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Abstract. By simultaneously considering evolution processes—called Level Set method [20, 21]. As the main advantage of
for parametric spline curves and implicitly defined curwes, thisimplicit representation, it does notrequire a parameation
formulate the framework of dual evolution. This allows us tand it naturally adapts the topology during the evolutioonge-
combine the advantages of both representations. On the guently, one may use it to detect complex topological stmes,
hand, the implicit representation is used to guide the tmppl such as objects consisting of multiple components, withsirtg
of the parametric curve and to formulate additional coimstsa prior knowledge.
such as range constraints. On the other hand, the paramsgityic This paper combines evolution processes for implicitly de-
resentation helps to detect and to eliminate unwanted hesaf fined curves and parametric curves for geometry recongasruct
the implicitly defined curves. Moreover, it is required foany and image segmentation. This leads to a new framework for evo
applications, e.g., in Computer Aided Design. lution, which we call thedual evolution since the two represen-
tations of geometry are dual to each other.
By simultaneously considering both representations ofjthe
1 Introduction ometry, we combine the advantages of the two represensation
On the one hand, we obtain a parametric description, which is
Implicitly definedcurves and surfaces, i.e., curves and surfaaeseful for many applications, e.g., in Computer—Aided Desi
which are described as the zero set of a scalar field, have b@arthe other hand, we use the implicit representation totiyen
used, e.g., for geometric modeling [1, 2], for the recorcdiom the correct topology, and in particular to guide the shapeef
of geometric objects from unorganized points, see [3, 4, 3] 6 parametric representations. Moreover, certainstraints such
and others. Several possible representations of the diltis as range or convexity constraints, can more efficiently bain
have been explored, such as hierarchical combinationswisr lated in one of the two representations, and they can theréf®
ones, radial basis functions, spline functions, and grdel dis- added to the framework of dual evolution. For instance, eang
cretizations. constraints can be formulated as conditions on the signef th
On the other handparametriccurves and surfaces (such ainction defining the implicit representation, as dematstf in
NURBS representations) form the basis of the technology S¥ction 4.
Computer Aided Design [8]. In particular, the problem of{re  The remainder of the paper is organized as follows. The next
constructing curves (and surfaces) from given point dasadtta section describes evolution process for parametric cuamdgor
tracted a lot of attention during the last years. Due to aidifi implicitly defined curves, and it formulates the frameworfk o
parameterization of the data, which is not a part of the desdr dual evolution. Section 3 is devoted to the interaction efttho
geometry, it produces non-linear optimization problemiffe representations. Section 4 discusses various constr&inislly
ent strategies have been proposed, including ‘parametszazo we conclude this paper.
tion’, quasi—Newton methods and geometrically motivatpti-o
mization strategies [8, 9, 10, 11, 12, 13, 14, 15, 16]. .
Since techniques for non—linear optimization rely on iieen. 2 Dual evolution of planar curves
methods, it is tempting to view the intermediate resultstime—
dependent curve (or surface) which adapts itself to theetar§fter describing the idea of evolving or ‘active’ curves, Vee-
shape defined by the unorganized point data [12, 16]. Thisis smulate them in the cases of parametric curves and implidity
ilar to the notion of ‘active (parametric) curves’ which arsed fined curves. Finally, in order to combine the advantagebef t
for image segmentation in Computer Vision and image proce®¥0 representations, we introduce the framework of dualtevo
ing [17, 18]. In order to perform segmentation, [18] intredd tion.
the idea ‘active curves’ which minimize an energy functidna
a space of admissible curves. As shown in [19], this prqblam ©1 Evolving curves
be transformed to the problem of computing a geodesic carve |
a Riemannian space with a metric determined by the image da&t&roughout this paper we assume that some data specifyimg on
where solving this problem using the steepest-descentadetbr more closed planar curves are given. The data, which will
defines an evolution of the curve. be referred to as the “target”, can be an unorganized panicl
Another related idea is the use of time—dependent diseretife.g., generated by a measurement process), an imageneg.,
tions of (approximations to) the signed distance functiothie medical application), or another curve (e.g., a polygon).



describing the target curve(s) from the data, by generdttotg refer to the extended version of [23].
implicitly defined and parametric curves which approxinthge  In the case of data points, we use
point data, or which detect the contours in the given image. | oy

addition, it is possible to specify certain constraintsyls be v=e(d) (A +r) = (1—e(d)) (@ Vd), ©)
discus;sed in Section .4. We assume that the user.specifies a\;ﬁﬂ the edge detector

ture sizep, representing the size and the resolution of the ge-

ometric objects in the target shape. Various constantsatteat e(d)=1—¢" a* (4)
needed during the evolution process are determined by it.

In order to detect or to reconstruct the geometric informilere,d is the unsigned distance function, ands again a pre-
tion contained in the data, we will consider an evolutiongess described constant which depends on the range of the data.
which drives the curve towards the target. More precisely,
consider a time—dependent family of curnv@s= C'., which is
sometimes called an “active” curve. The curve is described
certain parameters (e.g., control points or coefficientsrtvde-
pend on a time variable. By continuously modifying these pa
rameters, we move the curve towards its target shape, seg.Fi
The data is used to derive some information about the exgec

normal speed of the curve. This will be described in the nex

section. Example 1 Fig. 2 shows two pre—computed distance fields. In
the case of a closed curve (left), one may distinguish betwee
interior (light gray) and exterior (dark gray) region. Irethase
of a point cloud (right), this is no longer possible.

\esemark 2 The edge detector functions as well as the unsigned
istance field will be pre—computed. To determine the urexign
Istance field we use graphics hardware acceleration [2¥gréeF

fore, d(x) and Vd(x) can be efficiently acquired by linear in-

erpolation of the neighboring grid points. We use the pre—

é mputation in the initialization step of the algorithmsigh

%I be described later.

Figure 1: An “active” curve moving towards some

data points (3 time steps).
closed curve point cloud

Figure 2: Precomputed distance fields.

Remark 1 We choose the initial position of the active curve
(and similarly for surfaces) such that all data points li¢himi
it. In many cases, the method also works when the initialeurg 3 Evolution of parametric curves
lies within the target or if they intersect each other. Wauass ) ) )
that the data contains neither self-intersections noeddsops. e consider a closed parametric spline curve
Techniques for handling them are described in [22]. n
f(u,m) = > Bi(u)ei(r) (5)
1=1

2.2 Speed functions

The evolution of the curve will be guided by the speed (or v\@’—ith B-splinesB;, curve parameter € [0, 1], time-dependent

locity) functionv, which depends both on the curve and on ce(fgr]tfl pOIﬂErSChZ‘ N ci(T.)' time paré';lm(z;%f, and unlf%rm p?.”'
tain geometric information (normaisand the curvaturg) taken odic knots. The curve is assumed to@e (e.g., a cubic spline

from the current instance of the evolving curve. curve with single knots). ) - ) .
In the case oimage dataD — D(z, y) we use the function We shall use the priméin order to indicate differentiation
’ with respect to the curve parameter

v=e(D)(A+k) = (1—e(D)) (@ Ve(D), (1) Of(u,m) o Of(u,7)

. . . ) =f, ——5—==1f", etc, (6)
which was proposed in [19], wheeés the edge detector function ou ou
e(D) = ¢ VD2 @) while the dot represents differentiation with respect to the time
parameter,
In this speed functiony is a constant velocity (also known as the Of (u, 7) dei(r)
balloon force) and, is a pre-described constant which depends or f, 57 = ¢(7). (7)



with the normal velocity

n(u,7) - f(u,7), (8)

whereii(u, 7) is the unit normal vector of the curve &tu, 7).
This normal velocity is to match the velocity field

v=uv(f,{ ), 9)

see Eqgns. (1) and (3), which is determined by the given data an
by the current instance of the curve. In order to satisfy ¢bis-
dition approximately, we formulate a least—squares prable

1 Figure 3: Evolution of a parametric curve towards a
Ey(¢) = / (fi-f —v)?du — min. (10) point cloud.
0
wherec = (cy,...,c,) is obtained by gathering all control
points into a single vector andl = (¢, ..., ¢,) is used for the Example 2 Several time steps of the evolution of a parametric

derivatives of the control points. After replacing the g by curve towards a target point clouds consisting of two pars a
a numerical quadrature witN' sample points;;, we arrive at  shown in Fig. 3. The final time step, where the curve reaches a
stationary state with two self-intersections, is shownlack.

N
E(¢)=> (ii-f; —v;)* — min (11)
j=1 Remark 3 In order to avoid numerical instabilities, the system
with (14) has to be regularized. In our implementation, we usena si
ple Tikhonov regularization, by adding a damping tecmc||
f; = f(u,7), £ = flu;,7), (12) with a small positive weight. See [26] for more information on
n, = n(u;,7), v; = v(fj, f;, fj’.’). this type of regularization, in particular concerning theice of

the weightw.
Typically we choseV = 5n, wheren is the number of control

points. Finally, by using the B-spline representationfipthis Remark 4 In the case of given point or curve data, after the evo-

can be rewritten as lution reaches the stopping criterion (the nornedélls below a
N . 5 user—defined threshold), one may improve the solution by sol
B(e) = Z <ﬁj _ < Bi(uy) éi(T)> _ vj) s min. ing the following non-linear least-squares problem
j=1 i=1 N
(13) x; —Q;) -1 2 . min 16
The solutione(r) of this problem is obtained by solving the jz:; x; 2 ’ (16)
sparse linear system with a symmetric positive definite imatr
which is obtained from e.g., by using a Gauss—Newton method, such as the method of
9 normal distance minimization described in [16, 17]. H€)¢
E(¢)=0,i=1,...,n. (14) are the given data points ard is the closest point tQ; on the

¢ active curve.ii; are the unit normals correspondingstg. As
Very efficient algorithms for solving such systems exis{|[25 observed in [27, 28], this can also be seen as an evolution of a
The system (14) defines an ordinary differential equati6H"ve, where the normal velocities of the closest poxjtsare
which specifies an evolution process for the curve. The tifi@ual to the oriented distances to the data.
derivatives of the control points can be computed from tbeir
rent values. 2.4 Evolution of implicitly defined curves
Since we are mostly interested in the final position of the
evolving curve, but not in the path of the evolution, we imttg Ve consider a T-spline (see [29]) of the form
the differential equation by an explicit Euler method. The u

dated control points are chosen as g(x,7) = Z Ty(x) ci(r) x € Q C R?, (17)
i=1

c(T + A1) =c(71) + €AT. (15)
_ _ . . with the bivariate T-spline basis functioisand time—dependent
The step sizeAr is chosen asnin(1,L/v;,j = 1,...,N) real coefficients; = c;(), where the domaiff is an axis—

whereL is a user-defined value. This value specifies the Mafiyned boxed containing the region of interest. The basis{
imum allowed displacement of a point in normal directioniper tjons

eration step. It should be chosen according to the expeizted s

B?v (xl)Btgz’ (22)
of the geometry features in the target shape. :
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certain knot vectors; = (s;0, Si1, Si2, Si3, Si4) andt; which the zero level set, whe® >> n.

are determined with the help of the so—called T-spline gridThe initial T-splineg is chosen as an approximation to the

(which generalizes the knot vectors of tensor—produchsp)i. signed distance function of its zero level set. During the-ev

This is illustrated by Fig. 4. See [29] for more information. lution, g will gradually loose this property, which is character-
ized by|Vg| = 1. Most existing level set evolutions use a re-

Aty initialization step to restore the signed distance prgper., by
u using a Fast Marching technique [30]. Following ideas dbsdr

at in [23, 31, 32], we avoid the re-initialization by introdag adis-
t tance field constraint

Aty More precisely, we add the constraint term

So = / (W + |Vg(x,7)| — 1)%dx — min  (21)
Q

Aty

as a penalty function, which penalizes the deviatiop &6bm a
A signed distance function. Again, we use numerical intégnat
(but now with sample points distributed §i and not just on the
zero level set) in order to derive a discretized versoaf this
constraint term. Typically we use 25 uniform distributechgde

control x-knots . . .
points y-knots points per cell of the T-spline grld. _ _ o
C1 [s1 — Aso,s1 — Aso, 51, 52, 53] For each step of the T-spline evolution the time derivatives
[tr — Ato, t1 — Ato, b1, to, t3] ¢(7) are computed by minimizing the weighted linear combina-
Co [s1 — Aso, s1, 52, 53, 54] tion
[t1,t1 + Ats, t1 + Ats + Atg, 2, 12 + Atr] . . . .
Csy [81, s1 + Asg, s1 + Asg + Asy, s2, 55] F(C) = E(C) + ws S(C) — 11, (22)
[t1,t2,t2 + Atr, t3,t4]

with a certain positive weight,. Similar to the parametric case,
Figure 4: Top: A T-spline grid. We use 4—fold knots this results in a sparse symmetric positive definite lingatesn
at boundaries. Bottom: The knot vectors for three  defining an evolution of the curve. Once again we use explicit
selected control points. Euler steps in order track the evolution path. More details,
cluding information concerning the choice of the weight the
discretization of the signed distance constraint term,thedse-
Since T-splines admits T-junctions, they can be refined leetion of the T—spline grid, have been presented in [23]eAn
cally. Clearly, this is not the case for tensor product Bregs. ample for the adaptive choice of the T-spline grid will beegiv
If the T-spline grid does not contain any T-junctions, thiea tlater (Example 7).
T-spline simplifies to a tensor—product spline.

The zero level set of the T-spling 25 Dual evolution

2
I(g,7) ={x€QCR [g(x,7) =0}, (18) On the one hand, a parametric spline representation of tive cu
i ) o is needed, e.g., in Computer Aided Design. However the evolv
defines a time-dependent planar curve. Similar to the cage iy narametric curves have some difficulties to deal withgles
parametric curve, we use the speed functido derive an evo- q¢yhe topology, i.e., with targets which consisting of méren
lution process. _ _ one component.

Recall that the normal velocity of a point of I' equals g, the other hand, an implicit representation is clearlyanot
—9(x)/|Vg(x)|, where the unit normal vector has been chosgp,qarg representation. Moreover, it may produce aditio
asti = Vg(x)/|Vg(x)|. Similar to (10), we formulate & 1eastyaches during the evolution. However, as a major advantag
squares problem it is able to adapt its topology to the target in a natural vildyis

is one of the main reasons for the increasing popularity ef th

Ey(¢c) = / (9(x,7) + v |Vg(x,7)|)* ds — min (19) level-set method. Additionally we need sample points on the

x€l(g) zero—level to solve the evolution equation. These samplepo

wheres represents the arc length of the T—spline level set, Eich be provided t_)y_the paramgtnc curve. .
¢ = (c1,...,cn). The value of the speed function depends onConsequently, itis a natural idea to combine the two evaoituti

the pointx € T and on the first and second derivative of the TFOCeSSes for the two representations. We propose thevintjo

splineg atx. Again, we use numerical integration in order t8!90rithm for what we call “dual evolution™
approximate the integral, _
Algorithm 1
N g . . . .
E(¢) = Z (9(x;,7) + v(x;,7) [Vg(x;,7)])> — min (20) 1. Initialization: Pre-compute the evolution speed function

= and choose initial position of both curves.



ric curves for one time step.
The section is devoted to the synchronization step of the-alg
3. SynchronizationDetect and deal with occurring problems;thm for dual evolution. Firstly we discuss the detection o
such as additional branches and topological changes, gBdsible topological changes (splitting events), seqothe syn-
ensure that the two representations stay close. See s8ctifronization in the case of no changes, and finally the atiapta

4. Termination:Check whether the stopping criterion is satis?—f the parametric curve in the case of topological changes.

fied, cf. Remark 4. Continue with step 2 (no) or 5 (yes).

. . 3.1 Detection of topological changes
5. Refinemenf the parametric curve, see Remark 4. polog 9

We describe and compare three different approaches.
Example 3 We continue the previous example. Fig. 5, left,

shows again the self intersection. Now we use the dual evolu- _ ) ) )
tion, which combines a parametric spline curve (black) amd }€thod 1: Self-intersections on the parametric curve

implicitly defined one (grey). By combining these two repreqhis method does not use any information from the impliitsy

sentations, we may now adapt the topology of the spline CURyR 4 curve. Instead, it simply tries to detect self—intetisas of

and split it into two components (right). At the same times th,e narametric curve via sampling. More precisely, we agipro

implicitly defined curve develops two phantom branches. 46 the parametric curve by an inscribed polygon and check f
self-intersections.

- Method 2: Comparing normals
. After each evolution step one may compare the unit normal
>.~4 vectors of the parametric curvé: and of the implicitly de-
fined curveii,. More precisely, we may define a unit normal
h : n, = Vyg/|Vyg| for almostall points in the domain (except for

points with vanishing gradients), not only for points on #ezo
before splitting after splitting level setl".

] ] ) In our experiments, we observed that the following two esvent
Figure 5: Adapting the topology by dual evolution of an 5. closely related:

implicitly defined (grey) and a parametric curve (black).

(1) The implicit curve has changed its topology.

. . . 2) There exists a parameter valuesuch that
Remark 5 Following the assumptions made in Remark 1 abOLS'[) P lug

the_target shape, and if we assume that the initial positidheo fe(u)) - iy (£)) < 0. (23)
active curve enclosed all the data, then only one type ofitgpo
ical changes is possible, namely splitting events. The oustof ) . ) . )
this paper can easily be extended to the deal with mergingeve This observation allows us to detect self—intersectionkauit
For instance, these events may occur if the initial positibine  €XPlicitly computing them. IfV sample points are used, then the
target curve does not enclose all data. Note that more sipphROMPIEXity iSO(N). o

cated methods are needed in oder to deal with targets pagpess 1 hiS observationiis justified by the following simple regskte
self-intersections, see [22]. Fig. 6 for an illustration).

Remark 6 Instead of coupling the evolutions of implicitly delemma 1 Consider a subdomais’ C  with boundaryds,
fined and parametric curves, one may first use the implicit evghich is assumed to be contained in another open subset().
lution to capture all components of the target, and thenappr We assume that th@" functiong has no local extreman D. We
mate the different branches of the implicit curve by an pataim assume that the boundafs' consists of segments of the para-
representation. Two additional difficulties arise whendaing metric curvef, where all normalsiy are either pointing away
this approach. First, it requires a topology analysis ofithe or pointing towardsS. In addition, we assume thatis not con-
plicitly defined curve, see e.g., [33, 34]. Second, aftelegating stant. Then the sign of the inner product

sample points on the various branches, they have to be approx

imated by parametric spline curves. Various fitting techeg Vg - 1ig (24)
are available [10, 16]. While these two problems are cdstain

solvable, they would become even more challenging in the c§8anges oS5, or it everywhere equal$ on 0.

of surfaces. By coupling the two representations, we oldain

all at once approach. In addItIO!’l, certain ConStralnmrBasf IHere, a poinp is said to be a local maximum (and similar for a local mini-
range constraints, can much easier be formulated for iftlplic y,ym) ofg on D if g(p) > g(x) holds for all pointsx in an open neighborhood
defined curves. N of p. This includes points where the valuegis constant inV.




consider the inner products
Vg(x) ' nf(x) > Oa Xe 8‘97 (28)

whereng (x) is the normal of the parametric curfet the point

x € 05. We consider this as a function on the union of the arcs
that form the boundaryS, where each vertex appears twice
Again, this is a continuous function on a compact set, and it
therefore has a minimum and a maximum. Due to (25) resp.
Figure 6: The assumptions of Lemma 1. (26), the minimum is non-positive, and due to (27), the maxi-
mum is non-negative. This completes the pradf.

Proof: We assume that the normaig point away formS, as  Note that the assumption concerning the non—existence of lo
shown in Fig. 6. Sincg : Q — R is continuous ancd C cal extrema is likely to be satisfied by the domain enclosed by
Q is compact, the restriction af to S takes its maximum andtwo branches of a self—intersecting curve, such as the lolacle
minimum values at two points,,.«, Xmin € S, respectively. in Fig. 3. On the one hand, the global distribution of the nalsn
As we assumed that has no local extrema on the open $&t of the parametric curve entails that they point either talsat
andS C D, these two points belong to the bounddéry. We or away fromS. On the other hand, the function defininghe
consider the minimum af on S which is attained at,.;, € 0S. curvel'is likely to have a saddle point, but not an extremal point,
Case 1x.,, is a regular point 095, see Figure 7, left. Lai in this region.
be the normal 0D S at this point. Asx,i, is the global minimum

of gon S, itis also th_e global minimum of the restriction g)_f Remark 7 In practice we replace the right—hand side in (23)
to the boundary)S. Using standard arguments from constrainggin a small positive constant in order to make the criterion
optimization (see e.g. [35]) we conclude that the gradiestar ,4e sensitive.

Vg and the normal vector @l$ atx,,;, are linearly dependent.
In addition, the directional derivative gfin the direction of the

outward-pointing normaths is non-positive, Method 3: Distance check
ﬂ = Vg(Xmin) -1 < 0. (25) _Fina_ll)_/ we may check whether thg parametric cufvend the
dng implicitly defined curvel™ are “sufficiently close” to each other.

More precisely, for each poirff{u) of the parametric curve we

Case 2:xmin is @ vertex 0fdS, i.e., a double point of they to find the corresponding point dh by intersecting the nor-
parametric curvé, see Figure 7, right. Let;, n, be the normals mga| with T,

of the two branches a®S at this point. Again, using standard . B
arguments from constrained optimization, we conclude tit 9(f(u) + u(u) fiy(u)) = 0. (29)

gradientVg atx,,;, lies in the intersection of the two half—planegy differentiation we obtain a differential equation foy

). < ) - <
v.g(xmm) n; = Oa v.g(xmm) ng = 0 (26) MI B _vg . (f/ + Mﬁ/) (30)
which are shown by the dashed lines in the figure. Vg i
Using a predictor—corrector method we trace the parametric
curve and the corresponding points on the implicitly defined
curve. If the corrector (a Newton method for root finding @on
the normal) changes the predicted valug.dbo much, or even
fails to find a corresponding point, or if the distance betvine
point f(u) and its corresponding point dn exceeds a certain
threshold, then we report that a change of topology is likebr

this threshold we use the feature size

g=const. N g=const.

Remark 8 In order to speed up the computation one may in-
) N o stead simply check whether the sign gfchanges in a tubu-
Figure 7: Conditions for the minimum gfon S. Case 1 (left) |5 ._neighborhood around the parametric curve. We again use
and Case 2 (right). ¢ = p. If the zero level is close to the parametric curve, then the

sign changes in this neighborhood.
Similarly we may conclude that

2We may get two different values for each vertex, thereforech@ose this
Vg(Xmax) -1 > 0, (27) union as the domain of this function.



Initial position Step 1: Method 3 detects changeStep 4: Method 2 detects changeStep 7: Method 1 detects change.
Figure 8: Detection of topological changes.

Comparison Fitting the implicitly defined curve to the parametric one

Ipygyost cases, we fit the implicitly defined curve to the parfame

The three methods have been implemented and tested. The )
ric one, by solving a least-squares problem

method (Section 3.1) is rather time—consuming, in pariciiila
large number of sampled points is used. Furthermore, tidieo N
tion does not guarantee that the topology of the implicivelras —né(y;) N M2 i

changed as well. Moreover, topological changes are deteete ; ‘ (9(y;) = 9(y5)) - 1)
atively late, as will be demonstrated by Example 4. On thermth

hand not using the implicit curve helps in some cases where Tine sample pointg; are uniformly distributed in the domain
T-spline has a very flat shape. In this case, the other twoadsthof g. The functiony is the signed distance field of the parametric
have problems. spline curve (again obtained using graphics hardware)asa

The third method detects the changes as soon as possiblec®pgtant as defined in (Section 2.2).
with more computational effort. The second method can be seeWe chose this approach because it allows us to eliminate ad-
as a compromise. Methods 2 and 3 have problems if the implifional branches of the implicit representation and itranéee
curve is very flat, since then the functigmloes not represent thethat the two representations of the curve stay close to ethein.o
curve well.

Note that it is not a serious problem if the method is too sen';
tive, i.e., if it reports topological changes if no such egdmave
actually taken place. As we will see later, the method for mor'
ifying the topology (see Section 3.3) will adapt the topglag
the parametric curve to the current shape of the implicigifyraed
one, and it will identify cases where no change of topologkto
place.

We apply the three methods to an example:

ixample 5 Fig. 9 shows an example.

Example 4 Fig. 8 shows the dual evolution of a curve whict
experiences a change of its topology. The implicitly define
curve is shown in grey and the corresponding parametricecur
in black. The third method (distance check) is the first ordeto
tect the topological change in the first time step (top righur before synchronization after synchronization
time steps later, the second method (comparing normalejtep
the change (bottom left). Finally, after three more tim@stehe
parametric curve develops a self—intersection, whichds ttuly
reported by the first method (bottom right).

Figure 9: Synchronization without topological changes.

Fitting the parametric curve to the implicitly defined one

In some cases, e.g., if additional constraints acting onirthe
3.2 Synchronization without topological changes plicitly defined curve are used (see Section 4), the imjficie-

fined curve takes the leading role. For a sequence of uniforml
If no change of the topology has been reported, then we trydistributed sample points on the parametric curve we citbate
make sure that the two representations of the curve stag tbosclosest points o’. Then we solve again a linear—least—squares
each other. Two possibilities exist: problem, in order to fit the parametric curve to them.



arbitrary number of branches during each event. While ieiyv

Irf ?Ncharn?s ?rfi top?i/og\)//vi?rﬁhbetin repr(r)rtetdt, wel havev\tlo creagn ely that one curve splits in more than two branchesait ¢
EW parametric curve € the correct topology. VVe use asily happen that several branches get close to each &ber.

implicit curve to guide this process. More preciselypifis a :

point which has been identified by one of the three methodsﬂi}(]e following example.

Section 3.1, then we apply the following algorithm. Example 6 Fig. 10 (top) shows a complicated example which
can be handled by our method. A curve evolves towards a target
which consists of four pieces. In one step, the parametrigecu

1. Create a circl€ with a predefined radius (which should b&as to split into four components.

chosen in dependence of the feature size, for the examples . )
we used20p) aroundp;. We conclude this section by another example.

Algorithm 2

2. Compute the se® of intersections betweefi and the para- Example 7 Fig. 10 (bottom) shows some steps of the evolution
metric curvef. Compute the sef of intersections betweenprocess towards a target defined by two point clouds. Iniaddit
C and the implicitly defined curvE. In order to computé, to the data and the curves, the figures visualize the T-sptide
the circleC is represented as a parametric quadratic splin&ich is refined in the vicinity of the data.
curve. On the other hand, in order to compiftgits para-  In this example, the parametric curve starts withcontrol
metric representation is used. In both cases this lead$@ts in the beginning and increases this numbértafter the
root—finding problems in one variable. splitting step. The T-spline is defined Bg0 coefficients. One

) ] step of the evolution of the parametric curve needs less than

3. Checkif|| = [P|. For eachx € I find the nearesy € P. pjlliseconds, and one step of the evolution of the implcite-
This should define a one—to—-one qorrespondence .betWﬁl%U curve requires abod0 milliseconds. Most of the compu-
the points ofP and. If this fails, we increase the radius otation time is needed for the synchronizatide0 milliseconds
the circleC’ and continue with step 2. without splitting, and700 milliseconds with splitting.

Reducing the number of T-spline coefficients also reduces th

tersection points id and use this information to create nejMe per iteration. E.g. witlg6 coefficients we need abowis0

parametric spline curves between the corresponding powg|s<a_conds per time step: The fm_al res_ult IS rfaacheq alfter
of P evolution steps. For very simple objects like a circle withB-

spline control points and5 T-spline coefficients one evolution

Some steps of the algorithm will now be discussed in mordldetgtep can be done B0 milliseconds.

In step 2, if|P| = |I] then for everyx € P there exists a
pointy € [ which is close tox, due to the synchronization4 Constraints
step in algorithm 1. Otherwise, || # |I| we may increase

the:\ raopus OfC’. Alternatively, one may fllter out .the unusequ presentthree different constraints which can be appidte
points in/ later. In order to compute the intersections between

) L . evolution. The range constraints are used to define regibithw
the parametric curve, the implicitly defined curve and the ci T ; .

X should lie inside or outside of the final curve. The area con-
cle we approximate both curves by polygons and compute th

Ir. . . )
intersections. Alternatively one may formulate both teesksini- s%ramts force the curve to enclose a certain pre-definel &ie

. . - nally the convexity constraint allows us to define a regioekeh
variate polynomial root-finding problems and use method$ SU} e active curve becomes convex
as Bézier-clipping, cf. [36]. '

Clearly, it is essential to identify the correct radius of tir- )
cle C. If the radius is too small, then we may not find all inford.1  Range constraints
mations we need. One the other hand, if we choose the ra(djusltﬁe implicitly defined active curve decomposes the domamn in
large, then we may lose some parts of the target. There wilbbe

perfect fully automatic solution to this problem. In the@dighm aninner region, wherey(x) < 0, and arextenorregmn, where
4 . ) g(x) > 0. (Note that one of these regions can be empty, though
we use a binary search strategy to determine the radius.

In order to trace the implicitly defined curve withil (step this does not make sense in our framework.) Based on this ob-

. . servation one may ad@nge constraintgo the the framework
4), we use a predictor—corrector method [8] with a curvature Y g

dependent step—size control. This tracing should estaplgs qf dual evolution. More premsely, !f the doma[n bounded g t
! : ) L f final curve should contain a certain set of poifs}i—o.... N,

of intersection points. If this fails, then we increase thetaacy d it should . h f Doi e

of the tracing method (i.e., we decrease the step size) and it should not contain another set of pOI.'@%}jZOZ""N“

o . . ' then we have to ensure that the evolving implicitly definedieu

In order to create the new parametric spline curve (step Hiisfies

we split it at its intersections with the circlé and fill in new

segments. The control points of the new segments are obtaine

by uniformly distributing points on the corresponding segrs respectively.

of the implicit curve. Alternatively, one might try to fit atieer  In the first case, this can be achieved by adding a penalty term

B-spline curve to the traced segment, but the result of thelsir to the objective function (22) which implies that the timeida-

method are sufficient. tive satisfiesj(x;) < 0 if the function valueg(x;) is positive.

4. Trace the implicitly defined curve withiff between its in-

g(xi) < Oa and g(Yj) > Oa (32)
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Figure 10: Synchronization with topological changes. Tdrgét is defined by a smooth curve (top) or by a point cloud¢boy

(The second case can be dealt with similarly.) We proposedo |

No
C(&) = (9(xj,7) + 9(xj,7) +6)* a=(g(x;, 7)) (33)

Jj=1

whered is chosen by the user (see below for examples). T §
‘activator’ functiona controls the influence of this term,

1 g > —¢

as(g) = 0 g < —2¢ (34)
C? —blend in between

wheree is a user—defined positive constant (e.g., the feature size
p can again be used). The optimization problem

F(¢) = B(¢) + ws S(¢) + we C(¢) - min.  (35)

Figure 11: Approximation with (right) and without
(left) range constraints.

leads to a sparse linear system of equations with a symmetric
positive definite matrix, which can be dealt with efficiently ~ Example 10 In this final example (see Fig. 13) we consider a
The constraint term acts only on the implicitly defined curvearget which consists of three parts. Evolution without-con
but not on the parametric one. However, the parametric custgints produces three curves lying within the data setr Fo
‘inherits’ the constraint through the synchronizationpyided § = —0.5 we obtain curves which represent outer boundaries
that the second synchronization method (guided by the aitlgli of the data set.
defined curve) is used.
Depending on the choice of the evolution stops at a Certa"hemark 10 Inthe case of parametric curves, several approaches

offset of the given shape. We will demonstrate this by sdve{g range constraints exist. For instance, a tension-bast t

examples. In all examples, the points on the target are &mul . ! . . . .
! . . nique to constrained interpolation by parametric splineves
neously used to define the constraints. More precisely, vk 10 . ; . . T
L . . . . 1S described in [37], the use of tight piecewise linear esgtes
for approximating curves which are circumscribed or irtsedi

to the given data. have been prpposed in [38], and certain optimization tepies
are exploredin [39].

Example 8 In Fig. 11, the target is defined by a noisy point

cloud taken from a circle. We show the approximation with-

out constraints (left) and the approximation (right) ob&al by 4.2 Area constraints

adding the constraint term (33) with= —0.5.
In some applications, e.g. when dealing with noisy dataaiont

Example 9 We consider the two branches of the curve definétg holes, one may wish to specify the area of the target abjec

by the implicit equation Starting from an initial value, the current arda enclosed by

3 3 the curve should adjusted until the final aréa, which is spec-
((x - 1)2 + %) (= + 1)2 +y%) = 0.316. (36) ified by the user, has been reached. This can be achieved by

adding a constraint of the form
Fig. 12 shows the dual evolution for a target defined by this

curve. Depending on the choice &f we obtain offsets of the / s — &
v,ds =
r

algebraic curve. (37)
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initial position 5=0 0 =—-0.05 0 =+0.05
Figure 12: Dual evolution with range constraints for a tadgfined by an algebraic curve.

initial position result without constraints with constrainty = —0.5
Figure 13: Dual evolution with range constraints for a tadgdined by three point clouds.

to the least squares problems (11) resp. (19), where to be convex. This can be dealt with by adding a penalty term of
the form
i ' 9(x,7)
vp(u,7) =0(u,7) - f(u,7) resp. v,(x,7) = ———"— . .
( ) ( ) ( ) p ( ) |v.g(x’7')| D(C) = / 5 (H(X,T) _ |H(X,T>| _ 0)260(5()(7 T))dX (38)
I'nQq

is the normal velocity of the parametric / implicitly definerce,
respectively.s is the arc length of the curve, aids the rate of
area change (with respect to the time

to the quadratic objective function, which is again evaddatia
numerical integration. If the curve is concave, i.es(k) < 0,
then the time derivative of the curvature is forced to be i
k(x;) > 0, thereby increasing the curvature until it gets positive.

ﬁ_c — Ac > Ap Simil e , . .

k= i . imilar to (34), the "activator’ functior, controls the influ
—4. +1 otherwise ence of the penalty term,

The constraint (37) is linear in the time derivatives of tloac 1 k<0

trol points resp. T-spline coefficients. Again we use nuoefi Bo(k) =4 0 k>0 (39)

integration to obtain a linear constraint, which is to besidn C? —blend  in between

ered along with the quadratic objective function. This ktxla
gquadratic optimization problem with linear constraint$jet is
solved using Lagrangian multipliers.

whereo is a user-defined positive constant. A larger value of
increases the curvature of the curve segment in the comsttrai
region)y. By incorporating the convexity constraint, the opti-

. . mization problem m
Example 11 We consider a set of data points sampled from a ation problem becomes

square after removing the top edge, see, see Fig. 14. The area  [(¢) = E(¢) 4+ w,5(¢) + wgD(¢) — min. (40)

of the square equals 0.5. The figure shows the result of thie dua

evolution obtained by specifying different values of thege Sincer = Y., ¢;0x/dc;, which meansD(¢) is also quadratic
areaAr. If the correct value is specified, then the dual evolutida ¢. Hence the solution to (40) can be found by solving a least
recovers the original shape. In this example, the area @nit squares problem. Usually we choose a very large weighting co
was added to the T-spline level set evolution, and it wasritétk  efficient (v; = 1000) in our experiments.

by the parametric curve via synchronization. Example 12 In Fig. 15, the target shape (defined by unorganized

points) has some concave features. On the left, we show the ap
4.3 Convexity constraints proximation result without convexity constraints. On tight,
we show the approximation result obtained by applying the co

Similar to range constraints one may also add convexity caxity constraints4 = 0.05). The regiorf), is the box which is
straints to the framework of dual evolution. In the follogiwe shown in the figure.

assume that the user has specified a reQipwhere the curve is

10



initial position volume set td).4 volume set td.5 volume set td.6
Figure 14: Dual evolution with volume constraints.
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