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Abstract We propose the evolution of curves in direc-
tion of their unit normal using a combined implicit and
explicit spline representation according to a given ve-
locity field. In the implicit case we evolve a level set
function for segmentation and geometry reconstruction
in 2D images. The level set approach allows for topolog-
ical changes of the evolving curves. The evolution of the
explicit B-spline curve is driven by the Mumford-Shah
functional.

We are mainly concerned with the segmentation of
images using active contours. To get satisfactory results
from the implicit evolution the optimal stopping time
and the correct level of the evolving function has to
be estimated. We overcome this problem by using the
combined evolution.

As a second application we focus at controlling the
topology of the level set function used to detect geome-
tries via EIT. The concurrent evolution of spline curves
enables us to identify geometries of dimension 1 which
would be lost using only the level set approach.
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1 Introduction

Level set methods introduced in [21] are widely used
in imaging to reconstruct geometries [6,7,9,11,10,12].
They automatically handle complex topologies, i.e. we
can detect and represent objects consisting of different
components by only one level set function. Also multi-
ply connected sets can be reconstructed. On the other
hand, since the geometry is implicitly hidden in the
graph of the level set function, one does not have direct
control over the geometry represented by the zero level
set. The additional evolution of curves driven by the
speed function adds the advantages of an explicit rep-
resentation to those of the level set evolution. We focus
on the application of this approach to the segmentation
of 2D gray-scale images. Secondly we suggest a way to
use the additional information provided by the spline
evolution to handle the correct detection of perfectly
insulating cracks in the EIT problem.

1.1 Image Segmentation

Several approaches to image segmentation have been
developed. One of them is the reconstruction of the
boundary of an object by detecting closed curves of high
gradients in the image. This is for instance described in
[15]. There the authors propose to minimize an energy
functional with respect to admissible splines such that
the minimizing splines optimally adapt to edges in the
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B. Jüttler and H. Yang
Johannes-Kepler-Universität, Institute of Applied Geometry,
Linz, Austria,
E-mail: bert.juettler@jku.at
E-mail: yang.huaiping@jku.at

image, i.e. 1-dimensional features with high image gra-
dients.

One possibility to obtain such a minimizer is to
evolve a closed curve from either outside or inside an
object towards the object boundaries. The speed of the
evolution is determined by the image gradients and
should be zero at the boundary. In this approach of
active contours the following issues have to be taken
care of:

– In regions, where no high image gradients occur, the
speed of the evolution has to be kept above a certain
level to provide convergence of the method. Noise in
the image, should not stop the evolution.

– The evolution should stop at the boundaries of the
object. The difficulty here is to correctly identify an
image region of high variation as a boundary. As
mentioned before, image noise can result in locally
high gradients. Thus, the shape of the moving con-
tour in the region in question has to be taken into
account as well as the absolute value of the gradi-
ent. In other words, the evolving curve should not
get stuck at unwanted artifacts but, on the other
side, must not cross the object boundary.

– The regularity of the active contour has to be main-
tained. If we require the curvature of the contour
to be bounded, it cannot stop at arbitrarily small
artifacts anymore. Secondly, even if we were able to
capture the exact boundary of an object, it may be
desired to further smooth the contour.

– Also the actual representation of the active contour
is of interest. In level set implementations the curve
will be the zero level set of a function discretized
at pixel level. For applications it can be crucial to
have a spline representation of the contour at hand,
which allows for easy corrections and adaptations in
a manual post-processing step. Secondly information
about the actual shape of the segmented object can
be acquired from a parametric representation more
easily. A simple example is the number of compo-
nents of the segmentation which is directly accessi-
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ble by simply counting the number of evolving spline
curves.

A level set implementation of active contours was
proposed in [6] and extended in [7]. In the latter paper
the authors propose to evolve a level set function on R

2

according to

u(0) = u0 ,

∂u

∂τ
= |∇u|g(Iσ)

(

∇ ·
( ∇u
|∇u|

)

+ γ
)

+ ∇g(Iσ) · ∇u ,

(1.1)

where g : R → R is a the so-called edge-detector, i.e.
a non-increasing, positive and differentiable function,
converging to 0 as its argument tends to infinity. We
denote the function defined by g(Iσ)(x) = g

(

|∇Iσ(x)|
)

for x ∈ R
2 as g(Iσ), where Iσ is the image I : R

2 → R

after convolution with the Gaussian kernel determined
by σ. In accordance with [7] we call the parameter γ > 0
the balloon force. It is added to the curvature of u in
the first term of (1.1). This ensures that the level sets
move even in case their curvature is 0.

Assuming sufficient regularity on I and u0 the au-
thors prove that a solution in the sense of viscosity so-
lutions of this equation exists. Considering objects with
boundaries {x ∈ R

2 : g(I)(x) = 0} they further show
that all level sets of u0, which initially enclose the ob-
ject, converge to the boundary of the object with re-
spect to the Hausdorff distance.

Because of the level set approach, this evolution au-
tomatically adapts to topology changes. There exist nu-
merous implementations of this PDE. In the original pa-
per [7], the authors used finite differences both in time
and space. Kühne et al. [17] proposed the so-called AOS
scheme for efficient implementation. Yang et al. [22] use
a T-Spline representation of the level set function. For
the results in this paper we discretized the space do-
main with finite elements and used finite differences in
time.

All of the above mentioned implementations share
the following parameters:

– The balloon force γ.
– The initial level set function u0.
– The edge detector g. Regardless of the exact func-

tion chosen for as edge detector, there will be a pa-
rameter η controlling how sensitive the edge detector
is with respect to gradients. Common choices for g
are

g(t) = exp(ηt2) or g(t) =
1

1 + ηt2
.

Often semi-implicit schemes additionally require to reg-
ularize the term |∇u| to avoid singularities. The regu-
larization also influences the results of these methods.
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Fig. 1 Force function (green) for the Heaviside function
(red). We chose σ = .4 and η = 10. The balloon force is
γ = 1 (left) and γ = 5 (right).

The influence of γ is illustrated by the following ex-
ample. The explicit evolution of the zero level set of
(1.1) is given by

∂C

∂τ
· n = g(Iσ)(γ + κ) −

(

∇g(Iσ) · n
)

,

where C denotes the evolving the curve, κ its curva-
ture and n its normal. For simplicity we focus on the
1-dimensional case and assume κ = 0. We then see that
the explicit curve is driven by the force γg(Iσ)−|g′(Iσ)|.
Consider the image I = H, the Heaviside function. In
Figure 1 we plotted the attraction force in this case for
different parameters γ and η. Imagine the active con-
tour arriving from the left. In the regions where the
force function is positive the contour is pushed towards
the edge (at 0). The negative force pulls the contour
back again and traps it at 0. If the region of negative
force is small, it is likely that the curve crosses the edge
due to numerical inaccuracies.

When using the above method we often observe that
already detected parts of the boundary in the outer re-
gions of the image vanish before the central image re-
gions are segmented. This is illustrated in the upper
three images in Figure 2. At no time τ the complete
boundary of the object is correctly detected, since the
active contour crosses the boundary in the outer regions
at an early stage of the evolution.

There are two main reasons for this phenomenon.
First, the active contour crosses the boundary if the
gradient at the edge is too small for the edge detector
to locally stop the evolution. This essentially means that
the user has to choose a high enough value for η to stop
the evolving curve at the “right” edge. In other words,
the choice of the parameter η determines the steepness
of the edges which will eventually be detected.

Secondly, the first term in the evolution equation
never degenerates completely and thus the level set func-
tion increases due to the balloon force. Therefore, af-
ter some time u is raised above the zero level and the
boundary of the object vanishes.

In Figure 2 the latter effect clearly dominates. Ob-
viously the information on the object boundary is still
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Fig. 2 Vanishing boundary at the outer regions of the image.

available at any time but can not be captured by the
zero level set.

This is visible first at the outer parts of the image
domain, where the initial function is close to 0. Note
that theoretically the problem does not exist, but it oc-
curs due to technical limitations in the implementation
of equation (1.1) and is amplified by large balloon forces
γ as it is explained in more detail in the following:

– To ensure that in each time step we solve a PDE
in divergence form, we have to divide equation (1.1)
by |∇u|. In numerical realizations this term has to
be regularized to avoid divisions by zero, i.e. we
substitute |∇u| by

√
∇u · ∇u+ ε2 for some small

ε > 0. We call this approximation of the gradient
ε-regularization. This modification implies that the
principal component of the evolution equation is al-
ways positive, even if the level set function is flat. To
approximate the original equation, it is preferable to
choose ε as small as possible, but clearly this choice
is limited by numerical considerations.

– It is desirable to choose γ large for two reasons.
Firstly, higher values of γ give faster evolution speeds.
Secondly, Caselles et al. require γ to be large enough

Fig. 3 Detection of a square with salt & pepper noise added:
solution of the evolution at τ = 1800 started from an initial
function u0 (left) and from 5u0 (right).

to obtain the result concerning consistency of the ac-
tive contour method in [7].
Unfortunately the influence of the ε-regularization
is multiplied by the balloon force. Thus, one has to
balance evolution speed against the ε-regularization.

– A very steep initial function u0 is robust against
the effect of vanishing boundaries. E.g. it is possible
to avoid the problems in Figure 2 by rescaling u0.
The drawback is that steep level set functions are
more sensitive to noise. This is illustrated in Figure
3. Again a compromise between sensitivity to noise
and global stability of the result has to be found.

All the above issues cause the level lines of the evolv-
ing function u to move across the boundary of the object
we want to detect. If this happens, we can not extract a
reliable segmentation from the zero level set anymore.
Thus, we consider a method to extract the boundary in-
formation from the level set function without sticking to
a specific level. We propose to evolve a B-Spline curve,
which splits according to the topology information pro-
vided by the normal vectors of the level set function.
By combining the evolution of the active contour with a
Mumford-Shah type segmentation of the level set func-
tion we inherently use the information of all level sets
in contrast to tracking only one. We go even further by
additionally using the derivative of the level set func-
tion to extract information about the topology of the
target shape. The B-Spline representation can easily be
manually adapted during or after the evolution and al-
lows for precise control of the regularity of the resulting
contour.

1.2 Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) is concerned
with the identification of inclusions in a conductor by
measuring the potentials induced by current fluxes on
the boundary. Assuming a planar conductor (i.e. the
2-dimensional case) and the special case of perfectly
isolating inclusions and constant conductivity on the
remaining region, it can be shown [14,2,16] that the
inclusions can be uniquely determined by at most two
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measurements. This result holds for inclusions of dimen-
sion 2 and 1.

The actual identification of these inclusions by com-
putational means is an ill-posed inverse problem. Re-
sults concerning the (in-)stability of the reconstruction
can be found in [14,1,3,5,4]. We will focus on a level
set implementation which is similar to [10,12]. This it-
erative approach starts with a level set function such
that the zero level set corresponds to the initial guess
of the inclusion. The level set function evolves accord-
ing to the minimizing gradient flow of a regularization
functional. Thus, we have a level set evolution

uk+1 = uk − δ∇F (uk) ,

where F is the regularization energy (corresponding to
the EIT problem) and ∇F its derivative with respect to
the level set function u. Then uk is supposed to converge
to a function ũ in the L2 sense, such that {x ∈ Ω :
ũ(x) ≥ 0} is the isolating inclusion we seek.

Now assume that this inclusion is a crack, i.e. a
1-dimensional set. Then, it can not be characterized by
a level set function of class L2 anymore and the above
method will fail. In other words, a level set method
which is known to detect inclusions in a conductor in
the L2-sense only, does not work for cracks anymore,
because 1-dimensional features will be lost with such a
method.

We propose to use a combined evolution in the iter-
ative computation of such level set functions. It might
allow us to detect the development of level sets of di-
mension 1 in advance and to cope with such cases. This
approach is very similar to the case of image segmenta-
tion and is described in detail in Section 4.

2 The combined evolution

As in the introduction we assume a gray-scale image
I : R

2 → R and an initial level set function u0. Let
further u : [0,∞[× R

2 → R be a solution of (1.1) and
Cj : [0, 1] → R

2, 1 ≤ j ≤ k, simple Jordan curves,
which do not intersect each other (or lie within each
other). By I(C) and O(C) we denote the regions inside
and outside a Jordan curve C : [0, 1] → R

2. We further
define

I(C1, . . . , Ck) =
⋃

1≤j≤k

I(Cj) and

O(C1, . . . , Ck) =
⋂

1≤j≤k

O(Cj) .

A slightly modified version of the Mumford-Shah func-
tional [19,20], for k curves is given by

I(C1, . . . , Ck) = α

∫

I(C1,...,Ck)

(

u1 − f
)2
dx

+ α

∫

O(C1,...,Ck)

(

u2 − f
)2
dx

+ β

k
∑

j=1

L2
2(Cj) ,

(2.1)

where α, β > 0 and

u1 = avg

∫

I(C1,...,Ck)

f dx and u2 = avg

∫

O(C1,...,Ck)

f dx .

Here

avg

∫

A

f dx :=
1

|A|

∫

A

f dx

is the average of a function f over a set A. The func-
tional (2.1) is also used in [11].

We want to minimize the above energy functional
by solving the variational problem I → min. Assume
that C′

1, . . . C
′
k are curves of minimal energy. Then the

function

u′ = u1χI(C1,...,Ck) + u2χO(C1,...,Ck)

is a piecewise constant function, which is discontinuous
along the boundaries of Cj only and approximates u in
the L2 sense.

Differentiation of I(C1, . . . , Ck) with respect to Cj ,
1 ≤ j ≤ k, yields the following gradient descent:

∂Cj

∂τ
(τ) = −∇I

(

Cj(τ)
)

, 1 ≤ j ≤ k , (2.2)

where

−∇I
(

C
)

= α
(

(

u2(C) − u ◦ C
)2

−
(

u1(C) − u ◦ C
)2

)

|C′|nj

+ β|C′|C′′ ,

(2.3)

for a curve C. Here ∇I is the derivative of the energy
functional I in (2.1) with respect to C. Although we
denote it by ∇I, it can not expressed as a matrix since
I is defined on an infinite-dimensional space.

Note that we include the derivative of C with respect
to the curve parameter t in ∇I(C). I.e. the directional
derivative of the functional I in C into the direction D
can be computed by simply integrating ∇I(C) ·D over
the parameter interval [0, 1],

DI(C)(D) =

∫ 1

0

∇I(C)(t) ·D(t) dt .
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Assume k initial curvesC0
1 , . . . , C

0
k . Combining equa-

tions (1.1) and (2.3) gives

u(0) = u0 ,

Cj(0) = C0
j , 1 ≤ j ≤ k ,

∂u

∂τ
= |∇u|g(Iσ)

(

∇ ·
( ∇u
|∇u|

)

+ γ
)

+ ∇g(Iσ) · ∇u ,

∂Cj

∂τ
= −∇I

(

Cj(τ)
)

.

(2.4)

In the above equation u and Cj and hence also n and
κ are functions of the time τ , i.e. u = u(τ), Cj = Cj(τ),
n = n(τ) and κ = κ(τ). Note that this system is de-
coupled in the sense that the equations governing the
evolution of the Cj , 1 ≤ j ≤ k depend on the first equa-
tion (the evolution of u) but not the other way round.

In the following we motivate the use of this evolu-
tion for segmentation. Theorem 1 shows that the level
set function of the above evolution converges to the indi-
cator function of the object which is to be detected. It is
based on the results in [7]. We will state all of the follow-
ing results for the case k = 1 to simplify the notation.
The generalization to the case k > 1 is straightforward.

Theorem 1 (Caselles et al.) Assume that the edge

detector g(Iσ) : R
2 → [0,∞[ satisfies g(Iσ) ≥ 0 and

sup
x∈R 2

|∇g1/2(x)| <∞ and sup
x∈R 2

|D2g(x)| <∞ .

Let further be Ĉ : [0, 1] → R
2 a simple C2-Jordan

curve, which parametrizes

{x ∈ R
2 : g(I)(x) = 0} = image(Ĉ) ,

and is such that ∇g(I) = 0 on image(Ĉ).
We require the initial function u0 : R

2 → R , u0 ≥ 0,
to be of class u0 ∈ C

2( R
2). Further u0 should be 1 on

a neighborhood of I(Ĉ) and 0 outside a bounded set

Ω⊆ R
2.

Define for 0 < h ≤ 1

C(τ, h) = ∂{x ∈ R
2 : u(τ, x) ≥ h} .

Then there exists a unique viscosity solution u(τ, x) of
(1.1) satisfying

inf
x∈R

2

u0(x) ≤ u(τ, x) ≤ sup
x∈R

2

u0(x) for τ ≥ 0.

If γ is large enough then the following results hold: For
every 0 < h ≤ 1

lim
τ→∞

C(τ, h) = Ĉ (2.5)

with respect to the Hausdorff distance, and

lim
τ→∞

u(τ) = χ
I(Ĉ) in the L2-sense. (2.6)

Proof The result concerning existence and uniqueness
and (2.5) has been proved in [7].

Thus, it remains to prove (2.6). In the proof of The-
orem 5 in [7] and Theorem 4 in [8] the authors obtain
the result (2.5) by showing that for ε > 0 and 0 < h ≤ 1
there exists τ0 > 0 such that for τ ≥ τ0 the level set
function is bounded by h on the outside of the ε-offset
of Ĉ, i.e.

sup
{

u(τ, x) : x ∈ R
2, x 6∈ I(Ĉ)ε, τ > τ0

}

< h .

Here I(Ĉ)ε = I(Ĉ) + Bε(0). Secondly, u(τ, x) = 0 on
R

2 \Ω.
Now assume ε > 0 and let τ0 be as above for the

special case h = 1 − ε. Then
∫

R 2

(

χ
I(Ĉ) − u(τ)

)2
dx ≤

∫

Ω\I(Ĉ)ε

ε2 +

∫

I(Ĉ)ε\I(Ĉ)

1 dx

≤ |Ω|ε2 dx+ |Ĉ +Bε(0)| ,

since u(τ) = 1 on I(Ĉ) for all τ ≥ 0. Here | · | denotes
the 2-dimensional Lebesgue measure of a set. Note that
the above convergence holds also in Lp for 1 ≤ p < ∞.
⊓⊔

Theorem 1 states that for τ → ∞ the function u(τ)
converges to the indicator function of the object. It is
difficult to prove analytically, but intuitively evident
that the curve C approximates the boundary of the ob-
ject as well. The parameter α controls the smoothness
of the boundary C during the evolution. This allows for
effective capturing of objects with noisy boundary.

In general the viscosity solution does not have to
be differentiable but is just continuous. However, we
can still compute the generalized gradient ∇u in every
point. If |∇u| is finite and positive then ∇u

|∇u| is the unit

normal of the level sets of u. Thus, in the view of The-
orem 1, we can at least formally expect that

∇u(τ)
|∇u(τ)| ≈ n(τ) for τ → ∞ . (2.7)

We will use this observation to correctly adapt the topol-
ogy of the moving spline curves Cj during the evolution.
If during the evolution two separate parts of Cj get close
to each other and the relation (2.7) does not hold in this
area, we have to split the curve into two curves. This is
illustrated in Figure 4 and explained in more detail in
the next section.

3 Implementation

To solve (2.4) numerically we model u(τ) using bilin-
ear finite elements on a regular pixel-sized grid. The
evolving spline curve C(τ) is implemented with peri-
odic cubic B-splines.
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Fig. 4 Adaptation of the topology of the evolving spline
curve (red) to the topology prescribed by the level set func-
tion (green). On the left the normals of the spline curve and
the gradients of the level set function are orthogonal to each
other. This indicates that the spline curve has to be splitted.
On the right the two segments of the spline curve are very
close to each other but there topology conforms with the level
set function. No splitting is performed.

The numerical solution of (2.4) is performed in three
steps. At a given time τ ≥ 0 we compute an approx-
imate solution u(τ + δ) by solving the semi-implicit
system of equations derived from the FE-formulation.
In the second step we evolve C(τ) to τ + δ using ex-
plicit steps in time. In the last step we detect topology
changes by comparing the gradients of the level set func-
tion to the curve normals as explained in Figure 4. In
case the topology of the curve does not correspond to
the level set topology (which we assume to be correct),
we adapt the curve to the level-set function by splitting
into more components. Finally we proceed with com-
puting the next step of the semi-implicit evolution.

3.1 Level set evolution

For τ ≥ 0 and the time step δ > 0 the semi-implicit
time discretization of (1.1) on Ω reads as

u(τ + δ) − u(τ)

δ
= |∇u(t)|∇ ·

(

g(Iσ)
∇u(t+ τ)

|∇u(t)|
)

+ γ|∇u(t+ τ)|g(Iσ) .

We cover the rectangular image domain Ω with square
elements with corners at the centers of the image pixels.
On this grid we define bilinear basis functions
(ϕn)1≤n≤N . Then we identify

u0(x) =

N
∑

n=1

u0
nϕ

n(x) and

u(τ, x) =

N
∑

n=1

un(τ)ϕn(x) for x ∈ Ω .

Multiplying the above equation by a test function ϕm,
1 ≤ m ≤ N , and inserting the base function representa-

tion of u and integrating it over Ω yields the discretiza-
tion in space and time,

N
∑

n=1

un(τ + δ)

∫

Ω

a
(

∇u(τ, x)
)

ϕn(x)ϕm(x) dx

+

∫

Ω

b
(

x,∇u(τ, x)
)

∇ϕn(x)∇ϕm(x) dx

=

∫

Ω

c
(

x, u(τ, x),∇u(τ, x)
)

ϕm(x) , (3.1)

where

a(ξ) =
1

|ξ| ,

b(x, ξ) =
δg(Iσ)(x)

|ξ| ,

c(x, p, ξ) =
p

|ξ| + δγg(Iσ)(x) .

Assuming that u(τ) is known this is a system of linear
equations for un(τ + δ), 1 ≤ n ≤ N .

To avoid singular coefficients we regularize |ξ| in a,
b and c by replacing it by Ψε(|ξ|). In our case we chose

Ψε(|ξ|) =
√

|ξ|2 + ε2. Finally we get u(τ + δ) by approx-
imating

u(τ + δ) ≈
N

∑

n=1

un(τ + δ)ϕn ,

where the un(τ + δ), 1 ≤ n ≤ N , are the solutions of
equation (3.1) with the ε-regularization in the coeffi-
cients mentioned above.

3.2 Spline evolution

Let C
1
p([0, 1], Ω) be the space of continuously differen-

tiable and periodic curves equipped with the L2-norm.
Assume the basis of periodic cubic B-Splines
ψ = (ψk : [0, 1] → R )1≤k≤K , ψk ∈ C

1
p with uniformly

distributed knots. Let further C(τ) be a B-Spline curve
based on (ψk)1≤k≤K . Thus, for τ ≥ 0 we have

C
(

p(τ)
)

=

K
∑

k=1

pk(τ)ψk

where p(τ) =
(

p1(τ), . . . , pK(τ)
)

, and

pk = (p1
k, p

2
k) : [0,∞[→ R

2 , 1 ≤ k ≤ K ,

are the time-dependent spline control points. That is,
we reinterpret the symbol C as a function which maps
the spline control points p to a parametrized curve:

C : ( R
2)K → C

1
p([0, 1], R

2) . (3.2)

We denote the derivative of C(p) with respect to p as
DC(p) and its adjoint as DC(p)∗. That means DC(p)
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linearly maps a v ∈ ( R
2)K toDC(p)(v) ∈ C

1
p([0, 1], R

2).
Transforming the gradient descent in (2.3) to the evo-
lution of the corresponding spline control points yields

DC(p)∗ ◦DC(p) ◦ ∂p
∂τ

= −∇I
(

C(p)
)

◦DC(p) ,

and consequently

∂p

∂τ
= −∇I

(

C(p)
)

◦DC(p) ◦
(

(DC(p)∗ ◦DC(p)
)−1

.

(3.3)
Let A be the matrix defined by

Aij =

∫ 1

0

ψi(t)ψj(t) dt ,

and B = A−1. Then computation yields the explicit
evolution of the i-th component of the k-th spline coef-
ficient (i = 1, 2 and 1 ≤ k ≤ K):

∂pi
k

∂τ
= −

K
∑

j=1

∫

C(p)

(

∇I
(

C(p)
)

(t)
)i
ψj(t)Bjk dt . (3.4)

We implemented (3.4) using explicit steps in time, i.e.
we compute

pi(τ + δ′) = pi(τ) + δ′
(

∫

C(p)

Φ
(

C(p)
)i
ψk ds

)

◦
(

DC(p)∗ ◦DC(p)
)−1

.

In our implementation we set δ′ = δ/50 for all examples.

3.3 Topology Adaptation

During the evolution of C(τ) we adapt the spline curve
to topology changes of level sets of u. After each step
of the implicit evolution we look for self-intersections of
every spline curve. As stated in the previous section we
assume that the gradients of the level set function u(τ)
reflect the topology of the level sets. Thus, in case a
self-intersection occurs, we check if ∇u(τ)/|∇u(τ)| and
the normals of the curve n(τ) locally coincide. If not, we
split the curve into two and proceed with the evolution
of k + 1 curves.

4 Electrical Impedance Tomography (EIT)

Assume a 2-dimensional, simply connected conductor
Ω with smooth boundary, a current flux f ∈ L2(∂Ω),

and a closed curve Ĉ in Ω. Again denote the area inside
and outside of Ĉ as I(Ĉ) and O(Ĉ), respectively. If the

conductivity is constantly 1 on O(Ĉ) and 0 on I(Ĉ), then
the electrical potential satisfies the following equation:

∆ϕ = 0 on O(Ĉ) ,

∂ϕ

∂n
= f on ∂Ω ,

∂ϕ

∂n
= 0 on Ĉ.

(4.1)

If the boundary Ĉ is smooth, this problem has a
unique weak solution in W 1,2

(

O(Ĉ)
)

(e.g. [18, Section
3.6.]) We are concerned with the problem of obtaining
the geometry of the inclusion from measurements of the
electrical potential on the outside of the conductor, i.e.
from ϕ|Ĉ . In [2] (see also [16]) the authors have shown
that two measurements of ϕ|Ĉ (corresponding to two
different current fluxes) are sufficient to reconstruct the
inclusions.

Let u ∈ L2(Ω) and define the zero level set

Ωu := {x ∈ Ω : u(x) ≤ 0} .

We introduce the Neumann-to-Dirichlet operator
Gu : L2(∂Ω) → L2(∂Ω), which maps a current flux f

to the trace of the solution of (4.1), where Ĉ is replaced

by ∂Ωu and O(Ĉ) by Ωu. Now consider current fluxes
fi ∈ L2(∂Ω) and electrical potentials gi ∈ L2(∂Ω) on
the boundary of the conductor. We define the following
Tychonov-type regularization functional (cf. [13])

Fγ(u) =
1

2

N
∑

i=1

‖Gu(fi) − gi‖2
L2(∂Ω) +

γ

2
‖u‖2

L2(Ω) . (4.2)

Setting ϕi := Gu(fi), the formal derivative of Fγ with
respect to ϕ is

∇Fγ(u) = −
N

∑

i=1

∂2ϕi

∂n2

vi

|∇u|δu + γu , (4.3)

where vi, 1 ≤ i ≤ N , are the solutions of

∆vi = −
(

ϕi − gi

)

on Ω \Ωu ,

∂vi

∂n
= 0 on ∂Ω ∪ ∂Ωu ,

(4.4)

and δu is the gradient of the indicator function of Ωu

in the distributional sense, i.e. the 1-dimensional Dirac
delta function along the zero level line of u. We propose
the gradient flow

∂u

∂τ

(

u(τ)
)

= −∇Fγ

(

u(τ)
)

(4.5)

to minimize (4.2). For numerical implementations it is
convenient to ε-regularize |∇u| in the denominator in
(4.3) and to approximate δu by a smooth kernel δε

u.



9

Again we propose a combined evolution of the level
set functions and spline curves C1, . . . , Ck similar to
(2.4):

∂u

∂τ
= −∇Fγ

(

u(τ)
)

, u(0) = u0 ,

∂Cj

∂τ
= −∇I

(

Cj(τ)
)

, Cj(0) = C0
j ,

(4.6)

where for a curve C

−∇I
(

C
)

= α
(

(

u2(C) − u ◦ C
)2

−
(

u1(C) − u ◦ C
)2

)

|C′|nj

+ β|C′|C′′ .

As in Section 2 we denote by u1(C) and u2(C) the
average value of the level set function u inside and out-
side the curve C, respectively. In addition to handling
changes of the topology of the evolving curves (as in Sec-
tion 3.3) the shape characteristics of the spline curves
can be tracked. In case the inclusion Γ is a crack, i.e. a
set of dimension 1, we can not detect it by the level set
function u in the L2 sense anymore. The development
of very thin curves C in the evolution (4.6) indicates
such a case in advance.

Note that we are not able to prove that the level
set function u converges to the indicator function of an
inclusion Γ as we did in Theorem 1 for the case of image
segmentation.

5 Results

In this section we present the numerical results for the
combined evolution (2.4). In all test cases, except the
ones shown in Figures 9 and 10, we chose α = 10,
β = 0.1 (with the exception of β = 3 in the example
in Figure 7) and the balloon force γ = 0.2. The time
step δ of the semi-implicit FE step varies from δ = 20
to δ = 100. The number of steps of the implicit evolu-
tion is denoted by n in the illustrations, the number of
steps of the explicit (curve) evolution is 50n. With the
exception of the first example we chose ε = 10−3 in the
regularization of |∇u|−1. The edge detection parame-
ter is η = 100. In all the images the red curves are the
spline curves corresponding to the Cj(τ) in (2.4). The
zero level set of the function u(τ) is painted in green.

In Figure 5 we computed the combined evolution
(2.4) for the cross presented in the introduction. To il-
lustrate the influence of the regularization of |∇u|−1 we
chose ε = 10−2 of one order larger. This example shows
the stability of the spline curve compared to the zero
level set of the geodesic active contour.

In Figure 6 we added salt & pepper noise to an un-
derlying binary image. The spline curve adapts itself
to the components of the object and attains a stable
steady state. Figure 7 illustrates the regularizing effect

Implicit evolution Combined evolution

≈ 95 seconds ≈ 18 seconds

Table 1 Computation times.

of higher values for β. It also demonstrates that we de-
tect high gradients and not areas of similar contrast. In
Figure 8 we can observe the adaptation of the spline
curve to the topology of the object by using the gradi-
ents of the level set function.

For illustrative reasons we chose different values of
δ in the above examples, but the evolutions behave the
same, when setting δ = 100 and thus reducing the num-
ber of steps required to obtain the final image to n = 8
and n = 10 in Figure 5 and Figure 8 respectively.

In the last example the choice of parameters is differ-
ent from above. We segmented cell clusters in DIC (Dif-
ferential Interference Contrast) images. First we evolved
the level set function without the spline curve and tried
to choose the parameters such that the segmentation
worked as well as possible (Figure 9). We then compared
this result to the combined evolution with different pa-
rameters for the implicit part of the evolution (Figure
10). We observe that the results of both methods are
roughly the same (the first one being more precise on
the edges) but the combined evolution requires much
less steps to reach the final segmentation. Considering
the fact that the explicit evolution of the spline curves
is fast compared to the implicit evolution this results in
significantly lower computation times for the combined
evolution (Table 1). In other words, the added curve
evolution allows us to choose the parameters control-
ling the level set evolution such that the evolution is
much faster than before without loosing sensitivity. In
addition, if we are mostly interested in the number of
cell clusters, we can get this information immediately
from the result of the combined evolution (simply by
counting the number or spline curves).
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