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Abstract. Given a smooth surface patch we construct an approximat-
ing piecewise linear structure. More precisely, we produce a mesh for
which virtually all vertices have valency three. We present two methods
for the construction of meshes whose facets are tangent to the original
surface. These two methods can deal with elliptic and hyperbolic sur-
faces, respectively. In order to describe and to derive the construction,
which is based on a projective duality, we use the so–called support func-
tion representation of the surface and of the mesh, where the latter one
has a piecewise linear support function.

1 Introduction

Surface patches whose Gauss image (i.e., the mapping induced by the unit nor-
mals) defines a bijection between the surface and the co–domain of the Gauss
image, which is a certain subset of the unit sphere, can be represented by their
support functions. In this representation, a surface is described by the distance
of its tangent planes to the origin of the coordinate system, which defines a
function on the unit sphere. This representation is a fundamental tool in the
field of convex geometry, see e.g. [2, 5, 6]. It has many potential applications in
Computer Aided Design, as pointed out by Sabin [14].

Particular classes of support functions correspond to special types of surfaces.
The case of surfaces with polynomial support functions has been discussed in
[15]. As shown there, these surfaces are obtained by forming the convolution of
certain surfaces of revolution whose meridians are special trochoids.

After polynomials, the simplest possible class of support functions are piece-
wise linear functions, which will be studied in this paper. These functions corre-
spond to piecewise linear surfaces (meshes) with the property that the majority
of vertices have valence three, and the majority of the facets are hexagons.

In order to solve the problem of reconstructing a mesh from its planar projec-
tions, similar meshes were constructed in [13] with the help of three–dimensional
Voronoi diagrams. An optimization–based framework for applications in archi-
tecture was presented in [4]. By applying a projective duality to a mesh produced



by a subdivision surface, such meshes were produced in [9]. The relation between
general polyhedra and their dual objects with respect to a projective duality
(such as the polarity with respect to the unit sphere, which is sometimes called
the ”polar reciprocation”) has been studied in classical geometry [3, 16, 17]. In
particular, polyhedra with special properties, such as uniform polyhedra (where
all stars of vertices have the same shape), have been analyzed. It should not be
confused with the graph–theoretical duality, which is considered, e.g., in [11].

In this paper we use the support function to describe both the meshes and
their dual objects. The support function is somehow “in–between” both objects,
and it allows to describe both of them in a simple way. The use of the support
functions automatically leads to a restriction of the class of dual meshes; these
meshes have to be star–shaped with respect to the origin.

A possible application of the meshes described by piecewise linear support
function comes from architecture, where free–form surfaces are often approxi-
mated by planar facets [4].

Motivated by applications in architectural design, constructions of quadran-
gular meshes with planar facets have recently been described in [10]. These
meshes can be seen as discretizations of conjugate networks of curves on surfaces.
In particular, as a discretization of the network of principal curvature lines, [10]
introduces the class of conical (quadrangular) meshes. These meshes are charac-
terized by the property that – for any offset distance – the four planes obtained
by offsetting the planes spanned by the four quadrangles sharing a given vertex
intersect in a single point. This is a desirable property for architectural design,
since it facilitates the construction of offset (or parallel) structures, which may
be needed for statical reasons. These meshes have further been analyzed in [12].

In the present paper we focus on meshes with planar faces, where virtually
all vertices possess valency 3 (i.e., trihedral meshes). Consequently, most faces
are planar hexagons. Clearly, any three planes parallel to the three faces (which
are assumed to be mutually different) sharing a given vertex intersect in a single
point, and the existence of offset structures is therefore guaranteed. The con-
structions described below are capable of producing meshes with exactly planar
faces, as they work without numerical optimization.

The remainder of this paper is organized as follows. The next section presents
some background information about shell structures in architectural design. In
particular it discusses the different possible structures with planar facets. Sec-
tion 3 introduces support functions and discusses their use for describing the
polarity with respect to the unit sphere. The special case of piecewise linear
support functions is described in Section 4. In particular, it is shown that these
surfaces define a star–shaped triangular mesh and a primal mesh with quasi–
convex facets, which are not always simple. Finally, in order to approximate a
given surface by a mesh corresponding to a piecewise linear support function, the
construction of tangent meshes is described in Section 5. In the case of hyper-
bolic surface patches, this can be achieved with the help of the parameterization
by asymptotic lines, while elliptic surface patches can be dealt with via convex
hull computations. The methods can be applied to surface patches whose Gauss



image defines a bijection between the patch and the corresponding spherical do-
main. In the case of elliptic surface patches, the spherical domain is required to
be convex. Finally we conclude the paper.

2 Shell structures for architectural design

Shell structures, and in particular their realizations as piecewise linear structures,
are attractive tools for architectural design. We summarize the background from
statics and discuss the case of faceted glass shells.

2.1 Shell structures

Shell structures can in general be considered as structurally efficient structures.
The efficiency is due to the fact that the curved form reduces the bending
strength needed to carry the loads to almost zero, hence the shell surface can be
very thin. For instance, an egg shell can take up considerable load as long as it
is unbroken. It can drop from the nest without breaking. Only a concentrated
point load – and especially a point load from the inside – will break it. Once
it is broken, the egg shell is very weak. This is because the support conditions
have changed, so that now only the bending strength is carrying the load.

In principle the bending strength can be zero, if the support conditions are
appropriate. Then a specific ideal structural model, the membrane shell model,
can be used. In the membrane shell model only membrane forces are considered.
Membrane forces are in-plane shear and normal forces, and for a curved surface
the considered plane is the tangent plane. Membrane forces are the type of
forces that develop in tent structures, but in tents only tension forces can be
developed. In membrane shell structures both tension and compression forces are
developed. This means in principle that the shell surface should be considered
perfectly bendable, both geometrically and statically. In order to keep the surface
geometrically and statically determinate, the support conditions along the edge
have to fulfill certain rules. Furthermore, the shell design has to follow certain
guidelines in order to be stiff and to avoid too large internal stresses [1]. In
practice though, shells have to have some bending stiffness in order to carry
concentrated loads and to avoid instability from buckling.

Membrane shell structures can be designed either with smooth curved sur-
faces or with surfaces composed of plane facets - faceted surfaces (Fig. 1). From
a construction point of view, the faceted surfaces are very attractive compared
to the curved surfaces, as they are less complicated to build. The planar facets
make them much easier to describe and produce industrially than doubly curved
surfaces. At the same time, various standard materials and components can be
used. For faceted surfaces, three geometrically and statically different systems
are of interest.

– Triangular facets with six-way vertices. Statically this system generates con-
centrated forces along the edges, leading to the well known triangulated truss
shell structures consisting of bars and joints (Fig. 2, left).



 

            
 

Fig. 1. Faceted shell structures. A) Triangulated truss shell structure. B) Quadrangular
hybrid shell structure. C) Three-way vertices plate shell structure.

  

Fig. 2. Left: Triangulated truss shell structure consisting of bars and joints (Great
Court, British Museum, London). Right: Hybrid type of structure consisting of a quad-
rangular truss stabilized by pre-stressed diagonal cables (Hippo House, Berlin Zoo)

– Quadrangular facets with four-way vertices. A widely used example is faceted
translation shells (Fig. 2, right). Statically this system generates concen-
trated forces along the edges and shear forces in the facets, leading to a
hybrid type of structure consisting of a quadrangular truss stabilized by
plates or pre-stressed diagonal cables.

– Hexagonal facets with three-way vertices. Geometrically this system is dual
to the triangulated system. Statically this system only generates in-plane
shear and normal plate forces in the facets, leading to plate shell structures
(Fig. 3, left).

The structural systems and forces here mentioned are the global structural sys-
tems and forces. They are all in-plane forces and equal to the membrane forces
in smooth curved shells. This means that if the support conditions are appro-
priate, no bending stiffness is needed in the connections between the elements.
Only locally the out of plane loads applied have to be carried to the edges of the
facets by bending forces.



Fig. 3. Left: Plate shell structure consisting of plates primarily subjected to in-plane
shear and normal forces (Full scale model, SBI Hørsholm). Right: Principal layout for
a load carrying faceted shell structure of glass.

2.2 Faceted glass shell

Glass is already to some extent used for load carrying structural members like
beams and columns. The structural use of glass is troubled by a brittle behavior
of the material, and a limited capacity for carrying tension forces. However, these
characteristics can be taken into account in the design process in various ways,
thereby opening up for a world of transparent load carrying structures.

The load bearing capacity of glass is similar to that of wood when in tension,
and to steel when in compression. In principle, glass is an exceptionally strong
material, but in reality small flaws are distributed randomly over the surface.
When the allowable tension stress is reached at the glass surface, one of these
small flaws (a small crack) eventually will start to open. Since a redistribution
of the stresses is not possible in glass, fracture will occur – hence the brittle
behavior.

As described earlier, bending stresses are minimized in shell structures, which
are appropriately shaped and supported, and the load is transferred primarily
via in-plane stresses (membrane stresses). This allows for a better utilization
of the capacity of the structural material, since stresses are distributed evenly
over the thickness of the structure instead of concentrated at the surfaces. The
stiffness to weight ratio of a shell structure – smooth or faceted – is remarkably
good, since the absorption of loads is provided by the overall global shape of
the structure, and not by a local sectional area. If structural instability can be
avoided, the structural thickness of a smooth shell can easily be as little as 1/1000
of the span, or less. This is where glass becomes an interesting possibility as the
load carrying material. A span of 15 meters corresponds to a glass thickness of
15 mm, if the thickness/span ratio of 1/1000 is achieved, and that is not an
unrealistically large thickness for a laminated glass pane.

In order to avoid the high cost of the production of glass of double curvature,
faceted glass shell structures are considered as an alternative to the smooth glass
shell. Planar pieces of glass are more easily described, produced and transported.
The glass thickness will increase somewhat compared to the smooth shell, since
the structure will be burdened by unfavorable local effects.



A part of a faceted paraboloid of revolution is shown in Fig. 3, right. This
geometrical drawing is in the following considered as the principle layout for a
load carrying faceted shell structure of glass. The span is about 16 meters, and
the size of the facets is roughly 1.2 meters. The glass elements are all planar, and
the majority are shaped as hexagons. The central piece of glass is a pentagon,
allowing the hexagons to keep roughly the same size, even though the structure is
curved. The joints connecting the glass panes are designed to be able to transfer
in-plane stresses.

3 Support function and dual surface

We use the polarity with respect to the unit sphere to define the dual surface of
a given surface and discuss its relation to the support function representation.

3.1 The polarity with respect to the unit sphere

Any non–degenerate quadric surface in three–dimensional space defines an as-
sociated polarity. In particular, we consider the unit sphere S

2 (centered at the
origin). The associated polarity π maps the point

p = (p1, p2, p3)
⊤ (1)

into the plane

P : {x = (x1, x2, x3)
⊤ : 1 = p · x = p1x1 + p2x2 + p3x3} (2)

and vice versa, i.e., P = π(p) and p = π(P). It is defined for all points except
for the origin, p ∈ R

3 \ {0}, and for all planes which do not pass through the
origin1.

The polarity π preserves the incidence of points and planes: if a point p

belongs to a plane Q, then the plane π(p) passes through the the point π(Q).
The plane π(p) is perpendicular to the line {λp : λ ∈ R}. The distances d

and D of the point and of its image plane from the origin satisfy dD = 1. In
particular, each point of the unit sphere is mapped to the tangent plane at itself.

3.2 The dual surface

We consider a segment of a smooth (C2) surface p(u, v), (u, v) ∈ Ω. Each point
has an associated unit normal

N : Ω → S
2 : (u, v) 7→ N(u, v) (3)

1 These restrictions can be avoided by considering the projective closure of the three–
dimensional space. The origin corresponds to the plane at infinity, and the infinite
points correspond to planes passing through the origin.
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Fig. 4. The polarity π maps the points p of the primal surface to the tangents π(p)
of the dual surface (both shown as solid lines), and the tangent planes π

−1(P) = π(P)
of the primal surface to the points P of the dual surface (both shown as dashed lines).
The figure shows the two–dimensional situation.

which depends smoothly on u, v and defines an orientation of the surface. We
assume that the mapping N is a bijective mapping between Ω and N(Ω) ⊆ S

2.
This is satisfied, provided that the surface does not contain parabolic or singular
points and the domain is sufficiently small.

The polarity π is now applied to the points of the surface patch p(u, v). This
produces the two–parameter family of planes

{x : 1 = x · p(u, v)}. (4)

At the same time, the polarity is applied to the two–parameter family of tangent
planes of the surface patch p(u, v). This leads to the points

P(u, v) =
1

H(u, v)
N(u, v), (5)

where
H : Ω → R : (u, v) 7→ N(u, v) · p(u, v) (6)

measures the distance between the tangent plane and the origin.
These points form the dual surface of p(u, v) with respect to the polarity π,

cf. Fig. 4. Its tangent planes are the images (4) of the points. The dual surface
is well–defined provided that H 6= 0, i.e., no tangent plane of the surface patch
p(u, v) contains the origin 0.

The signs of the Gaussian curvatures of the surface patch p(u, v) and of
its dual surface P(u, v) are identical. If both surfaces have negative Gaussian
curvature, then the asymptotic lines of p(u, v) correspond to the asymptotic
lines of the dual surface.



Remark 1. Dual curves and surfaces have been considered by Hoschek [8] for
detecting sign changes of the curvature and the Gaussian curvature. Hoschek
uses the polarity with respect to the imaginary unit sphere, which corresponds
to changing the sign of the right–hand side in (5).

3.3 Support functions of surfaces

The function
h : N(Ω) → R : h = H ◦ N−1 (7)

which is obtained by composing the inverse of the map N defined in (3) with
the function H defined in (6), is called the support function of the given surface
patch. Support functions are a classical tool in the field of convex geometry [2,
5, 6]. Recently, curves and surfaces with polynomial support functions have been
studied by three of the authors [15].

If a support function h ∈ C1(D, R) is given, where D ⊆ S
2, then the associ-

ated surface patch can be constructed by computing the envelope of the planes

{x : h(n) = n · x}, n ∈ D. (8)

For any n ∈ D, the corresponding point on the envelope is

p(n) = h(n)n + (∇S2h)(n) (9)

where ∇S2 is the embedded intrinsic gradient of the support function h with
respect to the unit sphere. If h∗ ∈ C1(R3, R) is a scalar field whose restriction to
S

2 equals h, then

(∇S2h)(n) = (∇h∗)(n) − ((∇h∗)(n) · n) n. (10)

The mapping n 7→ p(n) is the inverse of the Gauss map of the surface patch.
The dual surface can also be obtained from the support function h,

P(n) =
1

h(n)
n, (11)

cf. (5).

Example 1. We consider the support function h which is obtained by restricting
h∗ = 3 + 5n1 to the unit sphere S

2. The intrinsic gradient (10) equals

(∇S2h)(n) = (5 − 5n2
1,−5n1n2,−5n1n3)

⊤. (12)

Using (9) and (11) we obtain the equations of the primal and the dual surface,

p(n) = (3n1 + 5, 3n2, 3n3)
⊤, and P(n) =

1

3 + 5n1
(n1, n2, n3)

⊤, (13)

respectively. Now one may substitute any parameterization of the unit sphere
for n = (n1, n2, n3)

⊤ in order to parameterize these two surfaces. In this case –
as for any linear polynomial h∗ with non–vanishing constant term – we obtain
a sphere and a quadric of revolution.



Remark 2. The surface defined by (9) is not always regular. If h ∈ C2(D, R),
then the regularity can be characterized by the intrinsic Hessian of h: If the
mapping (HessS2 + id)h has full rank, then the surface (9) is regular. See [15] for
a detailed discussion of regularity.

Remark 3. The two support functions h and −(ρ ◦ h), where ρ is the reflection
ρ : n 7→ −n with respect to the origin, define the same surface, but with different
orientations.

4 Piecewise Linear Support Functions

We define piecewise linear functions on the unit sphere and discuss the primal
and dual meshes associated with them.

4.1 Piecewise linear functions on spherical triangulations

Consider three linearly independent points v1,v2,v3 ∈ S
2 which are assumed to

lie in one hemisphere of the unit sphere (i.e., there exists a vector r ∈ R
3 such

that r ·vi > 0, i = 1, 2, 3). The three great circular arcs connecting them, which
are contained in the same hemisphere, bound a spherical triangle.

We consider a subset D ⊆ S
2 which is bounded by a sequence of great

circular arcs with vertices n1, . . . ,nk. In addition, let nk+1, . . . ,nm ∈ intD be
additional points in the interior of D. A spherical triangulation T of D with
vertices (ni)i=1,...,m is a collection of spherical triangles satisfying the following
three properties:

1. The interiors of any two spherical triangles are disjoint,
2. the intersection of any triangle with the set of vertices consists of exactly

three points, which are the vertices of that triangle, and
3. the union of all triangles is equal to D.

Now we consider a spherical triangulation T with vertices (ni)i=1,...,m. We
assume that each vertex ni is equipped with an associated scalar value hi. For
any spherical triangle △ijk ∈ T with vertices ni,nj ,nk, we consider the unique
homogeneous linear function

h∗

ijk : R
3 → R : x 7→ (hi, hj , hk)(ni,nj,nk)−1x, (14)

where (ni,nj,nk) is the 3 × 3–matrix with columns ni,nj and nk, and restrict
it to △ijk. This function satisfies h∗

ijk(nl) = hl for l ∈ {i, j, k}. The collection of
all these functions defines a unique piecewise linear function h ∈ C(D, R) over
the spherical triangulation which interpolates the given values,

h(ni) = hi, i = 1, . . . , m. (15)

In the remainder of this paper we assume that all hi are positive,

hi > 0, i = 1, . . . , m. (16)

The piecewise linear interpolant h is then also positive for all x ∈ D.



Remark 4. Index triples ijk as for △ijk with the same set of indices, but different
order, will be identified, i.e. △ijk = △ikj = △jik etc. That is, ijk represents a
subset of {1, . . . , m} with cardinality three, and these subsets are used to label
the triangles, etc.

4.2 The dual mesh

With the help of the relationship between the dual surface and the support
function, we now define the dual mesh via (11). More precisely, for each spherical
triangle △ijk ∈ T with vertices ni,nj,nk we obtain a segment of the dual mesh,

Pijk(n) =
1

h∗

ijk(n)
n, n ∈ △ijk. (17)

Using the parameterization

n(u, v, w) =
uni + vnj + wnk

||uni + vnj + wnk||
, u + v + w = 1; u, v, w ≥ 0 (18)

of the spherical triangle and by exploiting the fact that h∗

ijk is homogeneous,
one gets the rational linear parameterization

Pijk(n(u, v, w)) =
uni + vnj + wnk

(hi, hj, hk)(ni,nj ,nk)−1(uni + vnj + wnk)
(19)

which describes the triangle with vertices

tl =
1

hl

nl, l ∈ {i, j, k}. (20)

This leads to

Proposition 1. The dual mesh P associated with the piecewise linear support
function h ∈ C(D, R) satisfying (15) over the given spherical triangulation T
of D with vertices (ni)i=1,...,m is the triangular mesh with vertices (ti)i=1,...,m,
which has the same connectivity as T . This mesh is star–shaped with respect to
the origin; each ray λn with λ ≥ 0, n ∈ D intersects the mesh P in a single
point.

4.3 Quasi–convex polygons

Before discussing the primal mesh, we consider planar curve–like objects with
piecewise linear support functions.

Definition 1. Consider a closed polygon with v vertices (qi)i=0,...,v−1 which
lies in a plane T ⊂ R

3, where any triple of neighboring points is assumed to be
non–collinear. For each edge

Ei = {(1 − t)qi + tqi+1 mod v : t ∈ [0, 1]}, i = 0, . . . , v − 1, (21)



Fig. 5. Quasi–convex polygons as offsets of convex polygons.

we choose one of the two possible unit normal vectors ni lying in T. The polygon
along with the unit normals is then called an oriented polygon. At each vertex
qi we consider the convex cone

Ci = {λni−1 + µni mod v : λ ≥ 0, µ > 0}, i = 1, . . . , v. (22)

The oriented polygon is said to be quasi–convex if i 6= j implies Ci ∩ Cj = ∅.

According to this definition, a quasi–convex polygon is characterized by the
fact that the oriented unit normals trace the unit circle exactly once. Any con-
vex polygon, where all edges are oriented by choosing either outward or inward
pointing normals, is also quasi–convex. A general quasi–convex polygon is ob-
tained as an offset of a convex one, where all edges are simply translated by a
certain signed distance, according to the given normals.

Remark 5. If T is the plane R
2, then an oriented polygon can be described by a

piecewise linear support function on the unit circle S1. The edges and vertices
of the polygon correspond to the nodes and to the linear pieces of this function,
respectively.

4.4 The primal mesh

Each triangle △ijk ∈ T has an associated linear support function h∗

ijk which
defines a triangular facet Pijk of the dual mesh. By applying the polarity to the
plane spanned by this facet, we obtain the corresponding point

pijk = ((hi, hj , hk)(ni,nj ,nk)−1)⊤ (23)

of the primal mesh.
For any inner vertex ni ∈ intD of the spherical triangulation we consider the

star of this vertex, i.e., the set of triangles sharing this vertex,

Si = {△ijk ∈ T : j, k ∈ {1, . . . , m}}. (24)



(a) (b) (c) (d) (e)

Fig. 6. Stars of vertices of the dual mesh and the associated quasi–convex polygons of
the primal mesh: convex, simple (a); non–convex, simple (b,c); non–convex, non–simple
(d,e).

Each triangle △ijk corresponds to a point pijk. All these points lie in the plane

Ti = {x ∈ R
3 : x · ni = hi}, (25)

which is obtained by applying the polarity to the vertex pi. By connecting points,
where the corresponding triangles have a common edge, we obtain a polygon.

Example 2. Five different stars and the associated planar polygons are shown
in Fig. 6. If the vertex is convex, then the associated polygon is also convex.
Otherwise, non–convex and even non–simple polygons may be obtained.

Proposition 2. The primal mesh p associated with the piecewise linear sup-
port function h ∈ C(D, R) satisfying (15) over the given spherical triangulation T
of D with vertices (ni)i=1,...,m is the set of (not–necessarily simple) quasi–convex
planar polygons with vertices pijk . These polygons will be called the facets of p.
For each inner vertex ni of the triangulation, the star of this vertex defines one
of these polygons, and this polygon lies in the plane Ti.

Proof. Without loss of generality we consider the star of the vertex ni = (0, 0, 1)⊤.
We consider a certain neighborhood of the corresponding vertex ti = (1/hi)ni of
the dual mesh. Since it is star–shaped with respect to the origin, the dual mesh
can be represented as

(1 − t)





0
0

1/hi



 + t





cosφ
sinφ
z(φ)



 , φ ∈ R, t ∈ [0, ǫ] (26)

where the 2π–periodic continuous function z(φ) is piecewise smooth (in the inte-
riors of the triangles Pijk). It has jumps in the first derivatives exactly in those



directions that correspond to edges shared by neighboring triangles of the dual
mesh.

On the one hand, by applying the polarity to the planes spanned by the
triangles Pijk we obtain the vertices of the quasi–convex polygon in the plane Ti.
On the other hand, by applying the polarity to the parameter lines φ =constant
in (26) we obtain oriented lines with the normal vector (cosφ, sin φ, 0)⊤ in this
plane. In particular, the lines which correspond to shared edges of neighboring
triangular facets of the dual mesh correspond to the edges of the quasi–convex
polygon. The remaining lines support that polygon at its vertices. ⊓⊔

A simple polygon of the primal mesh will be said to be regular. A primal mesh
with only simple polygons will also be said to be regular. We discuss criteria
which guarantee regularity.

Lemma 1. Let ti be a an inner v-vertex of the dual mesh P and tj(1), . . . , tj(v)

be the neighboring vertices in counterclockwise order. We assume that no two
edges meeting at ti are linearly dependent.

The quasi–convex polygon which corresponds to the star of ti has a self–
intersection if and only if there exists two points tj(k), tj(l) such that the two
points tj(k−1), tj(k+1) are on the same side of the plane spanned by tj(k), tj(l)

and ti, and also the two points tj(l−1), tj(l+1) are on the same side of this plane.

Proof. Applying the polarity to the plane spanned by tj(k), tj(l) and ti gives the
intersection point of the polygon. ⊓⊔

In particular, if the dual mesh is convex, then all facets of the primal mesh
are also convex and therefore regular.

4.5 Examples

We use spherical triangulations whose vertices are obtained by applying uniform
refinement steps (where each triangle is split into four triangles by halving the
edges) to a icosahedron, and projection onto the unit sphere after each refinement
step. This gives dual meshes which are adapted to the curvature of the mesh;
more facets are used in regions with higher curvature.

Example 3. We consider an ellipsoid with three different diameters and its dual
surface, which is again an ellipsoid. The vertices ni of the spherical triangulation
were obtained by applying two steps of refinement to a regular icosahedron. The
three symmetry planes of the ellipsoid were aligned with symmetry planes of the
icosahedron.

We considered only the upper half of the ellipsoid. The piecewise linear in-
terpolant to the support function of the ellipsoid defines a dual mesh with 90
vertices. This dual mesh is convex, hence the 90 facets of the associated primal
mesh do not have any self–intersections. A physical model of this mesh is shown
in Figure 7.



Fig. 7. Example 3. Convex mesh with piecewise linear support function which approx-
imates a segment of an ellipsoid. The mesh consists of 90 facets.

Most facets of the primal mesh have 6 vertices, and most vertices of the
primal mesh have valency 3. In some cases, the edges of the facets are very
short, and two of these vertices are virtually identical, leading to a vertex with
valency 4. This situation corresponds to two neighboring triangles of the dual
mesh which are almost coplanar.

Example 4. We consider a one–sheeted hyperboloid with three different diame-
ters and its dual surface, which is again a one–sheeted hyperboloid. Similarly to
the previous example. the vertices ni of the spherical triangulation were obtained
by applying three steps of refinement (where each triangle is split into four trian-
gles by halving the edges) to a regular icosahedron. The three symmetry planes
of the hyperboloid were aligned with symmetry planes of the icosahedron.

We considered a segment of the upper half of the hyperboloid, which is
bounded by two vertical planes. The piecewise linear interpolant to the sup-
port function of the hyperboloid defines a dual mesh with 169 vertices. This
dual mesh is non–convex, but nevertheless each vertex defines a regular facet of
the primal mesh. A physical model of this mesh is shown in Figure 8.

As in the previous example, most of the 169 facets of the primal mesh have
6 vertices, and most vertices of the primal mesh have valency 3.

5 Tangent meshes

We discuss the construction of meshes whose facets lie in the tangent planes of a
given surface. For a spherical triangulation with vertices n1, . . . ,nk and a given
(smooth) surface with support function h(n), one can construct piecewise linear
support function by choosing hi = h(ni) in (14), i.e., by sampling values of the
support function of the given surface. However, we have to ensure the regularity
of the corresponding primal mesh.



Fig. 8. Example 4. Non–convex mesh with piecewise linear support function which
approximates a segment of a one–sheeted hyperboloid. The mesh has 169 facets.

Two approaches will be presented. In the first approach, we consider a se-
quence of spherical triangulations with decreasing size of the triangles. They
correspond to triangular (dual) meshes approximating the dual surface with in-
creasing level of accuracy. Here we analyze the limit shapes of the facets of the
primal mesh. This approach is particularly well suited for primal surfaces with
only hyperbolic points, see Sections 5.1 and 5.2.

The second approach is restricted to primal surfaces with only elliptic points.
In this case a suitable dual mesh can be found via convex hull computation, see
Section 5.3.

5.1 Asymptotic behavior of the vertices of the primal mesh

We assume that we can generate an increasingly fine triangulation (the dual
mesh) of the dual surface, which depends on some step-size h. In order to study
the limit shape of the facets of the corresponding primal mesh when h tends to
zero, we consider the following situation.

We consider the dual surface P in the vicinity of one of its points P0 =
P(u0, v0). Consider two C3 curve segments a(h), b(h), h ∈ (−ǫ, ǫ), which lie on
P and satisfy a(0) = b(0) = P0 and a′ × b′ = λn0, λ > 0, where n0 is the
normal of the dual surface at P0 and the prime ′ denotes the first derivative
with respect to h at h = 0. Let Q(h) be the plane spanned by P0,a(h),b(h) and
q(h) its image under the polarity with respect to the unit sphere tangent to P

at P0 and having n0 for outer normal.

After a suitable translation, the sphere can be chosen as the unit sphere S
2

centered at the origin, as described in Section 3.1. The plane Q(h) is well–defined
for all h 6= 0, provided that ǫ is sufficiently small.

The limit behavior of q(h) for decreasing step-size h is described in the
following result.



Lemma 2. The point q(h) lies in the tangent plane to P at P0. It satisfies

lim
h→0

q(h) = P0 and q′ =
|b′|2 κba

′ − |a′|2 κab
′

2(a′ × b′) · n0
× n0, (27)

where κa and κb are normal curvatures of the tangent directions a′ and b′,
respectively.

Proof. The two given curves have Taylor expansions of the form

a(h) = P0 + a′h +
1

2
(|a′|2 κan0 + ta)h

2 + O(h3) (28)

b(h) = P0 + b′h +
1

2
(|b′|2 κbn0 + tb)h2 + O(h3), (29)

where the vectors ta, ta are perpendicular to n0. We compute a normal to the
plane Q(h)

NQ(h) = (a(h) − P0) × (b(h) − P0) =

= (a′ × b′)
[

h2 + ch3
]

+ 1
2 (|b′|2 κba

′ − |a′|2 κab
′) × n0h

3 + O(h4),
(30)

where

c =
(a′ × tb − b′ × ta) · (a′ × b′)

2|a′ × b′|2 . (31)

Since the plane Q(h) contains the point P0 = n0, it has the equation

x ·NQ(h) = n0 · NQ(h) = (a′ × b′) · n0

[

h2 + ch3
]

+ O(h4). (32)

Hence, the corresponding dual point is

q(h) =
NQ(h)

(a′ × b′) · n0 [h2 + ch3] + O(h4)
=

= P0 +
|b′|2 κba

′ − |a′|2 κab
′

2(a′ × b′) · n0
× n0h + O(h2).

(33)

Though the calculation of q(h) is not valid for h = 0, the function q can be
extended to a C2 function by letting q(0) = P0. ⊓⊔

Using a regular parameterization P = P(u, v) of the dual surface, we can
express q′ with the help of the second fundamental form.

Lemma 3. Assume that Pu(u0, v0) × Pv(u0, v0) is a positive multiple of n0,
where Pu, Pv denote the first derivatives of P with respect to the parameters. If
P0 = P(u0, v0), a(h) = P(ua(h), va(h)) and b(h) = P(ub(h), vb(h)) then

q′ = P⊥

u

L
(

u′
au′

b
2 − u′

a
2
u′

b

)

+ 2Mu′

bu
′
a (v′b − v′a) + N

(

u′
av′b

2 − v′a
2
u′

b

)

2(u′
av

′

b − v′au′

b)
+

+P⊥

v

L
(

v′au′

b
2 − u′

a
2
v′b

)

+ 2Mv′av′b (u′

b − u′

a) + N
(

v′b
2
v′a − v′bv

′

a
2
)

2(u′
av′b − v′au′

b)

(34)



where L, M, N are the coefficients of the second fundamental form at P0, and

P⊥

u =
1√

EF − G2

∂P

du

∣

∣

∣

∣

u0,v0

× n0, P⊥

v =
1√

EF − G2

∂P

dv

∣

∣

∣

∣

u0,v0

× n0, (35)

where E, F, G are the coefficients of the first fundamental form at P0.

This fact can now be verified by a direct computation.

5.2 Asymptotic behavior of the facets of the dual mesh

Eq. (34) gives the leading term of q(h) with respect to the basis P⊥

u , P⊥

v . We
use it to define the limit shape of a facet.

Definition 2. Consider the dual surface P(u, v), which is assumed to be regu-
lar and C3 in the vicinity of P(0, 0). Let {(u1, v2), (u2, v2), . . . , (un, vn)} be the
parameter values of the star of the vertex P(0, 0). We define the vertices of the
limit shape of the primal facet by applying the expression (34) to the con-
secutive pairs of dual vertices. More precisely, the limit position of the vertex of
the primal facet associated with the triangle with vertices

P(ui, vi), P(u(i mod n)+1, v(i modn)+1), P(0, 0), i = 1, . . . , n, (36)

is found by substituting

u′

a = ui, v′a = vi, u′

b = u(i modn)+1, and v′b = v(i modn)+1 (37)

in the right–hand side of (34), and the limit shape is obtained by connecting
consecutive pairs of limit vertices.

The geometrical meaning of the limit shape of the primal polygon is described
in the following result.

Proposition 3. We consider the primal facet associated with the star of the
dual mesh with apex P(0, 0) and vertices P(h ui, h vi), i = 1, . . . , n. As h → 0,
the shape of the primal facet tends to the corresponding limit shape.

The proof is a direct consequence of Lemma 3.
By using a regular triangular mesh with edge–length h in the parameter

domain of the dual surface, one might expect to obtain regular facets of the
primal mesh as h tends to zero. However, this is not the case as shown by the
following example.

Example 5. Consider the following elliptic dual surface

(u, v, 1.34u2 + 1.89uv + 0.72v2), (38)

and choose the parameters (ui, vi) as the vertices of a regular hexagon in the
u, v-plane inscribed in the unit circle. Figure 9 shows the regular polygon (thin)
with its limit primal polygon (thick), which is not simple.

In order to obtain a regular primal mesh approximating a patch of of a
hyperbolic surface, we propose the following
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Fig. 9. The limit shape (thick polygon) associated with the star defined by the regular
hexagon for the surface (38).

Algorithm 1

Input: Smooth dual hyperbolic surface P with a C3 curve α(t) lying on it, and
step size h. The curve α(t) must not touch the asymptotic lines of the dual
surface.
Output: Triangular (dual) mesh of the dual surface and associated primal mesh.

1. Compute the diagonal points [n, n] := α(nt).
2. Compute the general grid points [m, n] defined as intersection of the ‘vertical’

asymptotic line through [m, m] and the ‘horizontal’ asymptotic line through
[n, n]. Here, the notions ‘vertical’ and ‘horizontal’ are used to distinguish
between the two different families of asymptotic lines on the dual surface.

3. Produce the triangular mesh by applying the pattern shown in Figure 10,
left.

4. Compute the primal mesh.

Now we can prove that this algorithm produces a sensible output, at least as
h tends to zero.

Theorem 1. If the step size h is sufficiently small, then the algorithm produces
a regular primal mesh.

Proof. There exists a unique parameterization P(u, v) of the dual surface such
that the the parametric directions are the asymptotic lines and α(t) = P(t, t).
In this parameterization, the second fundamental form satisfies L = N = 0
and we can compute the limit shape of the primal facets associated with the
stars of the dual mesh (indicated by the grey hexagons in Fig. 10, left). In this
parameterization we apply directly the formula (34). Note that L = N = 0.
Setting M = 1 we obtain the regular limit shape shown in Figure 10, right.

Different values of M only scale the limit shape. Note that this shape corre-
sponds to the polarity with respect to a unit sphere which is tangent to the dual
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Fig. 10. Left: Pattern for producing the dual mesh from the dual surface. The vertical
and horizontal lines represent the grid of asymptotic lines, while the circles indicate
which points should be sampled. Right: The limit shape (thick curve) of the star defined
by the thin polygon, which corresponds to the hexagons shown in the left figure.

surface at the corresponding vertex. The global polarity π, however, modifies
this shape by a projective transformation which can be shown to preserve the
regularity, provided that the step–size is sufficiently small ⊓⊔

We illustrate this result by two examples.

Example 6. Consider the Enneper surface
(

1
3 (u + v)(2u2 − 8uv + 3 + 2v2), 1

3 (u − v)(2u2 + 8uv + 3 + 2v2), 4uv + 1)
)

,

where the parameter lines are already the asymptotic lines. The dual surface has
the parametric representation

P(u, v) =









6(u+v)
(8u3v+6u2+8uv3+12uv+6v2−3)

−6(−v+u)
(8u3v+6u2+8uv3+12uv+6v2−3)

3(2v2+2u2
−1)

(8u3v+6u2+8uv3+12uv+6v2−3)









. (39)

By choosing α(t) = P(t, t) and suitable h we obtain a dual mesh of P and finally
a regular primal mesh which approximates the Enneper surface – see Figure 11.

This example is somewhat special, since the asymptotic lines intersect each
other orthogonally (as it is a minimal surface). This is not the case of the second
example.

Example 7. We consider a segment of a ruled quadric, where the parameter lines
are the two families of straight lines on this surface. By applying the algorithm
with three different step-sizes we obtain the primal meshes shown in Fig. 12.



Fig. 11. Primal tangent meshes of the Enneper surface for values h = 0.081 (left) and
h = 0.039 (right).

Clearly, this technique can also be used to analyze other patterns than the
one shown in Fig. 10, including non–uniform ones. This will be a topic of future
research.

5.3 The case of elliptic surfaces

If the given primal surface patch has only elliptic points, then a different al-
gorithm can be used. We assume that the Gauss image of the given patch is
contained in a hemisphere. In addition, it should be convex, i.e., any great cir-
cular arc connecting two points of the Gauss image should entirely belong to the
Gauss image, too.

An approximation of the primal surface by a regular mesh can be obtained
as follows.

Algorithm 2

1. Choose a spherical triangulation of the sphere.
2. For all vertices ni, i = 1, . . . , m, evaluate the support function of the given

surface, hi = h(ni) and compute the corresponding points ti = 1
hi

ni of the
dual mesh.

3. Compute the convex hull of the points {ti, i = 1, . . . , m}.



Fig. 12. Primal tangent meshes of a ruled quadric for three different values of h.

4. The apparent contour of the convex hull, seen from the origin, splits the
boundary surface of the convex hull into two meshes. One of them is the
suitable dual mesh; the other one does not have any inner vertices.

Due to the fact that the dual surface of the elliptic point is also elliptic, all vertices
of the dual mesh obtained from this algorithm have convex stars. Consequently,
all faces of the primal mesh are convex (and therefore simple) polygons.

An example has already been presented in Section 4.5 (Example 3).

6 Conclusion

Based on the use of piecewise linear support functions we discussed dual meshes,
which were assumed to be star–shaped with respect to the origin, and the asso-
ciated primal meshes. The primal meshes are capable of approximating smooth
surface patches without parabolic points. It should be noted that these meshes
approximate not only the surfaces but also the associated normals. I.e., each
normal in the Gauss image corresponds to exactly one normal on the primal
mesh. This is clearly not the case for general meshes which approximate a given
surface.

As a matter of future work we will use the support function for generating
error bounds. In the smooth case the maximum distance error is essentially
equal to the maximum difference between the original support function and its
approximation. While this is also true for convex primal meshes, the extension
of this result to the non–convex case is still an open problem.

In addition, we plan to discuss the approximation of general support functions
by piecewise linear support functions over a given spherical triangulation, subject
to conditions which guarantee the regularity of the resulting primal mesh. In the
case of elliptic surfaces, this can be formulated as an optimization problem with
linear constraints. In the hyperbolic case, however, non–linear constraints are
needed.

Finally we plan to investigate surfaces with parabolic lines separating ellip-
tic and hyperbolic regions. In order to represent these surfaces, multi–valued
piecewise linear functions will be needed.
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