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Abstract. We consider manifolds of curves and surfaces which are
controlled by certain systems of shape parameters. These systems
may be given by the control points of a spline curve, the coefficients
of an implicit equation, or other parameters controlling the shape.
Each system of shape parameters corresponds to a chart of the man-
ifold. In order to fit a curve or surface from such a manifold to given
unorganized point data, we define an evolution process which takes
an initial solution and modifies it in order to adapt it to the data. We
show that this evolution defines a flow on the shape manifold. Con-
sequently, the result of the evolution is independent of the particular
choice of the shape parameters / of the chart.

§1. Introduction

In order to fit curves and surfaces defined by parametric representations
to given point cloud data, a non–linear optimization problem has to be
solved, due to the influence of the parameterization. Several methods for
addressing this influence are available (e.g., [3, 8, 10, 11, 12, 13, 16, 17]),
ranging from simple techniques, such as ‘parameter correction’, to the use
of geometrically motivated quasi–Newton methods.

Due to the iterative nature of the techniques for non–linear optimiza-
tion, it is tempting to view the intermediate results as a time–dependent
curve or surface which tries to adapt itself to the given points [11, 17].
This is related to the idea of ‘active curves’ used for image segmentation
in Computer Vision [9, 5, 14].

In this paper, we consider the curve and surface fitting problem for a
very general class of objects, forming a shape manifold, as described in
Section 2. In the third section we present an evolution–based technique
for approximating points and discuss its relation to existing methods. Sec-
tion 4 analyzes the dependence of the evolution result on the choice of the
chart, i.e., of the shape parameters describing the object. Finally we show
several examples and conclude this paper.
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§2. Shape Manifolds

In order to keep the notations simple, all results are presented for planar
curves. However, they can be generalized to the surface case.

2.1. Manifolds of planar curves

We consider a family of planar curves of the form cs(u), where the pa-
rameter u varies within the parameter domain I = [a, b]. The shape
of the curves is controlled by the vector s which collects the so–called
shape parameters s = (s1, . . . , sn) ∈ Ω which are allowed to vary within a
certain open subset Ω ⊆ R

n. Except for finitely many parameter values
U0 = {u0

1, . . . , u
0
k}, which are called the vertex parameters, the curve cs(u)

is assumed to be differentiable and singularity–free, c′s(u) 6= 0 for s ∈ Ω
and u ∈ I \U0, where the prime indicates the differentiation with respect
to u. Moreover, for any constant value of u, the mapping s → cs(u) should
be C1. In the case of open curves, the end points are treated like vertices.

Clearly, it is always possible to find another system of shape parameters
σ = (σ1, . . . σn) ∈ Ω∗, which describes the same family of curves,

cs(.) = c∗
σ
(.), where σ = σ(s). (1)

Consequently, the family of shapes can be equipped with a structure of a
differentiable manifold, which will be called the shape manifold M . The
different choices of shape parameters correspond to different charts of the
shape manifold. As we shall see later, it may happen that more than one
chart is needed in order to cover the entire manifold.

If (1) holds for the shape parameters s ∈ Ω and σ(s) ∈ Ω∗, then there
exist open neighborhoods N ⊆ Ω and N∗ ⊆ Ω∗ of s and σ, respectively,
such that the transformation between the charts

N → N∗ : s 7→ σ(s) (2)

is bijective, differentiable and regular, i.e., the Jacobian (∂σi/∂sj)i,j=1,...,n

has full rank.

Example 1. We consider all circles in the plane,

xs(u) = (xc + r cos(u), yc + r sin(u))>, u ∈ [0, 2π] (3)

with shape parameters s = (xc, yc, r) ∈ R
2 × R

+. Instead of using the
parametric representation (3), they may be described in implicit form
f(x, y) = 0 with

f(x, y) = a(x2 + y2) + x + by + c. (4)

where the shape parameters σ = (a, b, c) satisfy a > 0 and 1 + b2 > 4ac.
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Example 2. In order to fit the bridge–shaped data set shown in Fig. 4,
we consider a curve defined by collecting six line segments and two circular
arcs, which are pieced together continuously. The set of shape parameters
consists of the centers and the radii of the circles parameterized in polar
coordinates and the end points of the lines. Furthermore, we need 4 angles
in order to describe the positions of the vertices on the circular arcs.
Summing up, we obtain 18 shape parameters.

Example 3. We consider all rational cubic curves in the plane which
intersect the interior of the unit square. For any two points on the four
boundary lines, we choose the standardized (i.e., the weights of the bound-
ary control points are equal to 1) Bernstein–Bézier representation of the
curve. Counting all possibilities, this defines 32 = 2 · 42 different charts
on this 8–dimensional manifold of shapes. For reasons of numerical sta-
bility, one should always choose the Bernstein–Bézier representation of
the shortest possible arc (i.e., containing all intersection with the interior
of the unit square). Another chart can be defined by using the implicit
representation, which has 10 coefficients, and specifying a singular point
(three equations, two degrees of freedom). After taking the homogeneity
into account, we arrive again at an 8–dimensional manifold.

Remark 1. Note that the parameterization of the curve does not need
to be known explicitly, since the definition of the shape manifold requires
only the existence of such a parameterization. For instance, closed ovals
of implicitly defined curves, where a uniform speed parameterization can
be guaranteed to exist, fit into the framework also.

2.2. Vector fields and flows

Recall that a contravariant vector field on a manifold obeys the transfor-
mation rule

vi =

n
∑

j=1

vj
∗

∂si

∂σj
(5)

where vi = vi(s1, . . . , sn) and vj
∗ = vj

∗(σ
1, . . . , σn) are the components with

respect to the charts defined by the shape parameters s and σ, respec-
tively. In the remainder of this paper we shall use Einstein’s summation
convention, omitting summation signs as in (5). Indices not affected by it
will be chosen as Greek characters.

A contravariant vector field vi = vi(s1, . . . , sn) defines a flow

φt : R × M → M : φt : s0 7→ φt(s0) (6)

where φt(s0) is obtained by solving the differential equation ṡi = vi with
the initial condition s(0) = s0. Eq. (6) describes the flow in the chart
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Fig. 1. In order to fit the data, the closest points are attracted
by the given points.

determined by the shape parameters s, and the description in any other
chart is equivalent to this one. See [6] for a more detailed introduction to
vector fields and flows on manifolds.

§3. Fitting by evolution

We assume that an unorganized point cloud {pα}α=1..N is given, which
is to be approximated by a curve from a given shape manifold. More
precisely, we whish to find the shape parameters which solve

N
∑

α=1

min
uα∈I

‖pα − cs(uα)‖2 → min
s∈Ω

. (7)

In this section we recall the framework of [2] for solving this problem and
adapt it to the case of a shape manifold.

In order to identify the best shape parameters, we consider them as
smooth functions of an evolution parameter t. Starting from suitable
initial values, the shape parameters s = s(t) are modified such that the
curve moves closer to the data points. In order to achieve this, the data
points pα attract the associated closest points fα = cs(uα) in a least–
squares sense.

During the evolution each point of the curve travels with the velocity

v(u) =
∂cs(u)

∂si
ṡi(t). (8)

We relate this velocity to the difference vectors dα := pα − fα by mini-
mizing the objective function

∑

α=1,...,N

uα 6∈U0

((v(uα) − dα)>~nα)2 +
∑

α=1,...,N

uα∈U0

‖v(uα) − dα‖
2 → min

ṡ∈Rn

, (9)

where ~nα denotes the unit normal of the curve in the point cs(uα), see
Fig. 1.
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In order to simplify the presentation we assume that none of the uα

is a vertex parameter, i.e., uα 6∈ U0, α = 1, . . . , N . For instance, this is
clearly the case if U0 = ∅. Consequently, the second sum in (8) is not
present.

Due to (8), the velocities v(uα) depend linearly on the time derivatives
of the shape parameters. Consequently, (9) defines a quadratic optimiza-
tion problem. As a necessary condition for a minimum, the first derivatives
of the objective function with respect to the ṡi vanish. This leads to the
linear system

N
∑

α=1

∂cs(uα)>

∂si
~nα~nα

> ∂cs(uα)

∂sk
ṡi =

N
∑

α=1

d>
α

∂cs(uα)

∂sk
, k = 1, . . . , n. (10)

In matrix notation, this can be written as

M(s)> M(s) ṡ = r(s) with Mα,k = ~nα
> ∂cs(uα)

∂sk

. (11)

If the matrix M>M is regular (see [1] for sufficient conditions), then (11)
is a differential equation for the shape parameters s = s(t). It defines an
evolution process for the curve. Starting with some initial values, we may
apply the evolution in order to drive the curve closer to the given points.

In general, the differential equation (11) cannot be solved exactly.
In order to solve it numerically, one may use explicit Euler steps, i.e.
si → si + hṡi with a suitable step size h. As observed in [2], solving
this differential equation by Euler steps with some step size h is equiva-
lent to Gauss–Newton iterations with the same step size h for solving the
least–squares problem (7). In the case of polynomial spline curves and
surfaces, this has been studied as ‘normal distance minimization’ [4] or,
more recently, ‘TDM’ [17].

The evolution viewpoint allows to control the step size in a geometric
way: after computing the time derivatives ṡ, one may choose the step size
h such that the displacement of each closest point, which is approximately
equal to hv(uα), does not exceed a certain threshold (e.g., a user–defined
feature size). Moreover, it makes it possible to analyze the dependency of
the entire process on the choice of the shape parameters, i.e., the chart of
the shape manifold M . This will be discussed in the next section.

Remark 2. If the curve is still far from the data points then the compu-
tation of the closest points may be too costly. In this situation one may
use a precomputed (e.g., using Graphics hardware [7]) unsigned distance
field and uniformly distributed sample points on the curve in order to
derive the evolution.
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§4. Approximation flows

The system (10) can be used to define a contravariant vector field.

Lemma 1. If the matrix M(s)>M(s) is regular for all s ∈ Ω, then the

solution (a1, . . . an) of

∑

α

∂cs(uα)>

∂si
~nα~nα

> ∂cs(uα)

∂sk
ai =

∑

α

d>
α

∂cs(uα)

∂sk
, k = 1, . . . , n. (12)

defines a contravariant vector field on the shape manifold M .

Proof: We change the shape parameters from s to σ. In the new chart,
the coordinates (a1

∗, . . . a
n
∗ ) of the contravariant vector field are obtained

as the solution of

∑

α

∂c∗
σ
(uα)

∂σq

>

~nα~nα
> ∂c∗

σ
(uα)

∂σp
aq
∗ =

∑

α

d>
α

∂c∗
σ
(uα)

∂σp
, p = 1, . . . , n,

which implies

∑

α

(

∂c∗
σ
(uα)

∂σq

)>

~nα~nα
>

(

∂c∗
σ
(uα)

∂σp

∂σp

∂sk

)

aq
∗ =

∑

α

d>
α

(

∂c∗
σ
(uα)

∂σp

∂σp

∂sk

)

.

Using the identity

(

∂c∗
σ
(uα)

∂σq

)>

=

(

∂c∗
σ
(uα)

∂σl

∂σl

∂si

)>
∂si

∂σq

we obtain

∑

α

(

∂c∗
σ
(uα)

∂σl

∂σl

∂si

)>

~nα~nα
>

(

∂c∗
σ
(uα)

∂σp

∂σp

∂sk

)

∂si

∂σq
aq
∗

=
∑

α

d>
α

(

∂c∗
σ
(uα)

∂σl

∂σl

∂sk

)

.

With the help of the transformation rule (5) and

∂cs(uα)

∂si
=

∂c∗
σ
(uα)

∂si
=

∂c∗
σ
(uα)

∂σl

∂σl

∂si
,

this can now be shown to be equivalent to (12). �

Corollary 1. The result of the evolution process defined by the differen-

tial equation (11) is independent of the choice of the shape parameters.
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Fig. 2. Example 1: Initial position (left) and after 20 steps (right).
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Fig. 3. Evolution of the radius for different step sizes. Left: implicit
representation, Eq. (3), right: parametric representation, Eq. (4).

Proof: This follows from the fact that the trajectories of the flow defined
by the contravariant vector field ai are independent of the choice of the
chart of the shape manifold. �

Remark 3. Two evolving curves cs and c∗
σ

with shape parameters s(t)
and σ(t) = σ(s(t)) are identical and they therefore share the same normal
velocities. Consequently, the solutions to the optimization problem (9),
which defines the evolution, are identical in both charts.

§5. Examples

We continue the three examples of Section 2. The first example illustrates
the result of Corollary 1.

Example 1: We initialize the center of the circle with (0.5, 0) and the
radius is set to 1.5. The target of the evolution is a circle–shaped point
cloud, consisting of 40 data points with random errors (amplitude 0.05).
Figure 2 (left) shows the initial configuration. We applied the evolution
to both representations. After 20 Euler steps, both reach an average
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Fig. 4. Example 2: The data (top row) and the position ob-
tained by the evolution after 1, 5, 12 and 22 steps. Note the
different scaling!

error of 0.024, see Fig 2 right. Though the implicit and the parametric
representations were initialized with the same values and both reached the
same solution, the paths leading to it were different, which seems to be a
contradiction to Corollary 1. However, the difference is caused by the fact
that the Euler steps act in different charts, i.e., in different linearizations of
the shape manifold. If the accuracy of the numerical method is increased,
then the two evolution paths become more and more similar to each other.

In Fig. 3 we compare the evolutions of the circle radius in the two
representations. If a large step size is h chosen, then they are different,
but they become increasingly similar for smaller values of h.

Example 2: We approximate the data shown in Fig. 4, where the shape
parameters are chosen as described in Section 2. The evolution is shown
in Fig. 4. In each of the four figures, we show the position before the
iteration step (thin) along with the difference vectors dα and the new
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Fig. 5. Example 3: Evolution of a rational cubic curve.

position (thick curve). After 25 iterations, the average error is below 1e-8.

Example 3: Finally we consider again the system of rational cubic
curves, but this time within the box [−2, 2] × [0, 2]. In order to fit the
data shown in Fig. 5, we apply the evolution process, where the initial
value is a horizontal line with a uniform parameterization. In the step 6
of the iteration (top right), we have to change the chart, since the sec-
ond intersection point with the boundaries leaves the right boundary and
continues on the top boundary of the box.

§6. Conclusion

The continuous version of the Gauss–Newton method for fitting a curve
or surface from a shape manifold to given point data defines an evolution
process which is equivalent to a flow on the shape manifold. Consequently,
the result is invariant with respect to the choice of the system of parame-
ters (the chart) controlling the shape of the curve or surface.
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