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Abstract. We consider rational surface patches s(u, v) in the four–
dimensional Minkowski space IR3,1, which describe parts of the medial
surface (or medial axis) transform of spatial domains. The corresponding
segments of the domain boundary are then obtained as the envelopes of
the associated two–parameter family of spheres. If the Plücker coordi-
nates of the line at infinity of the (two–dimensional) tangent plane of s

satisfy a sum–of–squares condition, then the two envelope surfaces are
shown to be rational surfaces. We characterize these Plücker coordinates
and analyze the case, where the medial surface transform is contained in
a hyperplane of the four–dimensional Minkowski space.

1 Introduction

Planar and spatial domains can uniquely be represented by their medial axis
transform or medial surface transform 1. Various applications and computational
aspects have been studied in Computer Vision, Computational Geometry and
Computer Aided Design, see, e.g., [1, 4, 6, 7, 11, 16, 19, 21, 22] and the references
cited therein.

In the spatial case, the medial surface transform of a domain is a set of
surface patches (and possibly curve segments, if canal surfaces are present) in 4–
dimensional (xyzr–) space. Roughly speaking, each point on one of these curves
and surfaces represents the center (xyz) and the radius (r) of a sphere which is
contained in the domain and touches the boundary in at least two points. This
representation covers the structure of the domain and has many computational
advantages. For instance, the operation of offsetting is equivalent to adding a
constant to the radii, i.e., to a particular translation in the 4–dimensional space.
Moreover, self–intersections of inner offsets can be detected by analyzing the
radii of the spheres after the translation (see [4] for a discussion of the three–
dimensional case).

Rational representations of curves and surfaces (NURBS curves and sur-
faces) have become a universally accepted standard for Computer Aided Design.

1 In the literature, the term medial axis transform is sometimes used both for two–
and three–dimensional domains. In this paper we use medial surface transform for
domains in three–dimensional space.



However, this class is not closed under the operation of offsetting. As a remedy
for this problem, the classes of Pythagorean hodograph curves and Pythagorean
normal vector surfaces were introduced [12, 14, 17, 18]. These curves and surfaces
are characterized by the property that the length of the tangent or normal vector
is a (possibly piecewise) rational function of the curve or surface parameters.

The notion of Pythagorean hodograph curves has been extended to the three–
dimensional Minkowski space [2, 4, 5, 16], simply by replacing the Euclidean
length of the tangent vector (the hodograph) with the length defined by the
indefinite inner product in Minkowski space. This led to the class of Minkowski
Pythagorean hodograph curves. It is characterized by the property that the Min-
kowski length of the first derivative vector is a (piecewise) polynomial function
of the curve parameter.

As observed in [4, 16], Minkowski Pythagorean hodograph curves in the
three–dimensional Minkowski space are particularly well suited for representing
the medial axis transforms of planar domains. If a segment of the medial axis
transform is a Minkowski Pythagorean hodograph curve, then the associated
pieces of the domain boundaries are segments of rational curves. This property
is then shared by all offsets of the domain boundaries. Motivated by this obser-
vation, computational techniques for representing the medial axis transforms of
general planar domains by Minkowski Pythagorean hodograph curves have been
studied (see, e.g., [15]).

In the present paper, we generalize this idea to the class of two–dimensional
surface patches in four–dimensional Minkowski space. These surface patches are
used to describe segments of medial surface transforms. They are closely re-
lated to bisector surfaces between two given surfaces (which may degenerate
into curves), cf. [9, 10].

The remainder of the paper is organized as follows. Section 2 summarizes
some basic notions and facts concerning four–dimensional Minkowski geometry
and medial surface transforms. The next section focuses on the local differential
geometry of sheets od medial surface transforms and on the envelope formula
for two–parameter families of spheres. This motivates the definition of MOS
surfaces in Section 4. The fifth section analyzes the particular cases of MOS
surfaces which are contained in hyperplanes. After briefly addressing the general
case we conclude this paper.

2 Preliminaries

This section gives a summary of some basic results and concepts concerning
Minkowski space IR3,1 and medial surface transforms.

2.1 Minkowski Space IR3,1 and Homogeneous Coordinates

The four–dimensional Minkowski space IR3,1 is a four–dimensional real affine
space equipped with the indefinite inner product

〈u,v〉 = u⊤Gv = u1v1 + u2v2 + u3v3 − u4v4 (1)



defined by the matrix

G = (Gi,j)i,j=1,2,3,4 = diag(1, 1, 1,−1), (2)

where u = (u1, u2, u3, u4)
⊤, v = (v1, v2, v3, v4)

⊤. The four axes spanned by the
vectors ei = (δi,1, δi,2, δi,3, δi,4)

⊤, i = 1, . . . , 4, will be called the x–, y–, z– and
r–axis, respectively.

As the quadratic form associated with G is not definite, the squared norm
of a vector, which is defined by ||v||2 = 〈v,v〉, can be positive, negative or zero.
Motivated by the special theory of relativity, one distinguishes three ‘causal
characters’ of vectors: A vector v is said to be space–like if ||v||2 > 0, time–like
if ||v||2 < 0, and light–like (or isotropic) if ||v||2 = 0.

A hyperplane in Minkowski space is called space–, time– or light–like if the
restriction of the quadratic form defined by G on this plane is positive definite,
indefinite nondegenerate or degenerate, respectively. The type of a hyperplane ρ

can be characterized by the Euclidean angle α included between ρ and the xyz

hyperplane. For light–like hyperplanes, α = π
4 . Similarly one may distinguish

between space–like, time–like and light–like 2–planes and lines.
A linear transform L : IR3,1 → IR3,1 is called a Lorentz transform if it main-

tains the Minkowski inner product, i.e. 〈u,v〉 = 〈Lu, Lv〉 for all u,v ∈ IR3,1. The
set of all Lorentz transforms L = O(3, 1), along with the composition, forms the
Lorentz group. If the matrix K = (ki,j)i,j=1,2,3,4 represents a Lorentz transform,
then its column vectors k1, k2, k3 and k4 satisfy 〈ki,kj〉 = Gi,j , i, j ∈ {1, 2, 3, 4},
i.e., they form an orthonormal basis of IR3,1.

By introducing points at infinity we obtain the projective closure of the
Minkowski space, which will be denoted by ĨR3,1. Its points will be described
using standard homogeneous coordinates p̃ = (p0 : p1 : p2 : p3 : p4)

⊤ satisfying

1 : x : y : z : r = p0 : p1 : p2 : p3 : p4. (3)

Points at infinity (also called ideal points) are then characterized by p0 = 0.

2.2 Medial Surface Transform

Consider a domain Ω ∈ IR3. Any sphere contained in Ω is said to be an in-
scribed sphere. The set of all inscribed spheres is partially ordered with respect
to inclusion. An inscribed sphere is said to be maximal if it is not contained in
any other inscribed sphere. The medial surface of Ω is the locus of all centers of
maximal inscribed spheres.

The medial surface transform of the domain is obtained by adding the radius
information to the medial surface. The medial surface transform consists of all
points (x, y, z, r)⊤ in IR3,1, where (x, y, z)⊤ is a point of the medial surface and
r is the radius of the maximal inscribed sphere centered at this point.

For a general domain with piecewise smooth boundary, the medial surface and
the medial surface transform both consist of several components with different
dimensions, see, e.g., [6]. Here we consider only two–dimensional components,
which are called sheets. They correspond to the centers of inscribed spheres which



Fig. 1. A medial surface segment (dark grey) and the corresponding pieces of the
boundary surface (light grey). In addition, four inscribed spheres are shown.

touch the domain boundary in two points. An example is shown in Fig. 1, which
shows a quadrangular segment (patch) of the medial surface, along with the four
inscribed spheres at the four vertices and the two corresponding quadrangular
patches of the domain boundaries. If

s(u, v) = (x(u, v), y(u, v), z(u, v), r(u, v))⊤, (u, v) ∈ D ⊆ IR2 (4)

is a regular surface patch in IR3,1 which describes a sheet of the medial surface
transform, then we can recover the associated part of the domain Ω as

Ω =
⋃

(u,v)∈D

Br(u,v)(x(u, v), y(u, v), z(u, v)), (5)

where Br(x, y, z) is the ball with center (x, y, z)⊤ and radius r. Its boundary ∂Ω

contains the envelope of the spheres ∂Br(u,v)(x(u, v), y(u, v), z(u, v)). In addition
it contains segments of the canal surfaces which correspond to the boundary
curves of s, and segments of the spheres which correspond to the vertices of s.

Remark 1. A two–parameter family of spheres is not always a valid medial sur-
face transform. For instance, the families of spheres can be nested.



3 Tangent Planes of Sheets of Medial Surface Transforms

and Envelope Formula

We characterize the tangent 2–planes of sheets of the medial surface transform
and derive the formula for computing the two envelope surfaces of the associated
2–parameter sphere family.

3.1 Tangent Planes of 2–surfaces in IR3,1

We consider a C1 patch s : (u, v) 7→ s(u, v),

s(u, v) = (x(u, v), y(u, v), z(u, v), r(u, v))⊤, (6)

of a 2–surface in IR3,1, where the parameters (u, v) vary in a suitable parameter
domain D ⊂ IR2. The components of the associated first fundamental form are

E = 〈su, su〉, F = 〈su, sv〉, G = 〈sv, sv〉, (7)

with the partial derivative vectors2

su =
∂s(u, v)

∂u
and sv =

∂s(u, v)

∂v
. (8)

At each regular point of s(u, v), the tangent plane is spanned by the two vectors
su and sv. These vectors span a two–dimensional plane, which is embedded in
the four–dimensional Minkowski space IR3,1.

The intersection of a tangent 2–plane with the hyperplane ω at infinity defines
a line ν = ν(u, v). It is spanned by the two points

(0 : xu : yu : zu : ru)⊤ and (0 : xv : yv : zv : rv)⊤. (9)

We describe this line ν in the hyperplane at infinity using Plücker coordinates
(see e.g. [20] for an introduction to line geometry):

Definition 1. For any regular surface patch s(u, v) in IR3,1 we consider the
homogeneous coordinates

(p01 : p02 : p03 : p23 : p31 : p12)
⊤, (10)

where

p01 = xuyv − yuxv, p02 = xuzv − zuxv, p03 = xurv − ruxv,

p23 = zurv − ruzv, p31 = ruyv − yurv, p12 = yuzv − zuyv.
(11)

They will be called the Plücker coordinates of the infinite line of the

tangent plane, or PILT for short. The vector obtained by collecting them is
called the PILT vector.

2 Throughout the remainder of this paper, the subscripts ∗u, ∗v denote partial deriva-
tives of scalar or vector–valued quantities.



Remark 2. 1. As for all Plücker coordinates, the six components of the PILT
vector are not independent; they satisfy the Plücker condition

p01p23 + p02p31 + p03p12 = 0. (12)

2. The PILT vector can be seen as a generalization of the normal vector of
a surface in three–dimensional Euclidean space. Indeed, the components of
the PILT vector are the non–vanishing 3× 3 subdeterminants of the matrix

S =





0 xu yu zu ru

0 xv yv zv rv

1 0 0 0 0



 , (13)

while the components of the normal vector of a surface (X, Y, Z) can be
obtained as the non–vanishing subdeterminants of the matrix

R =





0 Xu Yu Zu

0 Xv Yv Zv

1 0 0 0



 , (14)

where the subscripts indicate (again) partial derivatives with respect to the
surface parameters.

3.2 Envelope Formula

We consider the two–parameter family of spheres

(X − x(u, v))2 + (Y − y(u, v))2 + (Z − z(u, v))2 − r2(u, v) = 0 (15)

which correspond to the C1 patch (6) of the medial surface transform. In addition
to (15), a point b of one of the two envelopes satisfies the two equations

(X − x) · xu + (Y − y) · yu + (Z − z) · zu + r · ru = 0 ,

(X − x) · xv + (Y − y) · yv + (Z − z) · zv + r · rv = 0.
(16)

where x, y, z and r depend on u, v, and b = (X, Y, Z). Consequently, the coor-
dinates of b can be found by intersecting the sphere (15) with two planes (16).
This leads to a closed–form expression for the two branches (±) of the envelope
surface:

b±(u, v) = ŝ(u, v) +
r

E0G0 − F 2
0

(

w ±
√

EG − F 2 · (ŝu × ŝv)
)

. (17)

In this expression,

ŝ(u, v) = (x(u, v), y(u, v), z(u, v))⊤ (18)

represents the corresponding medial surface, which is obtained by omitting the
radius function in (6).



The components E, F, G of the first fundamental form of s(u, v), see (7),
which are computed using the indefinite inner product (1) in IR3,1. In addition,
E0, F0, G0 are the components of the first fundamental form of the corresponding
medial surface (18), which are obtained by using the standard Euclidean inner
product.

The coordinates of the vector w = w(u, v) in (17) are polynomials of degree
four in xu, yu, zu, ru and xv, yv, zv, rv, where each coordinate consists of 8 terms.
Also the other terms are quite complicated. For instance, the squared Minkowski
area element EG − F 2 in (17) consists of 18 terms of degree 4 in the partial
derivatives of x, y, z and r.

A more compact representation can be derived by using the components of
the PILT vector of the patch s(u, v) of the medial surface transform.

Lemma 1. The two envelope surfaces (17) of the two–parameter family of sphe-
res corresponding to (6) can be rewritten as

b±(u, v) = ŝ+
r

p2
01 + p2

02 + p2
12









p02p23 − p01p31

p23p12 − p01p03

p31p12 − p02p03



 ±
√

C ·





p12

−p02

p01







 , (19)

where
C = EG − F 2 = p2

01 + p2
02 − p2

03 − p2
23 − p2

31 + p2
12. (20)

This observation can be verified by a direct computation.

Remark 3. 1. If the PILT vector vanishes, then the corresponding point of the
medial surface transform is singular. Otherwise it is regular, i.e., su and sv

are linearly independent.
2. If C = EG − F 2 is positive, then the tangent 2–plane is space–like and the

surface s(u, v) is regular. Moreover, since p2
01 + p2

02 + p2
12 > C, the medial

surface ŝ(u, v) is regular, too. Both envelope surfaces (19) are then well–
defined.

3. If C = EG − F 2 = 0 and s is regular , then the 2–surface s has a light–like
tangent 2–plane. Due to the regularity of s, not all components of the PILT
vector vanish. Consequently, the medial surface is still regular, since

E0G0 − F 2
0 = p2

01 + p2
02 + p2

12. (21)

In this case, the envelope formula yields one point only.
4. If C = EG − F 2 is negative, then b± is not defined. This characterizes the

situation where the tangent 2–plane is time–like.
5. Medial surface transforms with well defined envelope surface(s) will be called

regular. From now on, we consider only regular medial surface transforms.
These are medial surface transforms which have non-vanishing PILT vectors
and either light–like or space–like tangent 2–planes only. This generalizes
similar conditions for the medial axis transform of planar domains, which
can be identified with a system of curves in Minkowski space IR2,1. In that
situation, curves with time–like tangents have to be excluded.

6. Lorentz transforms preserve the regularity of the PILT vector and the causal
character of the tangent 2–plane.



4 Sheets of Medial Surface Transforms Defining Rational

Envelopes

In order to obtain rational envelopes, we introduce the notion of MOS surfaces
and characterize their PILT vectors.

4.1 MOS Surfaces

Consider a medial surface transform (6), which is described by piecewise rational
functions x, y, z and r. We are particularly interested in the situation where
the two envelope surfaces obtained from (19) are rational. This motivates the
following definition:

Definition 2. Let s(u, v) = (x(u, v), y(u, v), z(u, v), r(u, v))⊤ be a regular poly-
nomial or rational medial surface transform in IR3,1. We say that s(u, v) is a
polynomial or rational medial surface transform which obeys the sum–

of–squares–condition (MOS surface for short), if there exists a bivariate
polynomial or rational function σ(u, v), such that the components of the PILT
vector satisfy

p2
01 + p2

02 − p2
03 − p2

23 − p2
31 + p2

12 = σ(u, v)2. (22)

MOS surfaces generalize the notion of Minkowski Pythagorean hodograph
curves, see [4, 16]. If a segment of the medial axis transform of a planar domain
is an Minkowski Pythagorean hodograph curve, then the corresponding segments
of the domain boundary admit rational parameterization. Moreover, since the
translations in Minkowski space preserve the hodographs (first derivative vec-
tors), this is also the case for all offsets of the domain boundaries. In the surface
case we get the following result.

Proposition 1. If a segment of the medial surface transform of a spatial domain
is an MOS surface patch, then both the corresponding pieces of the boundary of
the domain and their offsets admit a rational parametric representation.

Remark 4. Using the first fundamental form of s(u, v), the MOS condition in
Definition 2 can be rewritten as

EG − F 2 = 〈su, su〉 · 〈sv, sv〉 − 〈su, sv〉2 = σ(u, v)2. (23)

Consequently, the MOS surface is invariant with respect to Lorentz transforms.
Moreover, the area (in the Minkowski sense) of a polynomial MOS is a (possibly
piecewise) polynomial function of the surface parameters u, v.

4.2 Characterizing the PILT Vectors of MOS Surfaces

The 2–surface s(u, v) in IR3,1 has the MOS property if its PILT vector simulta-
neously satisfies the MOS condition (22) and the Plücker condition (12). Conse-
quently, in order to characterize MOS surfaces, we have to solve a system of two



center

Fig. 2. A three–dimensional sketch of the central projection in IR6. Rational curves in
the (hyper)plane are projected onto the (hyper)surface.

quadratic equations. First, we use a central (or inverse stereographic) projection
to solve (22). Let

(p0 : p1 : p2 : p3 : p4 : p5 : p6)
⊤, p0 6= 0, (24)

be the homogeneous coordinates of a point in IR6. The center of the projection
is chosen at (1 : −1 : 0 : 0 : 0 : 0 : 0)⊤. We project points of the hyperplane
p1 = 0 onto the quadric hypersurface (22), see Fig. 2 for a sketch. This defines
the mapping
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. (25)

Now we substitute the image (25) into Plücker’s condition (12), which leads to

p0(−p4p
2
2 + p4p

2
3 + p3

4 + p4p
2
5 − p4p

2
6 + p2

0p4 + 2p0p2p5 + 2p0p3p6) = 0. (26)

This splits into the equation of a cubic hypersurface C and the hyperplane at
infinity, both in IR5. Since p0 = 0 corresponds to the points at infinity, we omit



the factor p0 in (26). As C has double points, we use again a central projection
in order to obtain a parameterization.

Let (r0 : r1 : r2 : r3 : r4 : r5)
⊤ be the homogeneous coordinates of a point

in IR5. The surface C has a double point at (0 : 0 : 0 : 0 : 1 : 1)⊤. We choose
this point as the center of projection and map the points of the hyperplane
determined by r4 = 0 onto the cubic hypersurface given by the second factor in
(26). A straightforward computation gives the cubic parameterization
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(27)

of C. Finally we combine the parameterization (27) with the projection (25) and
obtain (after omitting the common factor 4r0(r0r1+r0r2−r3r5)) the final result:

Proposition 2. If s(u, v) is an MOS surface, then there exist five polynomials
ri(u, v), i ∈ {0, 1, 2, 3, 5} and a polynomial λ(u, v) 6≡ 0 such that the PILT vector
of s(u, v) has the form

1

λ
·
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2
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. (28)

Indeed, the two central projections used for the parameterization are bira-
tional mappings, hence any given PILT vector satisfying (12) and (22) can be
reproduced, but possibly with extraneous factors (which are taken care of by λ).

5 MOS Surfaces in Hyperplanes

In general, MOS surfaces spans the entire Minkowski space IR3,1. As a special
case, however, it can be contained in a hyperplane H. This case will now be
discussed in more detail.

5.1 Classification

The hyperplane H can be space–like, time–like or light–like. Using translations
and Lorentz transforms, the hyperplane H can be mapped to one of the following
three standard positions:

H is space–like : r = 0,

H is time–like : z = 0,

H is light–like : z − r = 0.

(29)



These three cases will be analyzed separately. We assume that the hyperplane
H has the corresponding standard position.

Case 1: H is space–like. Since it lies in the hyperplane r = 0, the equation of
the MOS surface takes the form

s(u, v) = (x(u, v), y(u, v), z(u, v), 0)⊤, (30)

i.e. it is contained in the Euclidean 3–space IR3, which is embedded into IR3,1.
The three components p03, p31, p23 of the PILT vector vanish. The remaining
components are equal to the components of the cross product ŝu × ŝv of the
medial surface (18). The MOS condition (22) simplifies to

p2
01 + p2

02 + p2
12 = σ(u, v)2. (31)

Consequently, these surfaces are PN (Pythagorean normal) surfaces as intro-
duced in [18]. These surfaces are equipped with a rational field of unit normals.
Therefore, the offset surfaces are again rational.

In the standard position, both envelope surfaces (17) degenerate into the
medial surface. If the MOS surface lies in a plane of the form r = c, where c

is a constant, then the two envelopes are the offset surfaces at distance c. MOS
surfaces in general space–like hyperplanes can be obtained by first embedding
PN surfaces in the hyperplane H of IR3,1 and then applying Lorentz transforms.

Case 2: H is time–like. Since it lies in the hyperplane z = 0, the equation of the
MOS surface takes the form

s(u, v) = (x(u, v), y(u, v), 0, r(u, v))⊤, (32)

i.e. it is contained in the Minkowski 3–space IR2,1, which is embedded into IR3,1.
The three components p02, p12, p23 of the PILT vector vanish. The remaining
three components are equal to the coordinates of the Minkowski cross product3

s̃u ⋊⋉ s̃v, where
s̃ = (x(u, v), y(u, v), r(u, v))⊤. (33)

The MOS condition (22) simplifies to

p2
03 + p2

31 − p2
01 = ||s̃u ⋊⋉ s̃v||2 = −σ(u, v)2. (34)

Consequently, the Minkowski norm of the Minkowski cross product s̃u ⋊⋉ s̃v is
minus the square of a polynomial. The vector s̃u ⋊⋉ s̃v is therefore time–like.

The medial surface of the MOS surface (32) is always contained in the plane
z = 0. Consequently, the two envelopes of the associated sphere family are
symmetric with respect the plane z = 0.

MOS surfaces in general time–like hyperplanes can be obtained by applying
Lorentz transforms to an MOS surface of the form (32). These Lorentz transforms
do not preserve the planarity of the medial surface.

3 (u1, u2, u3)
⊤

⋊⋉ (v1, v2, v3)
⊤ = (u2v3 − u3v2, u3v1 − u1v3,−u1v2 + u2v1)

⊤, cf. [15]



Case 3: H is light–like. In the standard position, the equation of the MOS
surface takes the form

s(u, v) = (x(u, v), y(u, v), z(u, v), z(u, v))⊤. (35)

Consequently, in this case, p23 = 0, p02 = p03 and p12 = −p31. The MOS
condition simplifies to p2

01 = σ(u, v)2. Thus, any rational 2–surface lying in
a light–like hyperplane is an MOS surface. One of the two envelopes of the
associated family of spheres is then contained in the plane which is obtained
by intersecting the light–like hyperplane with the hyperplane r = 0, where the
latter one is identified with the Euclidean space.

5.2 Construction

MOS surfaces in space–like or time–like hyperplanes H can be generated with
the help of the following construction.

1. Choose a suitable field N(u, v) of normal vectors. More precisely, find three
bivariate polynomials p01, p02, p12 or p03, p31, p01 in u, v, such that the condi-
tions (31) or (34) are satisfied, respectively. These polynomials can be found
by parameterizing the corresponding quadrics. This can be done, e.g., by
stereographic projection, or using the method of generalized stereographic
projection [8], or its equivalent formulation via Pythagorean hodograph rep-
resentation maps [5].

2. Find a polynomial or rational surface s in the standard position of the given
hyperplane H, such that the first partial derivatives satisfy

〈N(u, v), su(u, v)〉 ≡ 0, 〈N(u, v), sv(u, v)〉 ≡ 0 (36)

where the inner product 〈., .〉 is obtained by restricting the inner product of
IR3,1 to the standard position of H. If these two conditions are satisfied, then
the two vector fields N(u, v) and su(u, v) × sv(u, v) are linearly dependent
for all u, v, and the latter one is therefore obtained by multiplying N(u, v)
by a rational function.
– A polynomial surface satisfying (36) can be obtained by comparing the

coefficients. If N has degree k and s has degree n in u, v, then the two
equations lead to 2

(

n+k+1
2

)

equations for the 3
(

n+2
2

)

− 3 coefficients of s.
If n is sufficiently large, then the number of unknowns exceeds the num-
ber of linear equations in the homogeneous linear system and nontrivial
solutions are therefore guaranteed to exist (for k = 2 is n = 5 sufficiently
large).

– A rational surface satisfying (36) can be generated by computing the
envelope of the two–parameter family of planes

G(u, v;x) = 〈N(u, v),x〉 − h(u, v) = 0, (37)

where h(u,v) is another rational function. It can be found by solving the
three linear equations G = Gu = Gv = 0 for x. This approach has been
used in [18] for the construction of PN surfaces.



3. Finally, use a Lorentz transform, in order to map the standard position of
the hyperplane into the given general position H.

5.3 Example

We present an MOS surface which is contained in a time–like hyperplane.

Example 1. In step 1, we choose the normal vectors

N(u, v) = (2uv,−2u, u2 + 1 + v2)⊤, (38)

which satisfy

−N2
1 − N2

2 + N2
3 = (u2 − v2 − 1)2. (39)

In step 2, in order to generate a polynomial surface, we choose n = 3. By
comparing the coefficients we obtain a system of 2

(

6
2

)

= 30 linear equations for

the 3
(

5
2

)

= 30 unknown coefficients. A particular solution is the polynomial MOS
surface

s(u, v) =









−15uv2 + u3 − 6uv + 3
2v2 − 3u + 2v

3u3v − 9uv3 − 3uv2 + v3 + u3 + v2 + 3uv + 3u

0
−6u2v − 3u2 + 1









. (40)

Fig. 3a shows the medial surface and the associated rational domain boundaries.
Finally, in step 3, we apply the Lorentz transform

L =









1 0 0 0
0 1 0 0
0 0 coshβ sinhβ

0 0 sinhβ coshβ









, (41)

with β = ln 5. This leads to the polynomial MOS surface

L s(u, v) =









−15v2u + u3 − 6vu + 3
2v2 − 3u + 2v

3vu3 − 9v3u − 3v2u + v3 + u3 + v2 + 3vu + 3u
1
5 (−72vu2 − 36u2 + 12)
1
5 (−78vu2 − 39u2 + 13)









(42)

in the time–like hyperplane 13z = 12r, see Fig. 3b. It corresponds to two rational
domain boundaries with a non–planar medial (bisector) surface.

6 General MOS Surfaces

While MOS surfaces lying in hyperplanes are now fully understood, the situation
is less clear in the general case.



(a) (b)

Fig. 3. Example 1: The MOS surface s(u, v) in the time–like plane z = 0 (a) and the
same MOS surface after applying the Lorentz transform (41). In both cases, one of the
’corner’ spheres is also shown.

6.1 Existence and Examples

Still we have the following result.

Proposition 3. There exist both polynomial and rational MOS surfaces.

Proof. Consider a non–planar polynomial Minkowski Pythagorean hodograph
curve in IR2,1 and the associated planar domain Ω0 in the xy–plane. Assume that
the y–axis does not intersect Ω0. Then the spatial domain obtained by rotating
Ω0 around the y–axis has an medial surface transform which can be described
by a rational MOS surface, and the spatial domain obtained by translating Ω0

parallel to the z–axis has an medial surface transform which can be described
by a polynomial MOS surface. �

Example 2. Consider a torus and a point S in IR3. Their bisector surface, along
with the associated radius function, defines a rational MOS surface. For the
sake of simplicity, we choose the radii of the torus to be 1 and 2, respectively.
Moreover, we assume that the center of the torus is at S = (0, 0, 0)⊤ (see Fig. 4).
A rational parameterization of the torus is

T(u, v) =

(−(3 + v2)(−1 + u2)

(1 + v2)(1 + u2)
,

2(3 + v2)u

(1 + v2)(1 + u2)
,

2v

(1 + v2)

)⊤

. (43)



a) b)

Fig. 4. Example 2: Bisector surface of a torus (dark) and a point (center of the torus).
a) 3D view, b) The half–meridians of the bisector surface and of the torus.

Using the method described in [10] we compute the rational parameterization
of the bisector ŝ(u, v) by solving the following system of linear equations for the
coordinates of the bisector surface,

〈ŝ(u, v) − T(u, v),Tu〉E = 0,

〈ŝ(u, v) − T(u, v),Tv〉E = 0,

2〈ŝ(u, v),T(u, v) − S〉E = 〈T(u, v),T(u, v)〉E − 〈S,S〉E .

(44)

Here, 〈., .〉E denotes the Euclidean inner product. The bisector surface is

ŝ(u, v) =

(

(1 − u2)(−9 + v2)

2(1 + u2)(v2 − 3)
,

u(−9 + v2)

(1 + u2)(v2 − 3)
,

3v

(v2 − 3)

)⊤

. (45)

It is a surface of revolution around the z–axis. This surface and its meridian
curve is shown in Figure 4. The corresponding rational radius function can be
computed by evaluating the Euclidean distance

||ŝ(u, v) − S||E =
9 + v2

2(v2 − 3)
. (46)

This leads to the medial surface transform

s(u, v) =

(

(1 − u2)(−9 + v2)

2(1 + u2)(v2 − 3)
,

u(−9 + v2)

(1 + u2)(v2 − 3)
,

3v

v2 − 3
,

9 + v2

2(v2 − 3)

)⊤

. (47)



In order to verify that this is indeed an MOS surface, we evaluate

〈su, su〉 · 〈sv, sv〉 − 〈su, sv〉2 =
9(v − 3)2(v + 3)2

(1 + u2)2(v2 − 3)4
(48)

and obtain the square of a rational function. Finally, we show that s(u, v) is not
contained in a hyperplane. Indeed, the five points of s(u, v) with the parameter
values

(u, v) ∈ {(−1, 0), (−1, 1), (0, 1), (1,−1), (1, 1)} (49)

can be shown to be in general position.
For the sake of simplicity we chose a special mutual position of the torus

and the point. However, it can be shown that for any radii of the torus and any
position of the point S, the bisector surface along with the associated radius
function defines an MOS surface. Since offsetting corresponds to a translation in
Minkowski space, this is also true for sphere/torus bisectors. By applying general
Lorentz transforms, this even applies to bisectors of certain cyclides and spheres.

6.2 Towards the Construction of General MOS Surfaces

If the tangent 2–planes of two surfaces s = (x, y, z, r) and s′ = (x′, y′, z′, r′),
which describe medial surface transforms of spatial domains, share the same line
at infinity, then the two 4× 3 matrices

(su, s′u, s′v) and (sv, s
′
u, s′v) (50)

have both rank 2. By evaluating the 3 × 3 subdeterminants, this can be char-
acterized by two times two equations, which are linear in the partial derivatives
of s. These equations involve the components of the PILT vector of s′, since this
vector consists of the 2 × 2 subdeterminants of the last two columns.

This may potentially be useful for constructing MOS surfaces with a given
field of PILT vectors. Recall that these vectors of general MOS surfaces can be
obtained from Proposition 2. Once a PILT vector has been found, one may try
to find a matching MOS surface. In order to find a polynomial MOS surface
which is compatible with a given PILT vector one may generate a system of
linear equations by comparing the coefficients.

A similar approach may be used for rational MOS surfaces, leading to a
system of non–linear equations.

However, even in the polynomial case, the number of equations exceeds the
number of free parameters, and solutions do not exist in general. This is due to
the fact that the number of equations grows roughly with the same speed (it is
described by a quadratic polynomial in n with the leading term is 4n2, where n

is the degree of the unknown MOS surface) as the number of free parameters (it
is also a polynomial in n with the same leading term 4n2).

This is a major difference to the hyperplanar case. In that case, the num-
ber of equations is described by a polynomial with the leading term 2n2, while
the number of free parameters is a polynomial with the leading term 3n2. Con-
sequently, if n is large enough, then more free parameters than equations are
present. Unfortunately, this argument does not apply to the general case.



7 Conclusion

Minkowski Pythagorean hodograph curves can be used to represent the medial
axis transform of planar domains [4, 15, 16]. In this paper we generalized this
notion to the case of surfaces. We introduced the new class of MOS surfaces,
which are special 2–surfaces in the four–dimensional Minkowski space IR3,1. By
using them to describe segments of the medial surface transform one obtains
rational segments of the associated domain boundary.

MOS surfaces can be characterized by the so–called PILT vector, which rep-
resents the direction of the tangent 2–plane. Using this vector provides a partic-
ularly compact representation of the envelope formula.

The case of MOS surfaces in hyperplanes was studied in some detail. MOS
surfaces in space–like planes are equivalent to PN surfaces, see [17, 18]. MOS
surfaces in time–like planes seem to possess no counterpart in the existing liter-
ature.

The detailed investigation of MOS surfaces poses many challenging problems,
such as the construction of general MOS surfaces. This may lead to a systematic
analysis of curve and surface pairs with rational bisector surfaces (cf. [9, 10]),
where the associated radius functions are rational too.
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