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Abstract

We present an algorithm which is able to compute all roots of a given univariate
polynomial within a given interval. In each step, we use degree reduction to generate
a strip bounded by two quadratic polynomials which encloses the graph of the
polynomial within the interval of interest. The new interval(s) containing the root(s)
is (are) obtained by intersecting this strip with the abscissa axis. In the case of single
roots, the sequence of the lengths of the intervals converging towards the root has
the convergence rate 3. For double roots, the convergence rate is still superlinear (3

2).
We show that the new technique compares favorably with the classical technique of
Bézier clipping.
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1 Introduction

Efficient and robust algorithms which compute the solutions of (systems of)
polynomial equations are frequently needed for modeling, processing and vi-
sualizing free-form geometry described by piecewise rational parametric rep-
resentations. For instance, the problem of intersecting a straight line with a
rational parametric surface leads to a polynomial system consisting of two
equations for two unknowns. If the surface is given in implicit form, then only
a single equation has to be solved. Such intersections have to be computed
for visualizing free–form surfaces using ray-tracing (Nishita, Sederberg and
Kakimoto, 1990; Efremov, Havran and Seidel, 2005). Similarly, the problem
of computing the closest point(s) on a curve or surface to a given point leads
to polynomial equations (see, e.g., Wang, Kearney and Atkinson, 2003).

Various geometric problems, such as surface–surface intersections, bisectors /
medial axes, convex hull computations, etc., lead to piecewise algebraic curves



(Lee, 1999; Patrikalakis and Maekawa, 2002b; Kim, Elber and Seong, 2005).
In this situation, efficient methods for analyzing and representing these curves
are needed (Gonzalez-Vega and Necula, 2002; Gatellier et al., 2003). Root find-
ing algorithms for (systems of) polynomial equations are again an important
ingredient of these techniques; they are used to determine “critical points”
(which are needed to determine the topology of the curve) and suitable initial
points for tracing the curve.

More precisely, in these and similar applications, all solutions of a (system of)
polynomial equation(s) within a certain domain Ω, which is typically a box
in Rn, are sought for. We are interested in numerical techniques which are
guaranteed to find all solutions.

For instance, homotopy methods (see, e.g. Li, 2003; Sommese and Wampler,
2005) start with the solutions of a simpler system with the same structure
of the set of solutions. This system is then continuously transformed into the
original system, and the solutions are found by tracing the solutions. These
techniques are particularly well suited for Ω = Cn.

Various other methods for solving polynomial equations exist. Many related
references have been collected by McNamee (1993–2002).

In particular, we focus on methods which rely on the Bernstein–Bézier rep-
resentation of polynomials. As a major advantage, this representation is has
optimal stability with respect to perturbations of the coefficients, see Farouki
and Goodman (1996).

Bézier clipping and related techniques are based on the convex-hull prop-
erty of Bernstein-Bézier- (BB-) representations. The main idea is described in
Section 2.3. Combined with subdivision, these techniques lead to fast (achiev-
ing quadratic convergence for single roots) solvers for univariate polynomials
(Nishita, Sederberg and Kakimoto, 1990; Nishita and Sederberg, 1990). Even
simple bisection techniques peform remarkably well in real applications (El-
ber and Kim, 2001). Multivariate versions, such as the IPP algorithm, exist
and have found their way into industrial software, such as commercial CAD
systems (Sheerbrooke and Patrikalakis, 1993; Mourrain and Pavone, 2005).

We will formulate a novel technique for computing the roots of univariate
polynomials, which is based on degree reduction. This term denotes the process
of approximating a polynomial of a certain degree by a lower degree one, with
respect to a suitable norm, and possibly subject to boundary conditions. It
has been studied thoroughly in the rich literature on this subject (Eck, 1992;
Lutterkort, Peters and Reif, 1999; Ahn, Lee, Park and Yoo, 2004; Sunwoo,
2005). In earlier years, the issue of degree reduction was motivated by degree
limitations of CAD systems.
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The remainder of this paper is organized as follows. In the next section, we
give information about the root finding problem, about degree reduction and
about the classical technique of Bézier clipping. Section 3 describes the new
algorithm and analyzes its order of convergence. In Section 4, we provide a
detailed comparison of the new algorithm with Bézier clipping with respect
to criteria such as computational effort, rate of convergence and computing
times. Finally we conclude this paper and discuss future work, including the
generalization to the multivariate case.

2 Preliminaries

After formulating the root–finding problem, we present a simple technique for
degree reduction. Finally we describe the classical technique of Bézier clipping
for isolating roots of univariate polynomials.

2.1 The root–finding problem

Let Πn be the linear space of polynomials of degree n, with the basis (Bn
i )i=0,...,n,

where

Bn
i (t) =

(

n

i

)

(t− α)i(β − t)n−i

(β − α)n
(1)

are the Bernstein polynomials with respect to a certain interval [α, β] ⊂ R. Any
polynomial p ∈ Πn can be described by its Bernstein–Bézier representation
with respect to that interval,

p(t) =
n
∑

i=0

biB
n
i (t), t ∈ [α, β], (2)

with certain Bernstein–Bézier (BB) coefficients bi ∈ R.

We consider a given polynomial p ∈ Πn in Bernstein–Bézier representation
with respect to the unit interval [0, 1]. All roots of p within the unit interval
are to be found. More precisely, we want to generate a set of intervals of
maximum length ε which contain the roots, where the parameter ε specifies
the desired accuracy.
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2.2 Degree reduction and dual basis

The process of approximating a polynomial p of degree n by a polynomial
of degree k, where k < n, with respect to a suitable norm, is called degree

reduction. We consider the spaces Πn and Πk ⊂ Πn, along with the L2 inner
product

〈f, g〉[α,β] =
∫ β

α
f(t) g(t) dt (3)

with respect to the interval [α, β] and the norm

‖f‖[α,β]
2 =

1

h

√

〈f, f〉[α,β], (4)

where h = β − α, induced by it.

In this definition of the norm, the factor 1/h is introduced in order to obtain
a norm which is invariant under affine transformations of the t–axis. More
precisely, for any affine transformation

A : t 7→ A0 + A1 t (5)

with A1 6= 0, the norms of f with respect to the interval [α, β] and of f ◦A−1

with respect to the interval A([α, β]) are identical,

‖f‖[α,β]
2 = ‖f ◦ A−1‖A([α,β])

2 . (6)

Applying degree reduction with respect to this norm to the given polynomial
p gives the unique polynomial q ∈ Πk which minimizes ‖p− q‖[α,β]

2 , i.e.,

q = arg min
q∈Πk

‖p− q‖[α,β]
2 . (7)

Various techniques for computing q are available (e.g. Eck, 1992; Lutterkort,
Peters and Reif, 1999; Ahn, Lee, Park and Yoo, 2004; Sunwoo, 2005). We
describe a simple technique which is based on the dual basis of the Bernstein
polynomials.

The dual basis to the Bernstein basis of Πk consists of the unique polynomials
Dk

j of degree k which satisfy

〈Bk
i , Dk

j 〉[α,β] = δij =











1 if i = j

0 otherwise
, i, j = 0 . . . k. (8)
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The polynomials Dk
j can be represented with respect to the Bernstein basis,

Dk
i (t) =

1

h

k
∑

j=0

ci,j Bk
j (t), i = 0, . . . , k, (9)

with the coefficients

cp,q =
(−1)p+q

(

k
p

)(

k
q

)

min(p,q)
∑

j=0

(2j + 1)
(

k+j+1
k−p

)(

k−j
k−p

)(

k+j+1
k−q

)(

k−j
k−q

)

(10)

which have been derived by Jüttler (1998), and h = β−α. Alternatively, these
polynomials can be computed using a recurrence relation involving dual basis
polynomials of lower degree and Legendre polynomials (Ciesielski, 1987).

The polynomial q obtained by applying degree reduction to p (see (2) and (7))
with respect to the interval [α, β] may be computed from

q(t) =
k
∑

j=0

〈p(t), Dk
j (t)〉[α,β] Bk

j (t) =
k
∑

j=0

(

n
∑

i=0

biβ
n,k
i,j

)

Bk
j (t), (11)

with the coefficients

βn,k
i,j = 〈Bn

i (t), Dk
j (t)〉[α,β]. (12)

Using the identity

〈Bm
i , Bn

j 〉[α,β] = h

(

m
i

)(

n
j

)

(m + n + 1)
(

m+n
i+j

) , (13)

these coefficients can be computed from (9) and (10). Note that these coeffi-
cients do not depend on the interval [α, β], since the factors h in (9) and (13)
cancel each other.

Example 1 The degree reduction coefficients for n = 5 and k = 2 form the
matrix

(β5,2
i,j )i=0,..,5;j=0,...,2 =



























23
28
−3

7
3
28

9
28

2
7
− 3

28

0 9
14
−1

7

−1
7

9
14

0

− 3
28

2
7

9
28

3
28
−3

7
23
28



























. (14)

The coefficients of q are obtained by multiplying the row vector (b0, . . . , b5) of
the coefficients of p by this matrix.
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Algorithm 1 bezclip (p, [α, β]) {Bézier clipping}
1: if length of interval [α, β] ≥ ε then

2: C ← convex hull of the control points of p with respect to [α, β].
3: if C intersects t-axis then

4: Find [α′, β′] by intersecting C with the t–axis.
5: if | α′ − β′ |< 1

2 | α− β | then

6: return (bezclip (p, [α′, β′]))
7: else

8: return (bezclip (p,[α, 1
2(α + β)]) ∪ bezclip (p,[12 (α + β), β])).

9: end if

10: else

11: return (∅)
12: end if

13: else

14: return ([α, β])
15: end if

p

α β

α′

β′

Fig. 1. Bézier clipping: The next interval containing the roots is obtained
by intersecting the convex hull of the control polygon with the t–axis.

2.3 Bézier clipping and its convergence rate

Bézier clipping, see Algorithm 1 (bezclip), uses the convex hull property of
Bernstein–Bézier representations in order to generate one or more intervals of
maximum length ε which contain(s) the roots.

The polynomial p is represented by its Bézier coefficients with respect to the
current interval [α, β]. The graph of p can be described as a parametric Bézier
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curve with control points

bi = (
(n− i)α + iβ

n
, bi), i = 0, . . . , n. (15)

Due to the convex–hull property, the graph lies within the convex hull C of
the control points (bi)i=0,...,n. Consequently, all roots of the polynomial p are
contained in the interval which is obtained by intersecting C with the t–axis.
This observation, which is illustrated by Figure 1, is used in lines 2–4 of the
algorithm to generate the next interval.

In line 6, the de Casteljau algorithm is applied twice to generate the coefficients
with respect to the subinterval [α′, β ′]. Similarly, it is applied once in line 8,
in order to bisect the interval.

For any root contained in [0, 1], the call bezclip(p, [0, 1]) returns an interval
containing that root. Bézier clipping may produce false positive answers (i.e.,
intervals not containing any root) if the graph of the polynomial gets very
close to the t–axis.

In order to study the efficiency of Bézier clipping, we analyze the sequence
(hi)

∞
i=0 of the lengths of the intervals [α, β] generated after calling bezclip i

times. Note that algorithm bezclip acts recursively, and combines bisection
with clipping steps. Here we follow only one path in the execution tree which
leads towards one of the roots. As observed by Nishita and Sederberg (1990),
this sequence has convergence rate 2, provided that it leads to a single root. In
the case of multiple roots, however, only linear convergence is achieved. (See
Gautschi (1997) for more information about convergence rates).

3 Computing roots via degree reduction

We describe a new algorithm for isolating the roots and analyze its convergence
rates in the cases of roots with multiplicities 1 and 2.

3.1 Algorithm

Based on degree reduction to a quadratic polynomial (k = 2), we propose a
new technique for computing the roots, see Algorithm 2 (quadclip).

Some steps of the algorithm will be explained in more detail:

• In line 2 of the algorithm, we generate the best quadratic approximant q with
respect to the L2 norm on the current interval [α, β], see Fig. 2 (left). This
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Algorithm 2 quadclip(p, [α, β]) {Quadratic clipping}
1: if length of interval [α, β] ≥ ε then

2: q ← generate a quadratic polynomial by applying degree reduction with re-
spect to the L2 inner product on [α, β] to p.

3: δ ← compute bound on ‖p − q‖[α,β]
∞ by comparing the Bernstein–Bézier rep-

resentations of p and q.
4: m← q − δ {lower bound}
5: M ← q + δ {upper bound}
6: if the strip enclosed by m,M does not intersect the t–axis within [α, β] then

7: return (∅)
8: else

9: Find intervals [αi, βi], i = 1, . . . , k, by intersecting m,M with the t–axis.
The number k of intervals is either 1 or 2.

10: if maxi=1,...,k |αi − βi| > 1
2 |α− β| then

11: return (quadclip (p,[α, 1
2(α + β)]) ∪ quadclip (p,[12 (α + β), β])).

12: else

13: S ← ∅
14: for i = 1, . . . , k do

15: S ← S ∪ quadclip(p, [αi, βi])
16: end for

17: return (S)
18: end if

19: end if

20: else

21: return ([α, β])
22: end if

is achieved by multiplying the row vector of Bézier coefficients of p with the
degree reduction matrix (βn,2

i,j )i=0,...,n;j=0,1,2. Its elements are precomputed
and stored in a lookup–table.
• In order to obtain the bound δ on

‖p− q‖[α,β]
∞ = max

t∈[α,β]
|p(t)− q(t)|, (16)

see line 3, we raise the degree of the Bernstein–Bézier representation of the
quadratic polynomial q to n. Similar to degree reduction, this is achieved by
multiplying the row vector of Bézier coefficients of q with the degree raising
matrix (β2,n

i,j )i=0,2,1;j=0,...,n. Its elements are again precomputed and stored
in a lookup–table, see Example 2. The bound is chosen as

δ = max
i=0,...,n

|bi − ci|, (17)

see Fig. 2 (left), where bi and ci are the coefficients of the Bernstein–Bézier
representations of p and q of degree n with respect to [α, β], respectively.
• In lines 4 and 5, the bound δ is used to construct quadratic polynomials m
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p
p

q

m

M
bi

ci

t⋆t⋆

αα

α′

ββ β′

Fig. 2. One iteration of quadclip in the case of a single root. Left: the
polynomial p and its quadratic approximation q, along with the control
polygons. The error bound δ is obtained as the maximum length of the
thick grey vertical bars. Right: the lower and upper bounds m = q − δ and
M = q + δ. The intersection of the strip enclosed by them with the t–axis
defines the new interval [α′, β′].

and M satisfying

∀t ∈ [α, β] : m(t) ≤ p(t) ≤M(t). (18)

• In lines 6–19 we analyze the strip enclosed by m and M and its intersection
with the t–axis, see Fig. 2, right. If the intersection is empty, then no roots
exist. Otherwise, the intersection consists of either one or two intervals that
contain the roots. Their boundaries are found by solving two quadratic
equations, see Remark 3.
• If the length(s) of this/these interval(s) is/are sufficiently small, when com-

pared to the length of the previous interval [α, β], then quadclip is applied
to them (lines 14–16). Otherwise we bisect the interval [α, β] and apply
quadclip to the two halves (line 11).

For any root contained in [0, 1], the call quadclip(p, [0, 1]) returns an inter-
val containing that root. Similar to Bézier clipping, quadratic clipping may
produce false positive answers (i.e., intervals not containing any root) if the
graph of the polynomial gets very close to the t–axis.

Example 2 The degree raising coefficients for n = 5 and k = 2 form the
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matrix

(β2,5
i,j )i=1,...,2;j=0,...,5 =









1 3
5

3
10

1
10

0 0

0 2
5

3
5

3
5

2
5

0

0 0 1
10

3
10

3
5

1









. (19)

Remark 3 The roots of a quadratic polynomial (cf. lines 6 and 9 of the
algorithm) g(t) = B2

0(t) d0 + B2
1(t) d1 + B2

2(t) d2 are t1|2 = (1− τ1|2)α + τ1|2β
where

τ1|2 =
d1 − d0 ±

√
D

d2 − 2d1 + d0
. (20)

with D = d2
1−d0 d2. If |d2−2d1 +d0| is below a user–defined threshold (which

depends on the accuracy of the numerical computation), then the computation
of the roots via (20) becomes numerically unstable. In this situation we apply
Bézier clipping to the control polygon of g in order to bound the roots.

Remark 4 Instead of computing q by degree reduction in step 2, one might
also use other techniques for computing q, such as best approximation with re-
spect to the maximum norm. However, it is well known that no approximation
by quadratic polynomials can provide a better approximation order. Conse-
quently, the use of other techniques will not change the convergence rates of
the algorithm. In order to obtain an efficient algorithm, the approximation
should be easy to compute, which is clearly the case for degree reduction.

3.2 Convergence rate

In order to make this paper self–contained, we start this section by formulating
two technical lemmas.

Lemma 5 For any given polynomial p, there exists a constant Cp depending

solely on p, such that for all intervals [α, β] ⊆ [0, 1] the bound δ generated in

line 3 of Algorithm quadclip satisfies δ ≤ Cp h3, where h = β − α.

Proof. Due to the equivalence of norms in finite–dimensional real linear
spaces, there exist constants C1 and C2 such that

∀r ∈ Πn : ‖r‖[α,β]
BB,∞ ≤ C1‖r‖[α,β]

2 and ‖r‖[α,β]
2 ≤ C2‖r‖[α,β]

∞ , (21)

where the three norms are the maximum (ℓ∞) norm of the Bernstein–Bézier
coefficients, the L2 norm (4) and the maximum norm

‖r‖[α,β]
∞ = max

t∈[α,β]
|r(t)|, (22)
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all with respect to the interval [α, β]. The constants C1 and C2 do not depend
on the given interval [α, β], since all three norms are invariant with respect to
affine transformations of the t–axis; cf. (5) and (6).

Consequently,

δ = ‖p− q‖[α,β]
BB,∞ ≤ C1‖p− q‖[α,β]

2 ≤ C1‖p−Qα‖[α,β]
2 ≤

≤ C1C2‖p−Qα‖[α,β]
∞ ≤ 1

6
C1C2 max

t0∈[0,1]
|p′′′(t0)| h3,

(23)

where Qα is the quadratic Taylor polynomial at t = α to p and p′′′ is the third
derivative. �

Lemma 6 For any given polynomial p there exist constants Vp, Dp and Ap

depending solely on p, such that for all intervals [α, β] ⊆ [0, 1] the quadratic

polynomial q obtained by applying degree reduction to p satisfies

‖p− q‖[α,β]
∞ ≤ Vp h3, ‖p′ − q′‖[α,β]

∞ ≤ Dp h2, and ‖p′′ − q′′‖[α,β]
∞ ≤ Ap h, (24)

with h = β − α, where ‖.‖[α,β]
∞ is defined as in (22).

Proof. Similar to the proof of the previous lemma, it can be shown that the
norm

‖r‖[α,β]
⋆ = ‖r‖[α,β]

∞ + h ‖r′‖[α,β]
∞ + h2 ‖r′′‖[α,β]

∞ , (25)

satisfies

‖r‖[α,β]
⋆ ≤ C3‖r‖[α,β]

2 (26)

where the constant C3 does not depend on the interval [α, β], again due to the
affine invariance. Therefore, and using similar arguments as in the previous
proof,

‖p− q‖[α,β]
⋆ = ‖p− q‖[α,β]

∞ + h ‖p′ − q′‖[α,β]
∞ + h2 ‖p′′ − q′′‖[α,β]

∞ ≤
≤ C3‖p− q‖[α,β]

2 ≤ C3‖p−Qα‖[α,β]
2 ≤ C2C3‖p−Qα‖[α,β]

∞ ≤
≤ 1

6
C2C3 max

t0∈[0,1]
|p′′′(t0)| h3,

(27)

where Qα is the quadratic Taylor polynomial at t = α to p. Clearly, this
implies (24) �.

Now we are able to analyze the speed of convergence. The case of single and
double roots will be dealt with separately. In the case of single roots, we obtain
the following result.
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m

M

p

hi+1

2δi

t⋆

4δi/p
′(t⋆)

slope 1
2p′(t⋆)

Fig. 3. Proof of Eq. (31)

Theorem 7 If the polynomial p has a root t⋆ in [α, β] and provided that this

root has multiplicity 1, then the sequence of the lengths of the intervals gener-

ated by quadclip which contain that root has the convergence rate d = 3.

Proof. The call quadclip(p, [0, 1]) generates a sequence of intervals

([αi, βi])i=0,1,2,... (28)

with the lengths hi = βi − αi whose boundaries converge to t⋆. We assume
that the first derivative satisfies p′(t⋆) > 0. If this assumption is violated, one
may consider the polynomial −p instead of p.

Let qi be the quadratic polynomial obtained by degree reduction with respect
to the interval [αi, βi]. Since p′ is continuous and due to Lemma 6, the inequal-
ities

‖p′ − p′(t⋆)‖[αi,βi]
∞ ≤ 1

4
p′(t⋆) and ‖q′i − p′‖[αi,βi]

∞ ≤ 1

4
p′(t⋆) (29)

hold for all but finitely many values of i, where the maximum norm refers to
the interval [αi, βi]. These two inequalities imply

‖q′i − p′(t⋆)‖[αi,βi]
∞ ≤ 1

2
p′(t⋆), hence ∀t ∈ [αi, βi] : q′i(t) >

1

2
p′(t⋆). (30)

On the other hand, the vertical width 2δi of the strip enclosed by m and M
is bounded by 2 Cp h3

i , due to Lemma 5. Thus, the lengths hi of the intervals
satisfy

hi+1 ≤
4 Cp

p′(t⋆)
h3

i (31)

for all but finitely many values of i, see Fig. 3. �
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p
p q

m
M

bi

ci

t⋆ t⋆αα α′ ββ β′

Fig. 4. One iteration of quadclip in the case of a double root. See caption
of Figure 2.

As for Bézier clipping, multiple roots slow down the speed of convergence.
However, the rate is still super-linear for double roots, as described in the
following Theorem. See Figure 4 for an illustration.

Theorem 8 If the polynomial p has a root t⋆ in [α, β] and provided that this

root has multiplicity 2, then the sequence of the lengths of the intervals gener-

ated by quadclip which contain that root has the convergence rate d = 3
2
.

Proof. Similar to the proof of the previous Theorem, we analyze the sequence
(28) of intervals with lengths hi generated by the algorithm which contain the
double root. We assume that the second derivative satisfies p′′(t⋆) > 0. If this
assumption is violated, one may again consider the polynomial −p instead
of p.

Again, let qi be the quadratic polynomial obtained by degree reduction with
respect to the interval [αi, βi], and let δi be the associated distance bound
obtained in line 3 of the algorithm. Since p′′ is continuous and due to Lemma 6,
the inequalities

‖p′′ − p′′(t⋆)‖[αi,βi]
∞ ≤ 1

4
p′′(t⋆) and ‖q′′i − p′′‖[αi,βi]

∞ ≤ 1

4
p′′(t⋆) (32)

hold for all but finitely many values of i, where the maximum norm refers to
the interval [αi, βi]. These two inequalities imply

‖q′′i − p′′(t⋆)‖[αi,βi]
∞ ≤ 1

2
p′′(t⋆), hence ∀t ∈ [αi, βi] : q′′i (t) >

1

2
p′′(t⋆). (33)
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We consider the lower bound mi = qi− δi obtained by applying degree reduc-
tion with respect to the interval [αi, βi]. Due to p′′(t⋆) > 0, its intersections
with the t–axis bound the next interval [αi+1, βi+1] for all but finitely many
values of i. Let

mi =
ai

2
(t− t⋆)2 + bi(t− t⋆) + ci (34)

with certain real coefficients ai = q′′i (t
⋆), bi = q′i(t

⋆) and ci. According to (33),
the leading coefficient satisfies

ai ≥
1

2
p′′(t⋆) (35)

for all but finitely many values of i. Due to the two Lemmas and to p′(t⋆) = 0,
the other two coefficients satisfy

|bi| = |p′(t⋆)− q′(t⋆)| ≤ ‖p′ − q′‖[αi,βi]
∞ ≤ Dp h2

i (36)

and

|ci| = |p(t⋆)−m(t⋆)| ≤ |p(t⋆)− q(t⋆)|+ |q(t⋆)−m(t⋆)|
≤ ‖p− q‖[αi,βi]

∞ + δi ≤ (Vp + Cp) h3
i .

(37)

The coefficients ci are non–positive, ci ≤ 0.

For all but finitely many values of i, the lengths of the interval [αi+1, βi+1] are
bounded by the difference of the roots of the lower bound mi, which leads to

hi+1 ≤ 2

√

√

√

√

b2
i

a2
i

− 2ci

ai

≤ |bi|
ai

+

√

2|ci|
ai

≤ 2Dp

p′′(t⋆)
h2

i +

√

√

√

√

4(Cp + Vp)

p′′(t⋆)
h

3/2
i . (38)

Hence, the sequence (hi)i=0,1,2,... has the convergence rate 3
2
. �

4 Comparison

We compare the two algorithms (Bézier clipping and quadratic clipping) with
respect to five criteria: convergence rate, number of operations per iteration
step, time per iteration step, number of iterations needed to achieve a cer-
tain prescribed accuracy, and computing time needed to achieve a certain
prescribed accuracy.

4.1 Convergence rates, number of operations and time per iteration step

The results concerning the convergence rates are summarized in Table 1. With
respect to these rates, the new algorithm clearly performs better than Bézier
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Table 1
Convergence rates of the algorithms quadclip and bezclip.

root multiplicity single root double root triple root, etc.

quadclip 3 3
2 1

bezclip 2 1 1

Table 2
Number of operations per iteration for various values of the degree.

degree quadclip bezclip

n ± ∗÷ ≤ √ |.| ∑ ± ∗÷ ≤ √ |.| ∑

2 120 75 30 2 0 227 90 30 5 0 0 125

4 228 115 32 2 2 383 214 62 9 0 0 285

8 548 243 30 2 2 825 582 174 17 0 0 773

16 1676 691 30 2 2 2401 1698 590 33 0 0 2321

clipping. However, the computational effort per iteration step is equally im-
portant. For instance, it is known that solving univariate equations by the
secant method, where the convergence rate is (1 +

√
5)/2 ≈ 1.618 for a sin-

gle root, is generally faster than Newton’s method with quadratic convergence
rate, since it needs only one evaluation of the function per iteration step, while
Newton’s method needs one evaluation of the function and another one of the
derivative. Consequently, the computational costs of two steps of the secant
method and of one step of the Newton method are comparable.

Table 2 shows the number of operations needed per iteration step, where it is
assumed that one new interval is found (i.e., k = 1 in line 9 of Algorithm 2)
and that this interval has shrunk by more than 1

2
, cf. line 5 of Algorithm 1 and

line 10 of Algorithm 2. Also, the number of operations needed for computing
the convex hull for Algorithm 1 varies slightly; here we assume to have a
convex control polygon, since this is the limit case in general.

The classical Bézier clipping has a slight advantage, though the computational
costs of both methods are roughly comparable. The number of operations
grows quadratically with the degree n. For both algorithms, the computational
effort is dominated by the quadratic grow caused by de Casteljau’s algorithm
which is used to generate the Bernstein–Bézier representation with respect to
the newly generated interval. All other operations require only linear effort,
thus the overall complexity is quadratic. For large degrees n, computational
costs of both algorithms become increasingly similar.

This picture becomes even more clear by comparing the computation times.
We implemented both algorithms in C on a PC with a Intel(R) Xeon(TM)
CPU (2.40GHz) with 512KB of RAM running Linux and measured the time
needed for 105 iterations (in order to obtain a measurable quantity). The
results are reported in Table 3. In addition, Fig. 5 shows the relation between
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Table 3
Time per iterations in microseconds for various degrees n.

degree of the polynomial 2 4 8 16

quadclip 2.0 2.8 4.4 9.6

bezclip 1.3 1.9 3.5 8.3

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14

t

n

quadclip

bezclip

Fig. 5. Time per 105 iterations of algorithms quadclip and
bezclip.

computing times and polynomial degree.

4.2 Number of iterations and computing times vs. accuracy

In order to analyze the relation between the computational effort and the
desired accuracy, we discuss three examples, which represent polynomials with
a single root, a double root, and two roots which are very close (“near double
root”).

Example 9 (Single root) We applied the algorithms bezclip and quadclip

to the four polynomials

f2(t) = (t− 1
3
)(3− t), f4(t) = (t− 1

3
)(2− t)(t + 5)2,

f8(t) = (t− 1
3
)(2− t)3(t + 5)4, f16(t) = (t− 1

3
)(2− t)5(t + 5)10

in order to compute the single root 1
3

in the interval [0, 1]. Table 4 reports
the number of iterations and the computing times for various values of the
desired accuracy ε. The numbers of iterations were obtained from an imple-
mentation in Maple, while the computing times were measured with the help
of the implementation in C. In order to work around the limitations of double
precision floating point numbers in C, the computing times for accuracy below
10−16 were obtained by multiplying the number of iterations with the time per
iteration (see Table 3). In addition, Figure 6 visualizes the relation between
computing times and desired accuracy.
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Table 4
Example 9 (single root): Number of iterations N and computing time t in µs for
various values of degree n and accuracy ε. The times for more than 16 significant
digits (shown in italic) have been obtained by extrapolation.

ε 10−2 10−4 10−8 10−16 10−32 10−64 10−128
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2 N 1 2 1 3 1 3 1 4 1 5 1 6 1 7
t 2.0 2.5 2.0 3.5 2.0 3.5 2.0 5.9 2.0 7.2 2.0 8.6 2.0 9.9

4 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8
t 5.4 3.9 5.4 5.5 8.1 7.2 8.2 8.8 10.8 10.6 13.4 12.5 13.5 14.4

8 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8
t 8.7 6.8 8.9 10.1 13.0 16.9 13.0 20.4 17.5 23.8 21.8 23.8 21.8 27.4

16 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8
t 18.7 16.3 18.7 24.2 28.0 32.3 28.1 39.9 37.5 47.5 46.9 55.4 46.9 63.3
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Fig. 6. Example 9 (single root): Computing time t in 10−5s vs. accuracy.
The times for more than 16 significant digits have been obtained by extrap-
olation.
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Table 5
Example 10 (double root): See caption of Table 4.

ε 10−2 10−4 10−8 10−16 10−32 10−64 10−128
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2 N 1 7 1 14 1 27 1 54 1 107 1 213 1 343
t 2.0 8.6 2.0 15.6 2.0 30.3 2.0 61.6 2.0 124 2.0 246 2.0 383

4 N 3 7 3 14 4 27 4 53 5 107 7 213 8 332
t 7.1 13.6 7.2 25.1 10.4 47.2 10.4 93.7 16.8 188 19.6 375 22.4 562

8 N 3 5 4 9 6 17 6 34 9 68 10 135 12 269
t 12.2 16.7 16.4 32.2 26.6 63.1 26.9 124 39.6 249 44.1 495 52.8 988

16 N 3 4 5 7 6 14 8 27 10 54 11 107 12 213
t 27.4 32.3 45.4 56.2 56.1 107 76.8 206 96.2 402 105 823 115 1635

For these four polynomials, the new algorithm (quadclip) performs slightly
better than Bézier clipping, though the difference is not that significant: the
overall computing times to achieve a certain accuracy are roughly the same.
In particular, this is true for the realistic range of accuracy (no more than 16
significant digits). This is due to the fact that the quadratic convergence rate
of Bézier clipping is already very fast.

Example 10 (Double root) We applied the algorithms bezclip and quadclip

to the four polynomials

f2(t) = (t− 1
2
)2, f4(t) = (t− 1

2
)2(t + 2)(3− t),

f8(t) = (t− 1
2
)2(4− t)3(t + 5)2(t + 7),

f16(t) = (t− 1
2
)2(4− t)7(t + 5)6(t + 7)

in order to compute the double root 1
2

in the interval [0, 1]. Table 5 reports
the number of iterations and the computing times for various values of the
desired accuracy ε. Again, the numbers of iterations were obtained from an
implementation in Maple, while the computing times were measured with
the help of the implementation in C. The computing times for accuracy below
10−16 were obtained by multiplying the number of iterations with the time per
iteration (see Table 3). In addition, Figure 7 visualizes the relation between
computing times and desired accuracy.

For these four polynomials, the new algorithm (quadclip) performs far better
than Bézier clipping. This is due to the higher convergence rate (1.5) of the
new algorithm.

Example 11 (Near double root) We applied the algorithms bezclip and
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Fig. 7. Example 10 (double root): Computing time t in 10−5s vs. accu-
racy. The times for more than 16 significant digits have been obtained by
extrapolation.

quadclip to the four polynomials

f2(t) = (t− 0.56)(t− 0.57), f4(t) = (t− 0.4)(t− 0.40000001)(t + 1)(2− t),

f8(t) = (t− 0.50000002)(t− 0.50000003)(t + 5)3(t + 7)3,

f16(t) = (t− 0.30000008)(t− 0.30000009)(6− t)7(t + 5)6(t + 7)

in order to compute the two roots which are contained within the interval [0, 1].
Table 6 reports the number of iterations and the computing times for various
values of the desired accuracy ε. Once again, the numbers of iterations were
obtained from an implementation in Maple, while the computing times were
measured with the help of the implementation in C. The computing times for
accuracy below 10−16 were obtained by multiplying the number of iterations
with the time per iteration (see Table 3). In addition, Figure 7 visualizes the
relation between computing times and desired accuracy.

For these four polynomials, the new algorithm (quadclip) performs better
than Bézier clipping, since bezclip achieves quadratic convergence only after
the roots have been separated. Similar effects can be observed if the graph
of the polynomial gets very close to the t axis without intersecting it (two or
more close conjugate–complex roots).

4.3 Numerical robustness

Finally we demonstrate the robustness of the method.

Example 12 (Wilkinson polynomial) We applied the algorithms bezclip and
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Table 6
Example 11 (near double root): See caption of Table 4.

ε 10−2 10−4 10−8 10−16 10−32 10−64 10−128
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2 N 1 13 1 18 1 20 1 22 1 25 1 27 1 29
t 2.0 13.2 2.0 18.6 2.0 20.9 2.0 23.1 2.0 24.6 2.0 247.0 2.0 29.0

4 N 3 7 4 13 6 27 8 35 10 37 12 39 14 43
t 7.1 14.2 9.4 26.9 15.1 52.2 23.9 68.4 28.1 71.8 33.6 75.3 39.2 83.6

8 N 4 5 5 9 7 18 9 26 11 28 13 30 15 32
t 16.2 20.2 20.3 35.8 30.4 71.4 40.2 103 49.4 111 57.4 119 66.2 127

16 N 2 4 3 7 5 14 7 22 9 24 11 26 11 28
t 18.6 32.2 27.4 58.4 50.6 113 63.2 176 86.4 192 105 208 105 224
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Fig. 8. Example 11 (near double root): Computing time t in 10−5s vs.
accuracy. The times for more than 16 significant digits have been obtained
by extrapolation.

quadclip to the Bernstein–Bézier representation of the Wilkinson polynomial

W (x) =
20
∏

i=1

(x− i) (39)

with respect to the domain interval [0, 25] with ǫ = 10−3. Figure 9a shows this
polynomial and its control polygon.

The Bernstein–Bézier representation of the Wilkinson polynomial is far more
stable than its monomial representation, cf. Farouki and Goodman (1996).
In order to demonstrate this fact, we compare the graphs of the polynomials
which have been obtained by adding 10−8% of randomly generated numerical
noise to the coefficients of the BB representation (see Fig. 9b) and of the
monomial representation (see Fig. 9c). In the latter case, the distribution of
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Fig. 9. BB representation of the Wilkinson polynomial (a) and the effect
of adding 10−8% coefficient error to the BB representation (b) and to the
monomial representation (c).

roots has completely changed. Instead of the polynomials W , Fig. 9b, c show
the graphs of sign(W ) log10(1 + |W |).

Quadclip produces 20 intervals of length less than ǫ containing the roots. The
maximum deviation of the centers of these intervals from the roots 1, 2, . . . , 20
is less than 3 · 10−4. This result was generated using floating point numbers
with 13 significant digits, so it suffices to use double precision arithmetic.
The algorithm bezclip performs similarly. If the size of the domain interval
is increased / decreased, then more / less significant digits are needed. E.g.,
16 significant digits are needed to get similar results for the interval [0, 50],
while 10 digits suffice for [0, 20].

5 Concluding remarks

Based on the techniques of degree reduction, we derived an algorithm for
computing all roots of a given polynomial within a given interval, with a
certain accuracy. We analyzed the convergence rates of the new technique and
compared it with the classical technique of Bézier clipping. In the case of single
roots, the new algorithm performs similarly to Bézier clipping. For double and
near double roots, however, it reduces the computational effort. This is due
to its superlinear convergence rate (3

2
) in the case of double roots.

As a direct generalization of the method, one may replace the quadratic poly-
nomial q by a cubic or even a quartic one. In this case, the formulas of Cardano
and Ferrari are needed to compute the intersections of the bounding polyno-
mial strip with the t–axis. Clearly, these computations are more involved than
in the case of a quadratic polynomial. It is to be expected that such a gen-
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eralized algorithm would provide an even higher convergence rate for single
and double roots, and superlinear convergence for roots with multiplicities 3
and 4.

Our future work will focus on the extension of the technique to the multivariate
case. In a first step, we will formulate an algorithm which is based on approxi-
mation by linear polynomials. We expect that this leads to an algorithm with
quadratic convergence for single roots, leading to results comparable to those
of Mourrain and Pavone (2005). In a second step, we are working on several
ideas which are expected to lead to faster convergence for single roots and
superlinear convergence for double roots.
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