to ∂A then the convex hull of b converges
to the convex hull of A. We show that the convex hull al-
gorithm for polylines in Melkman [25] can be generalized
to simple circular arc curves b while retaining its O(n)
runtime.

In a nutshell, this algorithm processes each of the ver-
tices of the given polyline in order and maintains their
convex hull. If the currently processed vertex vi falls
into the convex hull, CHi−1, constructed so far then vi

is deleted and we put CHi = CHi−1. Otherwise, tan-
gents are placed from vi to CHi−1, and the sequence of
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vertices (if any) between the corresponding two vertices
of tangency is deleted from CHi−1 in order to construct
CHi.

The linear runtime of this strategy hinges on two propo-
sitions: (1) A constant-time inclusion test vi ∈ CHi−1,
and (2) deletion of vertices of CHi−1 which are non-
extreme in CHi in time proportional to their number.
While (2) is achieved by a standard Graham scan [14],
proposition (1) is met by exploiting simplicity of the given
polyline: vi ∈ CHi−1 is equivalent to vi ∈ α(v), where
α(v) is the interior angle at the last vertex, v, added
to CHi−1.

Staying with vertices works correctly with polygonal
curves because the convex hull of two points equals the
convex hull of their connecting line segment. This is,
of course, not true for a connecting circular arc. As a
consequence, the set of vertices of the convex hull to be
constructed is, in general, no subset of the input vertices.
Also, the inclusion test for a circular arc to be inserted is
a more complicated operation, The following variant of
Melkman’s algorithm is able to cope with circular (and
more general) arcs and still runs in O(n) time. Its main
subroutine computes the convex hull of only two arcs.

Let b1 . . . bn be the given simple circular arc curve.
Some of the arcs may be line segments, and the curve
may be cyclic. Assume first that the curve is C1.
Let CH denote the convex hull operator, and abbreviate
CH(b1 . . . bi) as CHi. Consult Figure 5.

Algorithm HULL

Construct CH2 = CH(b1b2). Let v be the last point along
the chain b1b2 that lies on CH2.

For i = 3, . . . , n, process the arc bi as follows:

Search for the first arc, a, of CHi−1 clockwise from v
that contributes with non-zero length to CH(a, bi) and has
this hull and CHi−1 on the same side. Similarly, search
for the first arc, c, counter-clockwise from v with analo-
gous properties. (a = c is possible.) Arcs a and c al-
ready provide the information needed to construct CHi

correctly.
Case 1 Arc a (and equivalently, arc c) does not exist.

This means CHi−1 ⊂ CH(bi). Put CHi = CH(bi), and
assign to v the target of bi.

Case 2 Arcs a and c do exist. Check for some tan-
gent, ta, which appears on CH(a, bi) and is clockwise tan-
gent to CHi−1. Also, check for some tangent, tc, which
appears on CH(c, bi) and is counter-clockwise tangent
to CHi−1.

Case 2.1 Tangents ta and tc both do not exist. This
means bi ∈ CHi−1. Put CHi = CHi−1.

Case 2.2 ta exists (uniquely) but tc does not. Let
ta = xaya, where xa is its point of tangency on CHi−1.
To obtain CHi, delete from CHi−1 the clockwise part be-
tween v and xa, and add ta and the piece of the arc bi be-
tween ya and v. Update v as the last point along bi on CHi

(either ya or bi’s target).

b

v

b t

v

a

a

a

i

i

Figure 5: Cases 2.1 (left) and 2.4 (right)

Case 2.3 tc exists (uniquely) but ta does not. Let tc =
xcyc, with xc being its point of tangency on CHi−1. To
get CHi, delete from CHi−1 the counter-clockwise part
between v and xc, and add tc and the piece of the arc bi

between yc and v. Update v as in Case 2.2 (either yc or
bi’s target).

Case 2.4 ta and tc both do exist. Here we get CHi by
deleting arcs from CHi−1 as in Cases 2.2 and 2.3, and
then adding ta, tc, and the piece of bi between ya and yc.
We update v as the point among ya and yc that is closer to
the target of bi.

Correctness of algorithm HULL is verified by observing
that ta and tc are indeed tangents from the currently in-
serted arc bi to the convex hull CHi−1 constructed so far.
Thereby, as the algorithm stands now, it is of importance
that the input curve is C1. This guarantees that the bound-
ary of CHi−1 is C1 as well (except possibly at the target
of bi−1), such that the arcs a and c are found correctly.
Minor modifications in the selection criteria for these arcs
will make the algorithm work without this restriction.

The runtime is dominated by the search for a and c,
where the necessary number of calls of the two-arc hull
subroutine is proportional to the total number of arcs con-
structed or deleted. This number is O(n) because only
O(1) arcs are constructed per i-loop. The rest can be ac-
complished in O(1) time per arc bi if CHi is stored as a
doubly linked list, or in O(n) total time if CHi is repre-
sented in a (more space-saving) dequeue.

4 TRIANGULATION

We next propose a triangulation algorithm for circular arc
shapes. Define an arc triangle as a (simply connected) face
bounded by at most three circular arcs or line segments.

As a first observation, a partition of a circular arc
shape A into arc triangles does not always exist, unless the
use of Steiner points is allowed. This is even true when the
n arcs describing ∂A are given as x-monotone pieces (and
hence span semi-circles at most), which we will assume
below. In fact, there are examples where at least 2n− 7
Steiner points are necessary. See Figure 6. For no pair of
vertices of the depicted shape A does there exist a connect-
ing circular arc inside A. Thus no part of A can be split off
using a circular arc between two vertices. The interested
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reader may convince himself that placing n − 4 Steiner
points as shown is no waste. The asserted lower bound
then follows, because each of the resulting faces needs ad-
ditional Steiner points. Note that a single point per face
suffices only if circular arcs rather than line segments are
used to split the face.

Figure 6: Many Steiner points

The triangulation algorithm we are going to describe in-
troduces at most 2n − 5 Steiner points (on the boundary
of A, rather than in its interior), runs in O(n log n) time,
and uses a dictionary as its most involved data structure.
The produced primitives are arc triangles where at least
one edge is a line segment. Standard plane sweep is used
to compute the vertical visibilities inside A for each pair
(vertex, arc) of ∂A. Each such pair defines a vertical line
segment that splits A and ends at a Steiner point on ∂A.
A decomposition of A into arc triangles and arc trapezoids
results. No priority queue is needed, as all events guiding
the plane sweep (namely, the vertices of ∂A) are known in
advance and thus can be x-sorted beforehand. For simplic-
ity, suppose that their x-coordinates are pairwise different.

Lemma 3 The decomposition above contains exactly
n − 2 Steiner points.

Proof. Let us call a vertex type k if it vertically sees k arcs,
i.e., defines k Steiner points. We have vertices of types
0, 1, and 2. At each type-2 vertex v, the shape A is verti-
cally split into three parts, each part having a type-0 ver-
tex as an x-extremum. Two such parts lie on the same
side of the splitting segment, and among their extreme
type-0 vertices, we map v to the one which is x-closer
to v. This mapping is injective, and does not address the
two x-extrema of ∂A. The lemma follows. �

The obtained faces are exactly n − 1 in number, at least
two being arc triangles. Each face F that is an arc trape-
zoid can be easily split into arc triangles. If F is convex
then a line segment will do. Also, if at least one of the two
arcs on ∂F is avoided by the central line g of their sup-
porting circles, then a single splitting arc or line segment
for F exists (because there is a normal to g that touches
that arc at an endpoint). Otherwise, we use an intersection
of g with a reflex arc on ∂F as a Steiner point and split F
with two arcs. Figure 7 illustrates two typical cases. In
total, at most 2n − 5 Steiner points are used for an arc tri-
angulation.

We stress the fact that generalizing the classical plane
sweep for polygon triangulation [17] – though well pos-
sible in O(n log n) time – results in a more complicated

algorithm. Large parts already swept across have to be
remembered for later processing, and the produced primi-
tives are more complex than arc trapezoids. Also, line seg-
ments being simultaneously tangent to two given circles
have to be calculated, whereas in our algorithm the most
complex operation is intersecting a circle with a straight
line.

g

g

Figure 7: Splitting arc trapezoids

5 MEDIAL AXIS

Let A be the circular arc shape under consideration. (All
objects are considered to be closed sets in the sequel). Call
a disk D ⊆ A maximal if there exists no disk D′ such that
D′ ) D and D′ ⊆ A. The medial axis, M(A), of A is
defined as the set of all centers of maximal disks.

As the boundary of A is a connected and simple curve
with n circular arcs, M(A) is finite, connected and cycle-
free [9] and thus forms a tree. M(A) can be decomposed
into O(n) edges, which are maximal pieces of straight
lines and (possibly all four types of) conics. Endpoints
of edges will be called vertices of M(A).

The contribution of this section is a simple and practi-
cal randomized algorithm for computing M(A). It works
by divide-and-conquer and accepts as input any descrip-
tion of ∂A by circular arcs and/or line segments. The
costly part is delegated to the divide step, which basi-
cally consists of inclusion tests for arcs in circles. The
merge step is trivial; it just concatenates two partial me-
dial axes. The expected runtime is bounded by O(n3/2),
and will be proved to be O(n polylog n) for several types
of shape. A qualitative difference to existing medial axis
algorithms is that a combinatorial description of M(A) is
extracted first, which can then be directly (and robustly)
converted into a geometric representation. We base our
algorithm on the following simple though elegant decom-
position lemma [9].

Lemma 4 Consider any maximal disk D for A. Let
A1, . . . , At be the connected components of A \ D, and
denote with p the center of D.

(1) M(A) =

t
⋃

i=1

M(Ai ∪ D)

6
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Figure 8: Walk (dashed) and cut (dotted)

(2) {p} =

t
⋂

i=1

M(Ai ∪ D)

In plain words, having at hands some maximal disk one
can compute the medial axes for the resulting components
recursively, and then glue them together at a single point.
However, the desired efficiency of this strategy calls for a
balanced decomposition. Its existence is given below.

Lemma 5 There exists a maximal disk D for A such that
at most n

2 arcs from ∂A are (completely) contained in each
component of A \ D.

Proof. Each point p ∈ M(A) corresponds to a unique
maximal disk Dp for A. Let f(Dp) be the number of arcs
from ∂A in the largest component induced by Dp. As
long as f(Dp) > n

2 , the component that realizes f(Dp)
is unique, and we can decrease f(Dp) by continuously
moving p on M(A) such that Dp enters into this com-
ponent. This process terminates at some point p∗ where
f(Dp∗) ≤ n

2 . We never move back the way we came, as
the component we move out never exceeds a size of n

2 . �

We are left with the algorithmic problem of finding
some maximal disk that yields a well-balanced parti-
tion. Observe that the optimal point p∗ above may be
not unique, because the number f(Dp) is invariant un-
der motion of p within the relative interior of any fixed
edge e ⊂ M(A). Let us define Walk(e) as the path length
in M(A) from e to p∗. Further, define Cut(e) as the size
of the smaller one among the two subtrees which consti-
tute M(A) \ {e}. See Figure 8. Any tree with small ’cuts’
tends to have short ’walks’, in the following respect.

Lemma 6 Let e be an edge of M(A), chosen uniformly
at random. Then E[Walk(e)] = Θ(E[Cut(e)]).

Proof. Orient all the paths in M(A) away from the
point p∗. This defines a partial order ≺ on the edges
of M(A). We have the set equality

⋃

e∈M(A)

{(a, e) | a ≺ e} =
⋃

e∈M(A)

{(e, b) | b � e}

because either set contains each pair of the relation ex-
actly once. The (disjoint) subsets united in the left set, L,

represent all the paths in M(A) between its edges e
and p∗. Thus we have E[Walk(e)] = 1

m · |L|, where m
is the number of edges of M(A). The (disjoint) sub-
sets united in the right set, R, represent those subtrees
defined by the edges e of M(A) which avoid p∗. If we
neglect subtrees of sizes larger than m

2 , then the cardinal-
ity of the set drops by a constant factor (of at most 4,
if ≺ would be a total order, hence less). This implies
1
m · |R| > E[Cut(e)] > 1

m · |R|
4 . The lemma now follows

from |R| = |L|. �

Lemma 6 motivates the following disk finding algo-
rithm which combines random cutting with local walking.
Its main subroutine, MAX(b), selects for an arc b ⊂ ∂A
its midpoint x and returns the unique maximal disk for A
with x on its boundary. For the ease of description, we as-
sume that this disk splits A into exactly two components.
Let c ≥ 3 be a (small) integer constant.

Procedure CUT(A)

Put A′ = A
Repeat

Choose a random arc b of ∂A′

Compute D=MAX(b) and let A0 be the larger
component of A induced by D

Assign A′ = A′ ∩A0

Until A0 contains less than n − n
c arcs

Report D

Procedure WALK(A)

Choose a random arc b of ∂A
Compute D=MAX(b)
Let A0 be the larger component induced by D

While A0 contains more than n − n
c arcs do

Let b1 (b2) be the first (last) complete arc of ∂A in A0

Compute D1=MAX(b1) and D2=MAX(b2)
Assign to A0 the smaller one of the respective larger

components of A for D1 and D2

Memorize the corresponding disk D ∈ {D1, D2}
Report D

The disk finding algorithm now runs CUT(A) and
WALK(A) in parallel and terminates as soon as the first
disk is reported. To analyze its runtime, let us first consider
the assignment of arcs on ∂A to edges of M(A), as done
in subroutine MAX. Namely, if MAX(b)=D then arc b is
mapped to the edge e that contains the center of D. Ob-
serve that either 0, 1, or 2 arcs are mapped to a fixed edge.
Moreover, no two unaddressed edges and no two doubly
addressed edges are neighbored. This assignment is suffi-
ciently uniform to convey randomness from arcs to edges.
Thus Lemma 6 implies an expected bound of O(

√
n) on

the number of loop executions in at least one of the proce-
dures CUT(A) and WALK(A).

The costly part in both procedures is their subroutine
MAX, whose expected number of calls obeys the same

7



bound. D=MAX(b) has a simple implementation which
runs in O(n) time: We initialize the disk D as the (ap-
propriately oriented) halfplane that supports b at its mid-
point x and, for all remaining arcs bi ⊂ ∂A that inter-
sect D, we shrink D so as to touch bi while still being
tangent to b at x. The most complex operation of this in-
clusion test, which is done only once per arc bi, intersects
a hyperbola with a straight line. In particular, and unlike
previous medial axis algorithms, no conics processed be-
fore take part in later geometric operations.

In summary, the randomized complexity for computing
the medial axis is given by T (n) = T ( 1

cn)+T ((1− 1
c )n)+

O(n3/2) = O(n3/2). In many cases, however, will the al-
gorithm perform substantially better. Let d be the graph
diameter of M(A). Then the loop in WALK(A) is exe-
cuted less than d times. So, for example, if d = Θ(log n)
then an overall runtime of O(n log2 n) is met. For the
other extreme case, d = Θ(n), our strategy is even faster.
With constant probability, an edge on the diameter is cho-
sen, and Θ(n) such edges e have Cut(e) = Θ(n). The
expected number of loop executions in CUT(A) now is
only O(1), and an O(n log n) algorithm results. We con-
jecture that the latter situation is quite relevant in practice.
For most shapes, their medial axes will not branch exten-
sively, and even if so, the branching will be independent
of n, because each branch will be approximated by a large
number of circular arcs in order to achieve the predefined
precision.

The output of the algorithm is a list of O(n) points on
M(A), namely, the centers of the splitting disks, plus a list
of O(n) edges connecting them. Each edge is given im-
plicitly by its defining two arcs on ∂A. To make sure that
the reported point list includes all the vertices of M(A),
base cases that involve constantly many (pieces of) origi-
nal arcs from ∂A have to be solved directly. (The constant
equals 2 or 3 if ∂A is C1.) Note that the algorithm works
exclusively on ∂A except for a final step, where the conic
edges of M(A) are explicitly calculated and reassembled.
This gives rise to increased numeric stability in compari-
son to existing approaches.

Opposed to approximating ∂A with the same accur-
racy by a polyline of size N , our circular arc algorithm
takes O(n3/2) = O(N) time; see Corollary 2 in Section 2.
Thus, even for (probably rare) worst-case inputs, our sim-
ple algorithm competes asymptotically well with previous
methods. Another advantage over polygonal approxima-
tion is described in Section 6.

6 CONVERGENCE

A well-known unpleasant phenomenon of the medial axis
is its instability under perturbations of the shape bound-
ary. Several papers discussing this issue have been pub-
lished recently. A result in [6] shows that stability is,
in general, not given unless perturbations are C2. To

Figure 9: Few arcs versus small point sample

deal with general shapes, the so-called λ-medial axis has
been introduced as a tool in [5]. After drawing a point
sample from the shape boundary, the Voronoi diagram of
these points is constructed and pruned appropriately. The
λ-medial axis converges to the original for vanishing sam-
ple distance. Drawbacks are the large sample size for a
close (and homotopy-equivalent) approximation, the lack
of its C1 behavior, and the need of computing a general
planar Voronoi diagram. Figure 9 gives an illustrative ex-
ample.

We prove in this section that medial axis convergence
under the Hausdorff distance comes as a byproduct of the
careful (though, of course, still C1) biarc boundary con-
version described in Section 2. We start with two technical
lemmas, whose proofs are omitted due to lack of space.

For some shape A and a point p ∈ M(A), let Dp denote
the unique maximal disk with center p. Recall that M(A)
is defined as the union of the centers of all maximal disks.
Define ξp ≤ π as the largest angle at p spanned by two
points in the set Dp ∩ ∂A. The assertion below does not
assume any regularity condition for the shape boundaries.

Lemma 7 Let A and B be two shapes whose (two-sided)
Hausdorff distance satisfies H(∂A, ∂B) = ε. Define

k =
4

1 − cos(ξp/2)

and let Dp denote any maximal disk for A whose radius r
fulfills r > k · ε > 0. Then there exists a maximal disk Dq

for B such that ‖p − q‖ < k · ε.

Define a leaf of the medial axis as a vertex with a single
incident edge. The following lemma describes the behav-
ior of M(A) in the vicinity of its leaves. Recall that an
apex of ∂A is a point of maximal curvature.

Lemma 8 For an apex x of ∂A, consider the unique max-
imal disk Dp that cuts off from ∂A a segment through x
of fixed (small) length `. Further, consider the maximal
disk Dq osculating at x. If ∂A is piecewise analytic C2 in
the neighborhood of x then

‖q − p‖ → 0 as O(`2).

8



We are now prepared to prove the claimed convergence
result. Slightly more general than in Section 2, we assume
that ∂A for the original shape A is C2 and piecewise an-
alytic. (These requirements are fulfilled if ∂A is a cubic
spline.) The proof generalizes easily to the case where ∂A
is an arbitrary concatenation of analytic pieces, and thus,
in particular, is allowed to contain ’sharp’ vertices.

Let Bn denote some circular arc shape that comes from
approximating ∂A by a suitable biarc spline; see Sec-
tion 2. For sufficiently large n, each leaf of M(A) is also
a leaf of M(Bn), and all leaves of M(Bn) are contained
in M(A). This is because the spline preserves not only
spirals, but also position, normal vector, and curvature at
each apex x of ∂A. All leaves are centers of osculating
disks at some apex x.

Let us remove from ∂Bn the containing circular arc bx

for each apex x whose osculating disk is included in Bn

(and hence is maximal for Bn). This decomposes ∂Bn

into components. The lengths of these arcs bx shrink to
zero as Ω(n−1) by construction of Bn, as does their min-
imum dn. Apart from disks for leaves, each maximal
disk Dp for Bn has contact to at least two different com-
ponents. (Otherwise, there would be a supplementary leaf
of M(Bn).) For such a disk Dp, we have the angle in-
equality ξp ≥ ξn, for

ξn = 2 arcsin(dn/2L) (1)

and L denoting the geometric diameter of Bn. Because
dn → 0 as Ω(n−1) and since L is a constant, we have
1 − cos(ξn/2) = Ω(n−2). Moreover, H(∂A, ∂Bn) → 0
as O(n−3) by construction. That is, the condition in
Lemma 7 holds for almost all maximal disks Dp for Bn

when n is sufficiently large. Consequently, for each
point p ∈ M(Bn) there exists a point q ∈ M(A) such that
‖p − q‖ → 0 as O(n−1). That is, the one-sided Hausdorff
distance δ(M(Bn), M(A)) converges at this speed.

The other direction can be proved similarly. For each
apex x of A, we define a neighborhood cx on ∂A of
length n−3/4. Removal of the segments cx leads us to
two types of maximal disks Dq for A, depending on
whether Dq touches a single segment cx (q is then close
to x), or not. For the latter type, the analysis is the same
as above, and shows that q approaches the center of some
maximal disk for Bn at speed O(n−3/2). For the former
type, due to Lemma 8, the distance ‖q − p‖ between q
and the leaf p ∈ M(Bn) associated with cx behaves as
Θ(n−3/4)2, i.e., the same. The one-sided Hausdorff dis-
tance δ(M(A), M(Bn)) thus converges at that speed.

Note that the global convergence speed of the medial
axis with respect to the Hausdorff distance is Θ(n−1),
whereas the error of the boundary approximation improves
as Θ(n−3). This is due to the behavior of the medial
axis close to its leaves. When we restrict ourselves to the
λ-medial axis [5] for any λ > 0, then dn in formula (1) be-
comes a constant, and the approximation speed is Θ(n−3)

by Lemma 7. This well compares to using a size-n point
sample on ∂A and pruning its Voronoi diagram, as the ap-
proximation speed then is only Θ(n−1).

7 CONCLUSIONS

We have given several examples for the efficient handling
of shapes with nonlinear boundaries. In particular, the use
of circular arcs for boundary conversion has been propa-
gated. Our results profit from the confluence of geometric
approximation theory and computational geometry. To our
knowledge, this is the first systematic approach in this di-
rection. Compared to conversion into polylines, the gain
in efficiency increases with the complexity of the subse-
quent algorithm. This makes affordable suboptimal (hence
sometimes less complicated) algorithms.

Other approximating primitives could be considered
(e.g., cubics), but circular arc splines seem to yield the best
trade-off. The presented algorithms, in principle, work for
arbitrary primitives. In particular, in our medial axis al-
gorithm, the added numerical complexity is not raised fur-
ther by the algorithm itself. This is a nontrivial property
of this algorithm, which is the first to combine practicality,
efficiency, and stability. Its generalization to shapes with
holes is possible, as Lemma 4 has a counterpart for this
case.

Finally, we raise the question of whether results of this
paper can be extended to three-space.

Acknowledgements Thanks go to Raimund Seidel for
discussions on Section 5.
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APPENDIX

Let c(t) be a given analytic curve on the domain [t0, t1]
and suppose that c(t) contains neither inflections nor
apices in [t0, t1]. For given step size h, consider geomet-
ric primitives b(t, h) that approximate the curve segments
c[t, t + h]. Assume that the domain of c(t) can slightly
be enlarged to [t0, t1 + hmax], where hmax is a suitable
constant which specifies the largest stepsize.

In order to evaluate the one-sided Hausdorff distance
from b(t, h) to c[t, t + h], we analyze the stationary points
τ = τi of the function

d(τ, t, h) = min
q∈b(t,h)

‖q − c(τ)‖, τ ∈ [t, t + h],

which are characterized by

∂

∂τ
d(τ, t, h)

∣

∣

∣

∣

τ=τi

= 0, i = 1, . . . , s(t) .

Provided that h is sufficiently small, the number s(t) of
stationary points is independent of t. For instance, this
number is 1 for line segments and 2 for arcs interpolating
three points, see Figure 10.

PSfrag replacementsc(ti)

c(ti+
h
2 )

c(ti+h)

d1(t,h)

d2(t,h)

Figure 10: Error of the approximation by arc segments.

For each stationary point τi we consider the associated
distance

di(t, h) = d(τi(t, h), t, h)

where we define di(t, 0) = 0. The one-sided Hausdorff
distance δ(b(t, h), c[t, t + h]) is the maximum of all these
distances.

For each value of t, consider the Taylor expansion at
t = 0. The first non-vanishing derivative is used to define
the remainder term,

di(t, h) =
1

k!
d
[k]
i (t, h∗

i (h)) · hk,

where [k] indicates the kth derivative with respect to the
step size h and h∗

i (h) ∈ [0, h]. The order k of this term is
called the approximation order of the geometric primitive;
it equals 2 for line segments and 3 for circular arcs.

Since the curve c(t) contains neither inflections nor
apices, and due to the compactness of its domain [t0, t1],
there exist positive constants C, D such that the functions
di satisfy

0 < C < d
[k]
i (t, 0) < D.

Moreover, since the kth derivative is continuous, there ex-
ists a step size g > 0 such that

∀(t, h∗) ∈ [t0, t1] × [0, g] :
C

2
≤ d

[k]
i (t, h∗) ≤ 2D.

Consequently, if h is sufficiently small, then the one-sided
Hausdorff distance δ satisfies

1

k!

C

2
hk ≤ δ ≤ 1

k!
2Dhk .

This proves δ = Θ(hk) for the case where k is a constant.

11


