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Abstract. By simultaneously considering evolution processes
for parametric spline curves and implicitly defined curves,we
formulate the framework of dual evolution. This allows us to
combine the advantages of both representations. On the one
hand, the implicit representation is used to guide the topology
of the parametric curve and to formulate additional constraints,
such as range constraints. On the other hand, the parametricrep-
resentation helps to detect and to eliminate unwanted branches of
the implicitly defined curves. Moreover, it is required for many
applications, e.g., in Computer Aided Design.

1 Introduction

Implicitly definedcurves and surfaces, i.e., curves and surfaces
which are described as the zero set of a scalar field, have been
used, e.g., for geometric modeling [1, 2], for the reconstruction
of geometric objects from unorganized points, see [3, 4, 5, 6, 7]
and others. Several possible representations of the scalarfields
have been explored, such as hierarchical combinations of simpler
ones, radial basis functions, spline functions, and grid–based dis-
cretizations.

On the other hand,parametriccurves and surfaces (such as
NURBS representations) form the basis of the technology of
Computer Aided Design [8]. In particular, the problem of (re–)
constructing curves (and surfaces) from given point data has at-
tracted a lot of attention during the last years. Due to artificial
parameterization of the data, which is not a part of the described
geometry, it produces non–linear optimization problems. Differ-
ent strategies have been proposed, including ‘parameter correc-
tion’, quasi–Newton methods and geometrically motivated opti-
mization strategies [8, 9, 10, 11, 12, 13, 14, 15, 16].

Since techniques for non–linear optimization rely on iterative
methods, it is tempting to view the intermediate results as atime–
dependent curve (or surface) which adapts itself to the target
shape defined by the unorganized point data [12, 16]. This is sim-
ilar to the notion of ‘active (parametric) curves’ which areused
for image segmentation in Computer Vision and image process-
ing [17, 18]. In order to perform segmentation, [18] introduced
the idea ‘active curves’ which minimize an energy functional in
a space of admissible curves. As shown in [19], this problem can
be transformed to the problem of computing a geodesic curve in
a Riemannian space with a metric determined by the image data,
where solving this problem using the steepest-descent method
defines an evolution of the curve.

Another related idea is the use of time–dependent discretiza-
tions of (approximations to) the signed distance function in the

so–called Level Set method [20, 21]. As the main advantage of
this implicit representation, it does not require a parameterization
and it naturally adapts the topology during the evolution. Conse-
quently, one may use it to detect complex topological structures,
such as objects consisting of multiple components, withoutusing
prior knowledge.

This paper combines evolution processes for implicitly de-
fined curves and parametric curves for geometry reconstruction
and image segmentation. This leads to a new framework for evo-
lution, which we call thedual evolution, since the two represen-
tations of geometry are dual to each other.

By simultaneously considering both representations of thege-
ometry, we combine the advantages of the two representations.
On the one hand, we obtain a parametric description, which is
useful for many applications, e.g., in Computer–Aided Design.
On the other hand, we use the implicit representation to identify
the correct topology, and in particular to guide the shape ofthe
parametric representations. Moreover, certainconstraints, such
as range or convexity constraints, can more efficiently be formu-
lated in one of the two representations, and they can therefore be
added to the framework of dual evolution. For instance, range
constraints can be formulated as conditions on the sign of the
function defining the implicit representation, as demonstrated in
Section 4.

The remainder of the paper is organized as follows. The next
section describes evolution process for parametric curvesand for
implicitly defined curves, and it formulates the framework of
dual evolution. Section 3 is devoted to the interaction of the two
representations. Section 4 discusses various constraints. Finally
we conclude this paper.

2 Dual evolution of planar curves

After describing the idea of evolving or ‘active’ curves, wefor-
mulate them in the cases of parametric curves and implicitlyde-
fined curves. Finally, in order to combine the advantages of the
two representations, we introduce the framework of dual evolu-
tion.

2.1 Evolving curves

Throughout this paper we assume that some data specifying one
or more closed planar curves are given. The data, which will
be referred to as the “target”, can be an unorganized point cloud
(e.g., generated by a measurement process), an image (e.g.,in a
medical application), or another curve (e.g., a polygon).
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We will describe a technique for extracting the information
describing the target curve(s) from the data, by generatingboth
implicitly defined and parametric curves which approximatethe
point data, or which detect the contours in the given image. In
addition, it is possible to specify certain constraints, aswill be
discussed in Section 4. We assume that the user specifies a fea-
ture sizeρ, representing the size and the resolution of the ge-
ometric objects in the target shape. Various constants thatare
needed during the evolution process are determined by it.

In order to detect or to reconstruct the geometric informa-
tion contained in the data, we will consider an evolution process
which drives the curve towards the target. More precisely, we
consider a time–dependent family of curvesC = Cτ , which is
sometimes called an “active” curve. The curve is described by
certain parameters (e.g., control points or coefficients) which de-
pend on a time variableτ . By continuously modifying these pa-
rameters, we move the curve towards its target shape, see Fig. 1.
The data is used to derive some information about the expected
normal speed of the curve. This will be described in the next
section.
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Figure 1: An “active” curve moving towards some
data points (3 time steps).

Remark 1 We choose the initial position of the active curve
(and similarly for surfaces) such that all data points lie within
it. In many cases, the method also works when the initial curve
lies within the target or if they intersect each other. We assume
that the data contains neither self–intersections nor nested loops.
Techniques for handling them are described in [22].

2.2 Speed functions

The evolution of the curve will be guided by the speed (or ve-
locity) functionv, which depends both on the curve and on cer-
tain geometric information (normals~n and the curvatureκ) taken
from the current instance of the evolving curve.

In the case ofimage dataD = D(x, y) we use the function

v = e(D) (λ + κ) − (1 − e(D)) (~nT ∇e(D)), (1)

which was proposed in [19], wheree is the edge detector function

e(D) = e−η |∇D|2 . (2)

In this speed function,λ is a constant velocity (also known as the
balloon force) andη is a pre-described constant which depends

on the range of the data. For the choice of these constants we
refer to the extended version of [23].

In the case of data points, we use

v = e(d) (λ + κ) − (1 − e(d)) (~nT ∇d), (3)

with the edge detector

e(d) = 1 − e−η d2

. (4)

Here,d is the unsigned distance function, andη is again a pre-
described constant which depends on the range of the data.

Remark 2 The edge detector functions as well as the unsigned
distance field will be pre–computed. To determine the unsigned
distance field we use graphics hardware acceleration [24]. There-
fore, d(x) and∇d(x) can be efficiently acquired by linear in-
terpolation of the neighboring grid points. We use the pre–
computation in the initialization step of the algorithms which
will be described later.

Example 1 Fig. 2 shows two pre–computed distance fields. In
the case of a closed curve (left), one may distinguish between
interior (light gray) and exterior (dark gray) region. In the case
of a point cloud (right), this is no longer possible.

closed curve point cloud

Figure 2: Precomputed distance fields.

2.3 Evolution of parametric curves

We consider a closed parametric spline curve

f(u, τ) =

n∑

i=1

Bi(u) ci(τ) (5)

with B–splinesBi, curve parameteru ∈ [0, 1], time–dependent
control pointsci = ci(τ), time parameterτ , and uniform peri-
odic knots. The curve is assumed to beC2 (e.g., a cubic spline
curve with single knots).

We shall use the prime′ in order to indicate differentiation
with respect to the curve parameteru,

∂f(u, τ)

∂u
= f ′,

∂2f(u, τ)

∂u2
= f ′′, etc., (6)

while the doṫ represents differentiation with respect to the time
parameterτ ,

∂f(u, τ)

∂τ
= ḟ ,

∂ci(τ)

∂τ
= ċi(τ). (7)
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If the control points vary in time, the points of the curve travel
with the normal velocity

~n(u, τ) · ḟ(u, τ), (8)

where~n(u, τ) is the unit normal vector of the curve atf(u, τ).
This normal velocity is to match the velocity field

v = v(f , f ′, f ′′), (9)

see Eqns. (1) and (3), which is determined by the given data and
by the current instance of the curve. In order to satisfy thiscon-
dition approximately, we formulate a least–squares problem

E0(ċ) =

∫ 1

0

(~n · ḟ − v)2 du → min . (10)

wherec = (c1, . . . , cn) is obtained by gathering all control
points into a single vector anḋc = (ċ1, . . . , ċn) is used for the
derivatives of the control points. After replacing the integral by
a numerical quadrature withN sample pointsuj , we arrive at

E(ċ) =
N∑

j=1

(~n · ḟj − vj)
2 → min (11)

with

fj = f(uj , τ), ḟj = ḟ (uj, τ),
~nj = ~n(uj, τ), vj = v(fj , f

′
j , f

′′
j ).

(12)

Typically we choseN = 5 n, wheren is the number of control
points. Finally, by using the B-spline representation forf , this
can be rewritten as

E(ċ) =

N∑

j=1

(
~nj ·

(
n∑

i=1

Bi(uj) ċi(τ)

)
− vj

)2

→ min .

(13)
The solutionċ(τ) of this problem is obtained by solving the
sparse linear system with a symmetric positive definite matrix,
which is obtained from

∂

∂ċi

E(ċ) = 0, i = 1, . . . , n. (14)

Very efficient algorithms for solving such systems exist [25].
The system (14) defines an ordinary differential equation

which specifies an evolution process for the curve. The time
derivatives of the control points can be computed from theircur-
rent values.

Since we are mostly interested in the final position of the
evolving curve, but not in the path of the evolution, we integrate
the differential equation by an explicit Euler method. The up-
dated control points are chosen as

c(τ + ∆τ) = c(τ) + ċ∆τ. (15)

The step size∆τ is chosen asmin(1, L/vj, j = 1, . . . , N)
whereL is a user-defined value. This value specifies the max-
imum allowed displacement of a point in normal direction perit-
eration step. It should be chosen according to the expected sizeρ
of the geometry features in the target shape.

Figure 3: Evolution of a parametric curve towards a
point cloud.

Example 2 Several time steps of the evolution of a parametric
curve towards a target point clouds consisting of two parts are
shown in Fig. 3. The final time step, where the curve reaches a
stationary state with two self–intersections, is shown in black.

Remark 3 In order to avoid numerical instabilities, the system
(14) has to be regularized. In our implementation, we use a sim-
ple Tikhonov regularization, by adding a damping termω||ċ||
with a small positive weightω. See [26] for more information on
this type of regularization, in particular concerning the choice of
the weightω.

Remark 4 In the case of given point or curve data, after the evo-
lution reaches the stopping criterion (the norm ofċ falls below a
user–defined threshold), one may improve the solution by solv-
ing the following non–linear least-squares problem

N∑

j=1

|(xj − Qj) · ~nj |
2 → min, (16)

e.g., by using a Gauss–Newton method, such as the method of
normal distance minimization described in [16, 17]. HereQj

are the given data points andxj is the closest point toQj on the
active curve.~nj are the unit normals corresponding toxj . As
observed in [27, 28], this can also be seen as an evolution of a
curve, where the normal velocities of the closest pointsxj are
equal to the oriented distances to the data.

2.4 Evolution of implicitly defined curves

We consider a T–spline (see [29]) of the form

g(x, τ) =

n∑

i=1

Ti(x) ci(τ) x ∈ Ω ⊂ R
2, (17)

with the bivariate T-spline basis functionsTi and time–dependent
real coefficientsci = ci(τ), where the domainΩ is an axis–
aligned boxed containing the region of interest. The basis func-
tions

Ti(x) =
B3

si(x1)B
3
ti(x2)∑n

i=1 B3
si(x1)B3

ti(x2)

3



are defined with the help of (in our case) cubic B-splines over
certain knot vectorssi = (si0, si1, si2, si3, si4) andti which
are determined with the help of the so–called T-spline grid
(which generalizes the knot vectors of tensor–product splines).
This is illustrated by Fig. 4. See [29] for more information.

t1

t2

t3

t4

s1 s2 s3 s4 s5

∆t0

∆t1

∆t2

∆t3

∆t4

∆t5

∆t6

∆t7

∆s0 ∆s1 ∆s2 ∆s3 ∆s4 ∆s5

∆s6 ∆s7

C1

C2

C3

control x-knots
points y-knots
C1 [s1 − ∆s0, s1 − ∆s0, s1, s2, s3]

[t1 − ∆t0, t1 − ∆t0, t1, t2, t3]
C2 [s1 − ∆s0, s1, s2, s3, s4]

[t1, t1 + ∆t5, t1 + ∆t5 + ∆t6, t2, t2 + ∆t7]
C3 [s1, s1 + ∆s6, s1 + ∆s6 + ∆s7, s2, s5]

[t1, t2, t2 + ∆t7, t3, t4]

Figure 4: Top: A T-spline grid. We use 4–fold knots
at boundaries. Bottom: The knot vectors for three
selected control points.

Since T–splines admits T-junctions, they can be refined lo-
cally. Clearly, this is not the case for tensor product B-splines.
If the T–spline grid does not contain any T-junctions, then the
T-spline simplifies to a tensor–product spline.

The zero level set of the T-splineg,

Γ(g, τ) = {x ∈ Ω ⊂ R
2 | g(x, τ) = 0 }, (18)

defines a time–dependent planar curve. Similar to the case ofa
parametric curve, we use the speed functionv to derive an evo-
lution process.

Recall that the normal velocity of a pointx of Γ equals
−ġ(x)/|∇g(x)|, where the unit normal vector has been chosen
as~n = ∇g(x)/|∇g(x)|. Similar to (10), we formulate a least
squares problem

E0(ċ) =

∫

x∈Γ(g)

(ġ(x, τ) + v |∇g(x, τ)| )2 ds → min (19)

wheres represents the arc length of the T–spline level set, and
c = (c1, . . . , cn). The value of the speed function depends on
the pointx ∈ Γ and on the first and second derivative of the T–
splineg at x. Again, we use numerical integration in order to
approximate the integral,

E(ċ) =

N∑

j=1

(ġ(xj , τ) + v(xj , τ) |∇g(xj , τ)|)2 → min (20)

with uniformly distributed sample pointsxj , j = 1, . . . , N , on
the zero level set, whereN >> n.

The initial T-splineg is chosen as an approximation to the
signed distance function of its zero level set. During the evo-
lution, g will gradually loose this property, which is character-
ized by |∇g| = 1. Most existing level set evolutions use a re-
initialization step to restore the signed distance property, e.g., by
using a Fast Marching technique [30]. Following ideas described
in [23, 31, 32], we avoid the re-initialization by introducing adis-
tance field constraint.

More precisely, we add the constraint term

S0 =

∫

Ω

(
∂ |∇g(x, τ)|

∂τ
+ |∇g(x, τ)| − 1)2dx → min (21)

as a penalty function, which penalizes the deviation ofg from a
signed distance function. Again, we use numerical integration
(but now with sample points distributed inΩ, and not just on the
zero level set) in order to derive a discretized versionS of this
constraint term. Typically we use 25 uniform distributed sample
points per cell of the T-spline grid.

For each step of the T-spline evolution the time derivatives
ċ(τ) are computed by minimizing the weighted linear combina-
tion

F (ċ) = E(ċ) + ωs S(ċ) → min, (22)

with a certain positive weightωs. Similar to the parametric case,
this results in a sparse symmetric positive definite linear system
defining an evolution of the curve. Once again we use explicit
Euler steps in order track the evolution path. More details,in-
cluding information concerning the choice of the weightωs, the
discretization of the signed distance constraint term, andthe se-
lection of the T–spline grid, have been presented in [23]. Anex-
ample for the adaptive choice of the T-spline grid will be given
later (Example 7).

2.5 Dual evolution

On the one hand, a parametric spline representation of the curve
is needed, e.g., in Computer Aided Design. However the evolv-
ing parametric curves have some difficulties to deal with changes
of the topology, i.e., with targets which consisting of morethan
one component.

On the other hand, an implicit representation is clearly nota
standard representation. Moreover, it may produce additional
branches during the evolution. However, as a major advantage,
it is able to adapt its topology to the target in a natural way.This
is one of the main reasons for the increasing popularity of the
level–set method. Additionally we need sample points on the
zero–level to solve the evolution equation. These sample points
can be provided by the parametric curve.

Consequently, it is a natural idea to combine the two evolution
processes for the two representations. We propose the following
algorithm for what we call “dual evolution”:

Algorithm 1

1. Initialization: Pre-compute the evolution speed function
and choose initial position of both curves.
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2. Evolution:Apply the evolution of the implicit and paramet-
ric curves for one time step.

3. Synchronization:Detect and deal with occurring problems,
such as additional branches and topological changes, and
ensure that the two representations stay close. See section3.

4. Termination:Check whether the stopping criterion is satis-
fied, cf. Remark 4. Continue with step 2 (no) or 5 (yes).

5. Refinementof the parametric curve, see Remark 4.

Example 3 We continue the previous example. Fig. 5, left,
shows again the self intersection. Now we use the dual evolu-
tion, which combines a parametric spline curve (black) and an
implicitly defined one (grey). By combining these two repre-
sentations, we may now adapt the topology of the spline curve
and split it into two components (right). At the same time, the
implicitly defined curve develops two phantom branches.

before splitting after splitting

Figure 5: Adapting the topology by dual evolution of an
implicitly defined (grey) and a parametric curve (black).

Remark 5 Following the assumptions made in Remark 1 about
the target shape, and if we assume that the initial position of the
active curve enclosed all the data, then only one type of topolog-
ical changes is possible, namely splitting events. The methods of
this paper can easily be extended to the deal with merging events.
For instance, these events may occur if the initial positionof the
target curve does not enclose all data. Note that more sophisti-
cated methods are needed in oder to deal with targets possessing
self-intersections, see [22].

Remark 6 Instead of coupling the evolutions of implicitly de-
fined and parametric curves, one may first use the implicit evo-
lution to capture all components of the target, and then approxi-
mate the different branches of the implicit curve by an parametric
representation. Two additional difficulties arise when following
this approach. First, it requires a topology analysis of theim-
plicitly defined curve, see e.g., [33, 34]. Second, after generating
sample points on the various branches, they have to be approx-
imated by parametric spline curves. Various fitting techniques
are available [10, 16]. While these two problems are certainly
solvable, they would become even more challenging in the case
of surfaces. By coupling the two representations, we obtainan
“all at once” approach. In addition, certain constraints, such as
range constraints, can much easier be formulated for implicitly
defined curves.

3 The synchronization step

The section is devoted to the synchronization step of the algo-
rithm for dual evolution. Firstly we discuss the detection of
possible topological changes (splitting events), secondly the syn-
chronization in the case of no changes, and finally the adaptation
of the parametric curve in the case of topological changes.

3.1 Detection of topological changes

We describe and compare three different approaches.

Method 1: Self–intersections on the parametric curve

This method does not use any information from the implicitlyde-
fined curve. Instead, it simply tries to detect self–intersections of
the parametric curve via sampling. More precisely, we approxi-
mate the parametric curve by an inscribed polygon and check for
self–intersections.

Method 2: Comparing normals

After each evolution step one may compare the unit normal
vectors of the parametric curve~nf and of the implicitly de-
fined curve~ng. More precisely, we may define a unit normal
~ng = ∇g/|∇g| for almostall points in the domain (except for
points with vanishing gradients), not only for points on thezero
level setΓ.

In our experiments, we observed that the following two events
are closely related:

(1) The implicit curve has changed its topology.

(2) There exists a parameter valueuj such that

~nf (uj) · ~ng (fj)) ≤ 0. (23)

This observation allows us to detect self–intersections without
explicitly computing them. IfN sample points are used, then the
complexity isO(N).

This observation is justified by the following simple result(see
Fig. 6 for an illustration).

Lemma 1 Consider a subdomainS ⊂ Ω with boundary∂S,
which is assumed to be contained in another open subsetD ⊆ Ω.
We assume that theC1 functiong has no local extrema1 in D. We
assume that the boundary∂S consists of segments of the para-
metric curvef , where all normals~nf are either pointing away
or pointing towardsS. In addition, we assume thatg is not con-
stant. Then the sign of the inner product

∇g · ~nf (24)

changes on∂S, or it everywhere equals0 on∂S.

1Here, a pointp is said to be a local maximum (and similar for a local mini-
mum) ofg onD if g(p) ≥ g(x) holds for all pointsx in an open neighborhood
N of p. This includes points where the value ofg is constant inN .
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S

∂S

D

Figure 6: The assumptions of Lemma 1.

Proof: We assume that the normalsnf point away formS, as
shown in Fig. 6. Sinceg : Ω → R is continuous andS ⊆
Ω is compact, the restriction ofg to S takes its maximum and
minimum values at two pointsxmax,xmin ∈ S, respectively.
As we assumed thatg has no local extrema on the open setD
andS ⊂ D, these two points belong to the boundary∂S. We
consider the minimum ofg onS which is attained atxmin ∈ ∂S.

Case 1:xmin is a regular point of∂S, see Figure 7, left. Letn
be the normal of∂S at this point. Asxmin is the global minimum
of g on S, it is also the global minimum of the restriction ofg
to the boundary∂S. Using standard arguments from constrained
optimization (see e.g. [35]) we conclude that the gradient vector
∇g and the normal vector of∂S atxmin are linearly dependent.
In addition, the directional derivative ofg in the direction of the
outward-pointing normalnf is non-positive,

dg

dnf

= ∇g(xmin) · n ≤ 0. (25)

Case 2:xmin is a vertex of∂S, i.e., a double point of the
parametric curvef , see Figure 7, right. Letn1,n2 be the normals
of the two branches of∂S at this point. Again, using standard
arguments from constrained optimization, we conclude thatthe
gradient∇g atxmin lies in the intersection of the two half–planes

∇g(xmin) · n1 ≤ 0, ∇g(xmin) · n2 ≤ 0 (26)

which are shown by the dashed lines in the figure.

g=const.

S

n

∇g

xmin

g=const.

S
n1

n2

∇g
xmin

Figure 7: Conditions for the minimum ofg on S. Case 1 (left)
and Case 2 (right).

Similarly we may conclude that

∇g(xmax) · n ≥ 0, (27)

wheren is (one of) the normal vector(s) atxmax ∈ ∂S. Now we
consider the inner products

∇g(x) · nf (x) ≥ 0, x ∈ ∂S, (28)

wherenf (x) is the normal of the parametric curvef at the point
x ∈ ∂S. We consider this as a function on the union of the arcs
that form the boundary∂S, where each vertex appears twice2.
Again, this is a continuous function on a compact set, and it
therefore has a minimum and a maximum. Due to (25) resp.
(26), the minimum is non-positive, and due to (27), the maxi-
mum is non-negative. This completes the proof.�

Note that the assumption concerning the non–existence of lo-
cal extrema is likely to be satisfied by the domain enclosed by
two branches of a self–intersecting curve, such as the blackcurve
in Fig. 3. On the one hand, the global distribution of the normals
of the parametric curve entails that they point either towardsS
or away fromS. On the other hand, the function definingg the
curveΓ is likely to have a saddle point, but not an extremal point,
in this region.

Remark 7 In practice we replace the right–hand side in (23)
with a small positive constantε, in order to make the criterion
more sensitive.

Method 3: Distance check

Finally we may check whether the parametric curvef and the
implicitly defined curveΓ are “sufficiently close” to each other.
More precisely, for each pointf(u) of the parametric curve we
try to find the corresponding point onΓ, by intersecting the nor-
mal withΓ,

g(f(u) + µ(u) ~nf (u)) = 0. (29)

By differentiation we obtain a differential equation forµ,

µ′ = −
∇g · (f ′ + µ~n′)

∇g · ~n
(30)

Using a predictor–corrector method we trace the parametric
curve and the corresponding points on the implicitly defined
curve. If the corrector (a Newton method for root finding along
the normal) changes the predicted value ofµ too much, or even
fails to find a corresponding point, or if the distance between the
point f(u) and its corresponding point onΓ exceeds a certain
threshold, then we report that a change of topology is likely. For
this threshold we use the feature sizeρ.

Remark 8 In order to speed up the computation one may in-
stead simply check whether the sign ofg changes in a tubu-
lar ǫ–neighborhood around the parametric curve. We again use
ǫ = ρ. If the zero level is close to the parametric curve, then the
sign changes in this neighborhood.

2We may get two different values for each vertex, therefore wechoose this
union as the domain of this function.

6



Initial position Step 1: Method 3 detects changeStep 4: Method 2 detects change.Step 7: Method 1 detects change.

Figure 8: Detection of topological changes.

Comparison

The three methods have been implemented and tested. The first
method (Section 3.1) is rather time–consuming, in particular if a
large number of sampled points is used. Furthermore, this condi-
tion does not guarantee that the topology of the implicit curve has
changed as well. Moreover, topological changes are detected rel-
atively late, as will be demonstrated by Example 4. On the other
hand not using the implicit curve helps in some cases where the
T-spline has a very flat shape. In this case, the other two methods
have problems.

The third method detects the changes as soon as possible, but
with more computational effort. The second method can be seen
as a compromise. Methods 2 and 3 have problems if the implicit
curve is very flat, since then the functiong does not represent the
curve well.

Note that it is not a serious problem if the method is too sensi-
tive, i.e., if it reports topological changes if no such events have
actually taken place. As we will see later, the method for mod-
ifying the topology (see Section 3.3) will adapt the topology of
the parametric curve to the current shape of the implicitly defined
one, and it will identify cases where no change of topology took
place.

We apply the three methods to an example:

Example 4 Fig. 8 shows the dual evolution of a curve which
experiences a change of its topology. The implicitly defined
curve is shown in grey and the corresponding parametric curve
in black. The third method (distance check) is the first one tode-
tect the topological change in the first time step (top right). Four
time steps later, the second method (comparing normals) reports
the change (bottom left). Finally, after three more time steps, the
parametric curve develops a self–intersection, which is then duly
reported by the first method (bottom right).

3.2 Synchronization without topological changes

If no change of the topology has been reported, then we try to
make sure that the two representations of the curve stay close to
each other. Two possibilities exist:

Fitting the implicitly defined curve to the parametric one

In most cases, we fit the implicitly defined curve to the paramet-
ric one, by solving a least-squares problem

N∑

j=1

e−ηφ(yj) (g(yj) − φ(yj))
2 → min . (31)

The sample pointsyj are uniformly distributed in the domainΩ
of g. The functionφ is the signed distance field of the parametric
spline curve (again obtained using graphics hardware) andη is a
constant as defined in (Section 2.2).

We chose this approach because it allows us to eliminate ad-
ditional branches of the implicit representation and it guarantee
that the two representations of the curve stay close to each other.

Example 5 Fig. 9 shows an example.

before synchronization after synchronization

Figure 9: Synchronization without topological changes.

Fitting the parametric curve to the implicitly defined one

In some cases, e.g., if additional constraints acting on theim-
plicitly defined curve are used (see Section 4), the implicitly de-
fined curve takes the leading role. For a sequence of uniformly
distributed sample points on the parametric curve we createthe
closest points onΓ. Then we solve again a linear–least–squares
problem, in order to fit the parametric curve to them.
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3.3 Synchronization with topological changes

If a change of topology has been reported, we have to create a
new parametric curve with the the correct topology. We use the
implicit curve to guide this process. More precisely, ifpi is a
point which has been identified by one of the three methods in
Section 3.1, then we apply the following algorithm.

Algorithm 2

1. Create a circleC with a predefined radius (which should be
chosen in dependence of the feature size, for the examples
we used20ρ) aroundpi.

2. Compute the setP of intersections betweenC and the para-
metric curvef . Compute the setI of intersections between
C and the implicitly defined curveΓ. In order to computeI,
the circleC is represented as a parametric quadratic spline
curve. On the other hand, in order to computeP , its para-
metric representation is used. In both cases this leads to
root–finding problems in one variable.

3. Check if|I| = |P |. For eachx ∈ I find the nearesty ∈ P .
This should define a one–to–one correspondence between
the points ofP andI. If this fails, we increase the radius of
the circleC and continue with step 2.

4. Trace the implicitly defined curve withinC between its in-
tersection points inI and use this information to create new
parametric spline curves between the corresponding points
of P .

Some steps of the algorithm will now be discussed in more detail:
In step 2, if |P | = |I| then for everyx ∈ P there exists a

point y ∈ I which is close tox, due to the synchronization
step in algorithm 1. Otherwise, if|P | 6= |I| we may increase
the radius ofC. Alternatively, one may filter out the unused
points inI later. In order to compute the intersections between
the parametric curve, the implicitly defined curve and the cir-
cle we approximate both curves by polygons and compute their
intersections. Alternatively one may formulate both tasksas uni-
variate polynomial root-finding problems and use methods such
as Bézier-clipping, cf. [36].

Clearly, it is essential to identify the correct radius of the cir-
cle C. If the radius is too small, then we may not find all infor-
mations we need. One the other hand, if we choose the radius too
large, then we may lose some parts of the target. There will beno
perfect fully automatic solution to this problem. In the algorithm
we use a binary search strategy to determine the radius.

In order to trace the implicitly defined curve withinC (step
4), we use a predictor–corrector method [8] with a curvature–
dependent step–size control. This tracing should establish pairs
of intersection points. If this fails, then we increase the accuracy
of the tracing method (i.e., we decrease the step size).

In order to create the new parametric spline curve (step 4),
we split it at its intersections with the circleC and fill in new
segments. The control points of the new segments are obtained
by uniformly distributing points on the corresponding segments
of the implicit curve. Alternatively, one might try to fit another
B-spline curve to the traced segment, but the result of the simpler
method are sufficient.

Remark 9 With this method we can theoretically deal with an
arbitrary number of branches during each event. While it is very
unlikely that one curve splits in more than two branches, it can
easily happen that several branches get close to each other.See
the following example.

Example 6 Fig. 10 (top) shows a complicated example which
can be handled by our method. A curve evolves towards a target
which consists of four pieces. In one step, the parametric curve
has to split into four components.

We conclude this section by another example.

Example 7 Fig. 10 (bottom) shows some steps of the evolution
process towards a target defined by two point clouds. In addition
to the data and the curves, the figures visualize the T-splinegrid,
which is refined in the vicinity of the data.

In this example, the parametric curve starts with14 control
points in the beginning and increases this number to17 after the
splitting step. The T-spline is defined by160 coefficients. One
step of the evolution of the parametric curve needs less than1
milliseconds, and one step of the evolution of the implicitly de-
fined curve requires about60 milliseconds. Most of the compu-
tation time is needed for the synchronization:300 milliseconds
without splitting, and700 milliseconds with splitting.

Reducing the number of T-spline coefficients also reduces the
time per iteration. E.g. with86 coefficients we need about150
milliseconds per time step. The final result is reached after40
evolution steps. For very simple objects like a circle with12 B-
spline control points and25 T-spline coefficients one evolution
step can be done in30 milliseconds.

4 Constraints

We present three different constraints which can be appliedto the
evolution. The range constraints are used to define regions which
should lie inside or outside of the final curve. The area con-
straints force the curve to enclose a certain pre-defined area. Fi-
nally the convexity constraint allows us to define a region where
the active curve becomes convex.

4.1 Range constraints

The implicitly defined active curve decomposes the domain into
an inner region, whereg(x) ≤ 0, and anexterior region, where
g(x) ≥ 0. (Note that one of these regions can be empty, though
this does not make sense in our framework.) Based on this ob-
servation one may addrange constraintsto the the framework
of dual evolution. More precisely, if the domain bounded by the
final curve should contain a certain set of points{xi}i=0,...,N0

,
and it should not contain another set of points{yj}j=0,...,N1

,
then we have to ensure that the evolving implicitly defined curve
satisfies

g(xi) ≤ 0, and g(yj) ≥ 0, (32)

respectively.
In the first case, this can be achieved by adding a penalty term

to the objective function (22) which implies that the time deriva-
tive satisfiesġ(xi) < 0 if the function valueg(xi) is positive.
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Before splitting The splitting step After splitting Final position

Figure 10: Synchronization with topological changes. The target is defined by a smooth curve (top) or by a point cloud (bottom).

(The second case can be dealt with similarly.) We propose to use

C(ċ) =

N0∑

j=1

(ġ(xj , τ) + g(xj , τ) + δ)2 αε(g(xj , τ)) (33)

whereδ is chosen by the user (see below for examples). The
‘activator’ functionα controls the influence of this term,

αε(g) =






1 g > −ε
0 g < −2ε

C2 − blend in between
(34)

whereε is a user–defined positive constant (e.g., the feature size
ρ can again be used). The optimization problem

F̂ (ċ) = E(ċ) + ωs S(ċ) + ωc C(ċ) → min . (35)

leads to a sparse linear system of equations with a symmetric
positive definite matrix, which can be dealt with efficiently.

The constraint term acts only on the implicitly defined curve,
but not on the parametric one. However, the parametric curve
‘inherits’ the constraint through the synchronization, provided
that the second synchronization method (guided by the implicitly
defined curve) is used.

Depending on the choice ofδ, the evolution stops at a certain
offset of the given shape. We will demonstrate this by several
examples. In all examples, the points on the target are simulta-
neously used to define the constraints. More precisely, we look
for approximating curves which are circumscribed or inscribed
to the given data.

Example 8 In Fig. 11, the target is defined by a noisy point
cloud taken from a circle. We show the approximation with-
out constraints (left) and the approximation (right) obtained by
adding the constraint term (33) withδ = −0.5.

Example 9 We consider the two branches of the curve defined
by the implicit equation

((x −
3

4
)2 + y2) ((x +

3

4
)2 + y2) = 0.316. (36)

Fig. 12 shows the dual evolution for a target defined by this
curve. Depending on the choice ofδ, we obtain offsets of the
algebraic curve.

Figure 11: Approximation with (right) and without
(left) range constraints.

Example 10 In this final example (see Fig. 13) we consider a
target which consists of three parts. Evolution without con-
straints produces three curves lying within the data set. For
δ = −0.5 we obtain curves which represent outer boundaries
of the data set.

Remark 10 In the case of parametric curves, several approaches
to range constraints exist. For instance, a tension–based tech-
nique to constrained interpolation by parametric spline curves
is described in [37], the use of tight piecewise linear enclosures
have been proposed in [38], and certain optimization techniques
are explored in [39].

4.2 Area constraints

In some applications, e.g. when dealing with noisy data contain-
ing holes, one may wish to specify the area of the target object.
Starting from an initial value, the current areaAC enclosed by
the curve should adjusted until the final areaAF , which is spec-
ified by the user, has been reached. This can be achieved by
adding a constraint of the form

∫

Γ

vnds = k (37)
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initial position δ = 0 δ = −0.05 δ = +0.05

Figure 12: Dual evolution with range constraints for a target defined by an algebraic curve.

initial position result without constraints with constraint,δ = −0.5

Figure 13: Dual evolution with range constraints for a target defined by three point clouds.

to the least squares problems (11) resp. (19), where

vn(u, τ) = ~n(u, τ) · ḟ (u, τ) resp. vn(x, τ) = −
ġ(x, τ)

|∇g(x, τ)|

is the normal velocity of the parametric / implicitly define curve,
respectively.s is the arc length of the curve, andk is the rate of
area change (with respect to the timeτ ),

k =

{
AC

AF
− 1 AC > AF

−AF

AC
+ 1 otherwise

The constraint (37) is linear in the time derivatives of the con-
trol points resp. T-spline coefficients. Again we use numerical
integration to obtain a linear constraint, which is to be consid-
ered along with the quadratic objective function. This leads to a
quadratic optimization problem with linear constraints, which is
solved using Lagrangian multipliers.

Example 11 We consider a set of data points sampled from a
square after removing the top edge, see, see Fig. 14. The area
of the square equals 0.5. The figure shows the result of the dual
evolution obtained by specifying different values of the target
areaAF . If the correct value is specified, then the dual evolution
recovers the original shape. In this example, the area constraint
was added to the T-spline level set evolution, and it was inherited
by the parametric curve via synchronization.

4.3 Convexity constraints

Similar to range constraints one may also add convexity con-
straints to the framework of dual evolution. In the following we
assume that the user has specified a regionΩd where the curve is

to be convex. This can be dealt with by adding a penalty term of
the form

D(ċ) =

∫

Γ∩Ωd

(κ̇(x, τ) − |κ(x, τ)| − σ)2βσ(κ(x, τ))dx (38)

to the quadratic objective function, which is again evaluated via
numerical integration. If the curve is concave, i.e., ifκ(x) < 0,
then the time derivative of the curvature is forced to be positive,
κ̇(xi) > 0, thereby increasing the curvature until it gets positive.

Similar to (34), the ’activator’ functionβσ controls the influ-
ence of the penalty term,

βσ(κ) =






1 κ < 0
0 κ > σ
C2 − blend in between

(39)

whereσ is a user-defined positive constant. A larger value ofσ
increases the curvature of the curve segment in the constrained
regionΩd. By incorporating the convexity constraint, the opti-
mization problem becomes

F̃ (ċ) = E(ċ) + ωsS(ċ) + ωdD(ċ) → min. (40)

Sinceκ̇ =
∑n

i=1 ċi∂κ/∂ci, which meansD(ċ) is also quadratic
to ċ. Hence the solution to (40) can be found by solving a least
squares problem. Usually we choose a very large weighting co-
efficient (ωd = 1000) in our experiments.

Example 12 In Fig. 15, the target shape (defined by unorganized
points) has some concave features. On the left, we show the ap-
proximation result without convexity constraints. On the right,
we show the approximation result obtained by applying the con-
vexity constraints (σ = 0.05). The regionΩd is the box which is
shown in the figure.
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initial position volume set to0.4 volume set to0.5 volume set to0.6

Figure 14: Dual evolution with volume constraints.

Figure 15: Approximation with (right) and without (left) convex-
ity constraints.

5 Concluding remarks

We formulated the novel framework of dual evolution, by simul-
taneously considering evolution processes for parametricspline
curves and implicitly defined curves. As the main advantage of
this framework, it combines the advantages of both representa-
tions. On the one hand, the implicit representation is used to
guide the topology of the parametric curve and to formulate addi-
tional constraints, such as range constraints, volume constraints
or curvature constraints. On the other hand, the parametricrepre-
sentation helps to detect and to eliminate unwanted branches of
the implicitly defined curves in the synchronization step. Clearly,
the parametric representation is preferred in many applications,
e.g., in Computer Aided Design.

Currently we study the extension of the results to surfaces,
where we need to define evolution processes and to discuss the
interaction of the two representations. The evolution of T–spline
Level sets in 3D has already been discussed in [23]. The applica-
tion to practical problems, such as reverse engineering, has pro-
duced promising results [40]. However, the choice of a suitable
surface representation is still open, and we are currently consid-
ering triangular meshes, manifold splines, or point–set surfaces.
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[28] Aigner M, Jüttler B. Hybrid curve fitting, Computing 2007; 79: 237-47.
[29] Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines andT-NURCCs

ACM Transactions on Graphics 2003; 22: 477-84.
[30] Sethian J, A fast marching level set method for monotonically advancing

fronts, Proceedings of the National Academy of Sciences 1996; 93: 1591-5.
[31] van den Doel K, Ascher U, On level set regularization forhighly ill-

posed distributed parameter estimation problems. Journalof Computational
Physics 2006; 216: 707-23.

[32] Li C, Xu C, Gui C, Fox M. Level set evolution without re-initialization: a
new variational formulation. Proc. Comp. Vision and Pattern Recognition
vol. 1. IEEE: 2005, p. 430-6.

[33] Gonzalez-Vega L, Necula I. Efficient topology determination of implicitly
defined algebraic plane curves. Comput. Aided Geom. Design 2002; 19:
719-743.

[34] Lee K. Principles of CAD/CAM/CAE systems. Boston: Addison-Wesley;
1999.

[35] Fletcher R, Practical Methods of Optimization, 2nd edition. London: Wi-
ley; 2000.
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