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Summary. The support function (SF) representation of surfaces is useful for an-
alyzing curvatures and for representing offset surfaces. After reviewing basic prop-
erties of the SF representation, we discuss several techniques for approximating the
SF of a given surface.

1 Introduction

Robust and efficient methods for dealing with offset curves and surfaces are
one of the major challenges in Computer Aided Design. Offset to (piecewise)
rational curves and surfaces (i.e., NURBS) are not rational and need to be ap-
proximated. Also, singularities and self–intersections can easily be generated
and have to be dealt with [Mae].

Certain subsets of the set of rational curves and surfaces are closed under
offsetting, or even under the (more general) convolution operator [PP]. In
particular, such subsets can be obtained by using the support function (SF)
representation, where the support functions vary in the space of polynomials
[SGJ1]. The SF representation is one of the classical tools in the field of
convex geometry, see e.g. [Gro]. Its application to problems in Computer Aided
Design can be traced back to a classical paper of Sabin [Sab]. It does not only
provides computational advantages for dealing with offsets, but also leads
to particularly simple expressions for quantities and mappings governing the
differential geometry of surfaces.

2 Support function representation of surfaces

For any smooth surface Σ in three–dimensional space, the so–called Gauss

map γ : Σ → S
2 assigns to each point x ∈ Σ the associated unit normal n(x),

which is identified with a point on the unit sphere, cf. Fig. 1. It can be used to
analyze the curvature of the surface. In particular, the Weingarten map equals
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Fig. 1. The Gauss map and the SF of a surface.

−dγ and the principal curvatures and principal directions are its eigenvalues
and eigenvectors, respectively. The Gaussian curvature is the product of the
principal curvatures, i.e., the determinant of the Weingarten map. So if the
Gaussian curvature does not vanish, then the Weingarten map is invertible
and Gauss map is locally invertible.

Consequently, any surface with non–vanishing Gaussian curvature can lo-
cally be described by its inverse Gauss map. Since the Gauss map is geo-
metrically significant, many geometric constructions simplify if its inverse is
explicitly known. The function

h0 : Σ → R : x 7→ x · n(x) (1)

associates with each point the distance of its tangent plane to the origin.
The support function (SF) h : S

2 → R is then obtained by composing this
function with the inverse Gauss map, h = γ−1 ◦ h0. Under certain technical
assumptions, the surface can be reconstructed from its SF (cf. [Gra, SGJ1]):

Theorem 1. Let U be an open subset of the unit sphere and h ∈ Ck(U, R),
where k > 2. Define xh ∈ Ck−1(U, R3) by

xh(n) = h(n)n + ∇S2h|
n

, (2)

where ∇S2 denotes the intrinsic gradient. If det(HessS2(h) + h id) does not

vanish in U , where HessS2(h) denotes the intrinsic Hessian of h, then

1. The image xh(U) is a Ck-surface and its SF is h.

2. The Weingarten map of the surface is −(HessS2(h) + h id)−1.

3. If λ is an eigenvalue of HessS2(h) and e the associated eigenvector, then

−1/(h+λ) is a principal curvature and e is a principal curvature direction.

4. The Gaussian and the mean curvatures are

K =
1

det(HessS2(h) + h id)
, M =

− tr(HessS2(h) + h id)

2 det(HessS2(h) + h id)
(3)
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5. Point-wise the absolute value of h and the norms of its gradient and xh

are related by

‖xh(n)‖2 = h(n)2 + ‖∇S2h(n)‖2, (4)

6. The L2 norms of h and xh are related by ‖xh‖2

2
= ‖h‖2

2
+ ‖∇S2h‖2

2
.

7. The maximum norms satisfy ‖xh‖2

∞
≤ ‖h‖2

∞
+ ‖∇S2h‖2

∞
. In particular,

if U = S
2 and the surface xh is regular everywhere, then this inequality

becomes an equation.

The SF of a surface behaves nicely under geometrical transformations.
Translation and offsetting correspond to adding linear and constant func-
tions, respectively, while rotations have to be composed with h. Consequently,
the maximum allowed offsetting distance which does not introduce self–
intersections or singularities can be computed by analyzing the eigenvalues
of the Hessian.

Note that the mapping h → xh is linear; it introduces an isomorphism
between the linear spaces Ck(U, R) and its images, where the addition in the
image spaces is given by the so–called convolution (in the sense of [SPJ]) of
surfaces, see [SGJ2].

The linearity implies in particular that the norm estimates above are in-
variant under offsetting.

If k = 1, then the Hessian cannot be used to analyze the regularity. How-
ever, if h is globally C1 and piecewise C2 and the sign of det(HessS2(h)+h id)
is the same on each patch, then the surface is of class C1, see [Gra, SGJ1].

3 Approximation of surfaces

According to results 6 and 7 of the theorem, we can translate questions con-
cerning approximation of surfaces with non–vanishing Gaussian curvature to
questions concerning the approximation of scalar fields on S

2, cf. [ANS].

Approximation by harmonic expansions. If we consider a surface whose sup-
port is either defined or can smoothly be extended to S

2, then it is possible
to apply the tools from harmonic analysis. Note that the harmonic expansion
leads to rational surfaces with rational offsets. Indeed, by composing the har-
monic expansion with a rational parameterization of the sphere, Eq. (2) gives
a rational parametric representation, which complies with the CAD standard.

This applies immediately to closed convex surfaces, which are studied in
convex geometry (see Example 22 of [SGJ1]). Here we present a non–convex
one. We consider a one–sheeted hyperboloid of revolution with the support
function h0 =

√

x2 + y2 − z2. In order to approximate this surface and its
offsets, we restrict h0 to the sphere zone |z| ≤ 1

2

√
2 − ǫ, where ǫ is a small

constant, and extend the restriction to a function h∗ ∈ C3(S2, R). The results
are shown in Fig. 2.
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Fig. 2. Support function of a non–convex surface of revolution (the concave region
between the vertical grey bars) and its C3 smooth extension (left). Approximation
of the surface and of its offsets (right). In both cases, only the intersections with the
plane y = 0 are shown, and the support function is parameterized by the angle.

Fig. 3. Approximations constructed via the SF.

Approximation by piecewise linear functions. Another very interesting way to
approximate the SF h is by using a piecewise linear function h defined over a
triangulation of (a part of) the unit sphere. Each vertex ni defines the plane
x·ni = hi = h(ni) in R

3. Each triangle defines a point v ∈ R
3 where the linear

function v · n interpolates the values of the SF in the corners of the triangle.
Clearly v is the point of intersection between the three planes defined by the
corners of the triangle.

The triangles around a vertex define a polygon in the plane defined by the
vertex. We obtain a graph embedded in R

3 with planar faces which is the dual
to the triangulation. Fig. 3 left shows a photograph of a physical model of a
surface with planar faces approximating half of an ellipsoid. The technique
can be applied to non–convex surfaces too, see [SGJ1].

Note that the planar faces may have self–intersections (‘swallowtails’). In
order to avoid these problems, the spherical triangulation may have to be
modified by ‘edge flipping’.
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Least–squares fitting. In many cases the SF is not (explicitly) available and
only a surface patch or point cloud may be given. For these cases we propose
following approximation scheme, which is to be applied to a given surface
represented by sample points Xi, possibly with associated normals ni.

1. Sample points Xi and associated unit normals ni from the patch. If the
points Xi are the input, then estimates the normal ni (e.g., based on local
planes of regression).

2. Consider a suitable3 finite-dimensional space H of support functions with
basis hj .

3. Find the SF h =
∑

j αjhj such that the associated surface xh approx-
imates the data in the least–squares sense, by minimizing the objective
function

N
∑

i=1

(

(

Xi · ni −
∑

j

αjhj(ni)
)2

+
∥

∥

∥
Xi − (Xi · ni)ni −

∑

j

αj∇S2hj

∣

∣

ni

∥

∥

∥

2
)

.

As an example, we approximated the support function of a biquadratic patch
by a support function of degree 9, see Fig. 3, right. In this case, 256 sample
points were used in order to define the objective function. In the same pic-
ture two offsets are also depicted and it is an important fact that they are
approximated by exactly the same precision as the surface itself.
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3In order to be invariant with respect to translations and offsetting this space
should contain all polynomials of degree 1.


