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Abstract. We describe a method to construct a hierarchical repre-
sentation of a given implicitly defined algebraic spline curve with the
help of weighted spline wavelets. These wavelets are adapted to the
region of interest, in our case to the region along the curve, by means
of a weighted inner product. The application of two different types of
weighted spline wavelets is considered and compared with standard
spline wavelets.

§1. Introduction

Spline wavelets are a powerful mathematical tool for hierarchically decom-
posing functions which combines the properties of splines and wavelets.
Typical applications of spline wavelets include hierarchical visualizations
of geometric objects, data compression and numerical simulation. For
these applications, different types of spline wavelets have been constructed.
Examples are spline wavelets on a bounded interval e.g. [2, 3, 5, 6, 13],
compactly supported spline wavelets e.g. [4], wavelets with minimal sup-
port e.g. [9] and non-uniform spline wavelets e.g. [10].

We consider the space V j of spline functions of degree d with period
1 and knots Z/(d + 1)2j. Let φj,d

0 , . . . , φj,d

dim V j
−1 be the B-spline basis

of V j . We call the basic functions of a spline function space W j such
that V j+1 = V j ⊕ W j spline wavelets, and denote these functions by
ψj,d

0 , . . . , ψj,d

dim W j
−1.

The spline wavelet construction is called orthogonal if the basic func-
tions φj,d

i form an orthonormal basis of V j , the wavelets ψj,d
k form an

orthonormal basis of W j and the basic functions φj,d
i are orthogonal to

the wavelets ψj,d
k . If the last condition is satisfied, we denote the spline
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Fig. 1. Hierarchical representation of an implicitly defined algebraic spline
curve

wavelets as semiorthogonal. Otherwise we call them biorthogonal spline

wavelets.
A wavelet construction can be described with the help of four matri-

ces, namely with the analysis matrices Aj , Bj and the synthesis matrices

P j , Qj . Furthermore the analysis and synthesis matrices can be used to
compute the coefficients and the detail information for the different levels
(cf. [15]).

In the present paper we consider the following problem. Given an im-
plicitly defined algebraic spline curve, we are interested in its hierarchical
representation. An implicitly defined algebraic spline curve is the zero-
contour f (m,n)(x, y) = 0 of a tensor-product spline function of bi-degree
(u, v)

f (m,n)(x, y) =
dim V m

−1
∑

k=0

dim V n
−1

∑

l=0

c
(m,n)
k,l φm,u

k (x)φn,v
l (y),

with m ≥ 1, n ≥ 1, u ≥ 1 and v ≥ 1, with coefficients c
(m,n)
k,l ∈ R which

are called control points of the the tensor-product spline function f (m,n).
The upper indices (m,n) refer to the level of detail of representation.

In the following sections we show how to adapt spline wavelets to
this application. Section 2 describes the concept of two different types of
weighted spline wavelets. In Section 3 we give a method to construct a
hierarchical representation of an implicitly defined algebraic spline curve
with the help of these weighted wavelets. Section 4 compares the differ-
ent weighted spline wavelets with standard spline wavelets on a concrete
example. Finally we conclude this paper in Section 5.

§2. Weighted Spline Wavelets

We are interested in a spline wavelet construction that preserves the
zero-contour of a tensor-product spline function as well as possible. The
construction of these wavelets consists of two steps. First we construct
wavelets for univariate spline functions. These wavelets have an increased
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“approximation power” in a certain region of the domain [0, 1], which
we call the region of interest. In the second step we apply these one-
dimensional wavelets to the tensor-product spline representation of our
function. In this section we explain the first construction step. The sec-
ond step will be considered in the next section.

Let Dj ⊂ [0, 1] be the region of interest, which is chosen as the union
of intervals with the knots of the spline functions as endpoints. Let wj :
[0, 1] → R be such that

wj(x) :=

{

1, for x ∈ [0, 1] \Dj ,
u, for x ∈ Dj ,

where u ∈ R and u > 1. For a function w : [0, 1] → R let 〈·|·〉w be the
weighted inner product

〈f |g〉w :=

∫ 1

0

w(x) · f(x) · g(x)dx.

We construct spline wavelets that are adapted to the region of interest by
means of a weighted inner product 〈·|·〉w . We call these constructed spline
wavelets weighted spline wavelets.

2.1. Types of weighted spline wavelets

We distinguish between two different types of weighted spline wavelets:

Weighted semiorthogonal spline wavelets (cf. [7]): These are spline

wavelets ψj,d
l that are semiorthogonal with respect to the weighted inner

product 〈·|·〉wj i.e. 〈φj,d
k |ψj,d

l 〉wj = 0 for all k ∈ {0, . . . ,dimV j − 1},
l ∈ {0, . . . ,dimW j − 1} and j ∈ N0. The construction of these wavelets is
based on selecting a synthesis matrix Qj such that

(P j)T (〈φj,d
k |φj,d

l 〉wj )k,lQ
j = 0.

The choice of Qj determines the wavelets ψj,d
0 , . . . , ψj,d

dim V j
−1. A disad-

vantage of (weighted) semiorthogonal spline wavelets is that there is no
construction known such that all four matrices P j , Qj , Aj and Bj have
band structure (cf. [15]).

Weighted biorthogonal spline wavelets (cf. [8]): These are wavelets
that are constructed with the help of lifting, a general method for mod-
ifying an existing biorthogonal wavelet construction (cf. [12, 14, 15]).
The construction of the weighted biorthogonal spline wavelets consists of
two steps. As first step we construct lazy spline wavelets (cf. [8, 14])
with a small support. These are biorthogonal spline wavelets with banded
analysis and synthesis matrices. In the second step we modify these lazy
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Fig. 2. The wavelet transform (black) and the weighted wavelet transform
(black and grey).

wavelets by increasing the L2-orthogonality with respect to a weighted
inner product 〈·|·〉wj . That means we use the lazy spline wavelets to con-

struct biorthogonal spline wavelets ψj,d
k such that

∑

k

∑

l

〈φj,d
k |ψj,d

l 〉wj

is minimized. An advantage of these wavelets is that the analysis and syn-
thesis matrices are still banded but only their bandwidths have increased.

2.2. Properties of weighted spline wavelets

The wavelet transform for weighted wavelets differs from the standard
wavelet transform in one point, see Figure 2. In addition to the coefficients
and detail information in level j− 1, we need for the reconstruction of the
coefficients in level j the information about the region of interest in level
j. The implementation of these wavelets can be done in the usual way for
wavelets. Additionally a pointer to the region of interest is needed.

By choosing Dj as union of intervals with the knots of the spline func-
tion as endpoints, we assure that only a small number of different weighted
wavelets has to be considered. All other weighted wavelets can be con-
structed from them with the help of translation and scaling. A concrete
example for weighted wavelets is given in Figure 3. The computational
time for analysis and synthesis is comparable with the standard spline
wavelet case because the analysis and synthesis matrices for the different
weighted spline wavelets can be precomputed (use of “templates”).

More precisely, we precompute the analysis and synthesis matrices for
the standard spline wavelets (weight u = 1). In order to obtain the anal-
ysis and synthesis matrices for the different weighted wavelets, we have
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Fig. 3. Weighted biorthogonal wavelets ψ
j−1,3
i for 1-periodic uniform B-

splines of degree 3 for j = 3 with Dj = [4·2
j−2

4·2j−1 ,
4·2

j−2
+1

4·2j−1 ] and u = 10. Only

ψ
2,3
5 (x), ψ2,3

6 (x), ψ2,3
7 (x), ψ2,3

8 (x) and ψ
2,3
9 (x) differ from the “standard” lifted

wavelet ψ2,3
4 (x) (u=1). The two dots mark the boundaries of the interval Dj .

only to replace some columns or rows of these precomputed matrices by
corresponding precomputed columns or rows.

Experimental results have shown that a good choice for the weight u
is between 5 and 10. If the value u is higher, then the analysis process
may produce additional roots. On the other hand if the weight u is too
low, then the effect of the weighted wavelets is small.

Different kinds of stability have been considered e.g. in [7, 8]. The
weighted spline wavelets are uniformly stable, but numerical experiments
indicate that Riesz stability is not to be expected.

§3. Hierarchical Representation of Implicitly Defined Alge-

braic Spline Curves

In order to obtain a hierarchical representation of an implicitly defined
algebraic spline curve f (m,n) we apply the one-dimensional wavelet trans-

form to the rows and columns of the coefficient matrix (c
(m,n)
k,l )k,l of the

tensor-product spline representation of f (m,n). There are two methods for
decomposition quite well known (cf.[1] and [15]):

Standard decomposition: We apply the one-dimensional wavelet trans-
form to each row, then we apply the one-dimensional wavelet transform to
each column. This leads for a function f (m,n) to the following hierarchical
representation: f (m−1,n), f (m−2,n), . . ., f (0,n), f (0,n−1), . . ., f (0,0).
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Nonstandard decomposition: We apply one step of the one-dimen-
sional wavelet transform to each row, then one step to each column and
so on. We obtain for a function f (m,n) the following hierarchical represen-
tation: f (m−1,n), f (m−1,n−1), f (m−2,n−1), . . ., f (0,0).

In this work we have used the nonstandard decomposition method
because we are interested in a “geometric hierarchy”. That is, we consider
mainly the representations f (i,i), where a similiar amount of simplification
has taken place along both coordinate axes. The standard decomposition
would simplify along one axis as much as possible, before simplifying along
the other axis.

Now in the case of weighted wavelets one step of the construction of the
hierarchical representation works as follows. For each row or column of our
tensor-product spline representation, we compute the region of interestDj .
This is done in the following way. We consider the coefficients of each row
or column as a control polygon of a univariate function g and compute the
roots of g numerically. For this we evaluate the values g( i−1

n
) for some n ∈

N, i ∈ {1, . . . , n} and detecting sign changes of these values. In our case
we have chosen n = 10000. For every root η we compute a corresponding
interval I(η) which contains the root. If η ∈ [ 2i−1

(d+1)2j+1 ,
2i+1

(d+1)2j+1 [, then

we choose for I(η) the interval [ i−1
(d+1)2j ,

i+1
(d+1)2j [. We have used sampling

because it is simple. For a more sophisticated computation of the roots we
could use for example the method in [11]. Finally we take for the region
of interest Dj the union of the computed intervals I(η). Afterwards we
apply the corresponding weighted spline wavelets to each of the rows or
columns of the coefficient matrix.

We want to consider now more precisely what the representation of a
decomposed function f (m,n) looks like. By applying one analysis step, the
function f (m,n) is decomposed as

f (m−1,n)(x, y) +

dim W m−1
−1

∑

k=0

dim V n
−1

∑

l=0

d
(m−1,n)
k,l ψm−1,u

k,l (x)φn,v
l (y),

where d
(m−1,n)
k,l are the wavelet coefficients and ψm−1,u

k,l are the weighted

wavelets ψm−1,u
k , depending on l. That means for each row or column

we can have different weighted wavelets and different wavelet spaces, re-
spectively. Because we can use different wavelets for each row or column,
we can adapt the two-dimensional wavelet transform to the shape of the
curve.
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Fig. 4. Original curve at level 4.

§4. Comparison

In this section we compare the different weighted spline wavelets with
standard spline wavelets on a concrete example.

Example 1. We consider the implicitly defined algebraic spline curve
f (4,4) of bi-degree (3, 3) given in Figure 4 at level 4 (dashed curve). We
compare now the preservation of this curve by applying different spline
wavelet constructions. In Figure 5 we can see the resulting curves f (3,3) at
level 3 and f (2,2) at level 2 by using weighted biorthogonal spline wavelets
with a weight u = 5 and appropriate weighted regions (black curve) and
by using standard lifted spline wavelets (grey curve), which can be under-
stood as weighted biorthogonal wavelets with a weight u = 1. Remember,
we get the resulting curves f (3,3) from f (4,4) by applying one analysis step
to the rows of the coefficient matrix and then one analysis step to the
columns of the coefficient matrix. The curves f (2,2) are obtained from
f (3,3) by applying again one analysis step to the rows and one analysis
step to the columns of the coefficient matrix.

The comparison of weighted semiorthogonal spline wavelets with a
weight u = 5 and appropriate weighted regions (black curve) with standard
semiorthogonal spline wavelets (grey curve) can be seen in Figure 6. The
two different weighted wavelet constructions are compared in Figure 7.

§5. Conclusion

We have described a method to construct a hierarchical representation of
a given implicitly defined algebraic spline curve with the help of weighted
wavelets. For this we have explained the concept of two different types
of weighted spline wavelets (semiorthogonal and biorthogonal). As we
can see in Example 1 (Figures 5-7), the different weighted spline wavelets
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Level 3 Level 2

Fig. 5. Comparison of weighted biorthogonal wavelets (black) and standard
lifted biorthogonal wavelets (grey) with the original curve (dashed).

Level 3 Level 2

Fig. 6. Comparison of weighted semiorthogonal wavelets (black) and standard
semiorthogonal wavelets (grey) with the original curve (dashed).

preserve a curve better than the corresponding standard spline wavelets.
For standard spline wavelets, similiar results could be obtained by includ-
ing smaller wavelet coefficients in the areas near the zero-contour. Using
weighted spline wavelets, one can achieve a better representation without
having to use smaller wavelet coefficients. Consequently, if one wishes to
convert the result to a tensor-product representation with unform knots,
a smaller number of knots is needed to achieve the same accuracy. Com-
paring the two different weighted wavelet constructions, we see that the
weighted semiorthogonal wavelets are better than the weighted biorthog-
onal wavelets, but with the disadvantage of non-banded analysis matrices.

Clearly, the idea of our construction of a hierarchical representation
of an implicitly defined algebraic spline curve with weighted wavelets can
also be applied to implicitly defined surfaces or images with sharp features.
This could be the subject of future work.
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Level 3 Level 2

Fig. 7. Comparison of weighted biorthogonal wavelets (black) and weighted
semiorthogonal wavelets (grey) with the original curve (dashed).
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