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Johannes Kepler University, Institute of Applied Geometry, Altenberger Str. 69,

A–4040 Linz, Austria

Abstract

Curves in the Minkowski space R
2,1 are very well suited to describe the medial

axis transform (MAT) of planar domains. Among them, Minkowski Pythagorean
hodograph (MPH) curves correspond to domains where both the boundaries and
their offsets admit rational parameterizations [4,13]. We construct MPH quintics
which interpolate two points with associated first derivative vectors and analyze
the properties of the system of solutions, including the approximation order of the
‘best’ interpolant.
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1 Introduction

Pythagorean hodograph (PH) curves, which were introduced by Farouki and
Sakkalis [9], admit rational parameterizations of their offsets (planar case)
and low degree rational parameterizations of pipe surfaces (spatial case). PH
curves and their applications have been thoroughly investigated, cf. [8,10,16]
and the survey [7].

Minkowski Pythagorean hodograph (MPH) curves, which were introduced by
Choi et al. and Moon [4,13], can be used to describe the segments of the
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medial–axis transform (cf. [6,14]) of a planar domain: if the medial axis trans-
form is a collection of MPH curves, then the boundary curve of the associated
planar domain is a piecewise rational curve. As an important advantage, this
property is shared by all offsets of the boundary. Indeed, the offsetting op-
eration corresponds to a special translation of the MAT in Minkowski space,
which preserves the system of MPH curves.

The construction of PH and MPH curves is based on certain quadratic rep-
resentation formulas which can be cast into a unifying framework, see [5].
Consequently, all methods for generating (M)PH curves from certain geo-
metrical data require the solution of systems of quadratic equations. Since
the computation and the analysis of solutions may become very involved for
a large number of equations, the use of local constructions, which construct
one segment of a PH/MPH curve at a time, appears to be the most promising
approach. In particular, the construction of curves matching Ck or Gk Hermite
boundary data has been addressed in the literature.

In the case of G1 Hermite interpolation using PH cubics in R
3 [10] or MPH

cubics in R
2,1 [11], there exist up to four interpolants. One of them possesses

approximation order 4, provided that the data are taken from a curve without
inflections. In the Minkowski case, that curve is assumed to be space–like.

The problem of C1 Hermite interpolation with PH curves in R
3 yields a two-

parameter family of PH quintics [8,16]. There exists a particular interpolant
which is geometrically invariant, preserves symmetry and planarity, and pos-
sesses approximation order 4.

A C1/2 interpolation scheme using MPH quartics has been discussed in [12].

C2 Hermite interpolation using PH curves of degree 9 in R
3 gives a four-

parameter family of interpolants [17]. The results are similar as in the C1

case, but now with approximation order 6.

By using Ck data instead of Gk data, higher degrees of the interpolants are
needed. On the other hand, the results about the approximation order are valid
for a larger class of input curves. Moreover, while interpolants to Gk data exist
only if certain solvability conditions are satisfied, no such constraints exist in
the case of Ck data.

When comparing the results obtained in Euclidean and in Minkowski space,
the latter space introduces some new phenomena. For instance, there exist
curves with inflected segments in Minkowski space, which are not contained
in straight lines. Additionally, points with light–like tangents cause problems
and require a special treatment.

The remainder of the paper is organized as follows. In the following section
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we recall some basic facts about the Minkowski space and its geometry, the
Clifford algebra Cℓ(2, 1) and its use for representing MPH curves. The third
section studies the problem of C1 Hermite interpolation by MPH quintics and
derives a parameterization of the family of interpolants. Section 4 identifies a
particular solution. The fifth section analyzes the approximation order of this
particular interpolant. Finally we present several examples and conclude this
paper.

2 Preliminaries

In this section we summarize some fundamental concepts and results concern-
ing Minkowski space, Lorentz transforms, Clifford algebras and MPH curves.

2.1 Minkowski space and Lorentz transforms

The three–dimensional Minkowski space R
2,1 is a three–dimensional real affine

space equipped with an indefinite inner product defined by the matrix

G = (Gi,j)i,j=1,2,3 = diag(1, 1,−1). (1)

The inner product of two vectors u = (u1, u2, u3)
⊤, v = (v1, v2, v3)

⊤ is

〈u,v〉 = u⊤Gv = u1v1 + u2v2 − u3v3. (2)

As the quadratic form associated with G is not definite, the squared norm of
a vector, which is defined by ||v||2 = 〈v,v〉 can be positive, negative or zero.
With a reference to the special theory of relativity, one distinguishes three
‘causal characters’ of vectors: A vector v is said to be space–like if ||v||2 > 0,
time–like if ||v||2 < 0, and light–like (or isotropic) if ||v||2 = 0.

A unit vector v ∈ R
2,1 satisfies ||u||2 = ±1. By scaling, space–like vectors u can

be normalized to satisfy ||u||2 = 1, and time–like ones to satisfy ||u||2 = −1.

A plane in Minkowski space is called space–, time– or light–like if the re-
striction of the quadratic form defined by G on this plane is positive definite,
indefinite nondegenerate or degenerate, respectively.

A linear mapping L : R
2,1 → R

2,1 is called a Lorentz transform if it preserves
the Minkowski inner product, i.e. 〈u,v〉 = 〈Lu, Lv〉 for all u,v ∈ R

2,1. The
Lorentz transforms form the Lorentz group L = O(2, 1).

Any Lorentz transform is described by a 3 × 3–matrix L = (li,j)i,j=1,2,3. Its
column vectors l1, l2 and l3 satisfy 〈li, lj〉 = Gi,j, i, j ∈ {1, 2, 3}, i.e., they
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form an orthonormal basis of R
2,1 with respect to the inner product (2). The

equation 〈l3, l3〉 = G3,3 = −1 implies l233 ≥ 1. The Lorentz transform L is
said to be orthochronous if l33 ≥ 1. Obviously, the determinant of any Lorentz
transform L equals to ±1. The special ones are characterized by det(L) = 1.

The Lorentz group L consists of four components. The special orthochronous
Lorentz transforms form the subgroup SO+(2, 1). The remaining three com-
ponents are T1 · SO+(2, 1), T2 · SO+(2, 1) and T1 · T2 · SO+(2, 1), where T1 =
diag(1, 1,−1) and T2 = diag(1,−1, 1). Any special orthochronous Lorentz
transform L ∈ SO+(2, 1) can be represented as L = R(α1)H(β)R(α2), where

R(α) =







cosα − sinα 0
sinα cosα 0

0 0 1





 and H(β) =







1 0 0
0 cosh β sinh β
0 sinh β cosh β





 (3)

are a planar rotation with angle α, and a hyperbolic rotation (or ‘boost’) with
angle β, respectively.

2.2 The Clifford algebra Cℓ(2, 1)

Any real linear space, which is equipped with a non–degenerate quadratic
form, has an associated Clifford algebra, see [5,15] for a more detailed intro-
duction. In particular we are interested in the Clifford algebra Cℓ(2, 1), which
corresponds to the Minkowski space R

2,1, i.e., to the three–dimensional real
linear space with the indefinite quadratic form (2).

This Clifford algebra has four different classes of basis elements: the scalar
identity element 1, the orthonormal basis vectors e1, e2, e3, the bivectors e12,
e23, e31 and the pseudo–scalar e123. The rules governing non–commutative
multiplication · can be deduced from the basic relations e2

1 = e2
2 = 1 = −e2

3

and ei · ej = −ej · ei if i 6= j.

Any element of the Clifford algebra is a linear combination of these basis
elements. In order to simplify the notation, we shall use vectors in R

8 to
represent them,

A = [a0, a1, a2, a3, a4, a5, a6, a7] =
= a01 + a1e1 + a2e2 + a3e3 + a4e12 + a5e23 + a6e31 + a7e123.

(4)

The conjugation of elements and the squared norm are defined as

Ā = [a0,−a1,−a2,−a3,−a4,−a5,−a6, a7] and
N(A) = A · Ā = (a2

0 − a2
1 − a2

2 + a2
3 + a2

4 − a2
5 − a2

6 + a2
7)+

+ (2a0a7 − 2a1a5 − 2a2a6 − 2a3a4)e123,
(5)

4



respectively. The operation of conjugation satisfies A ·B = B̄ · Ā.

All vectors of R
2,1 will be identified with pure vectors

c = (λ, µ, ν)⊤ ∼= λe1 + µe2 + νe3 = [0, λ, µ, ν, 0, 0, 0, 0] ∈ Cℓ(2, 1). (6)

The norms in R
2,1 and Cℓ(2, 1) are related by

||c||2 = −N(c) (7)

The set of scalars combined with bivectors forms a subalgebra

H = R1 + Re12 + Re23 + Re31. (8)

of the Clifford algebra Cℓ(2, 1). Its elements will be represented by calligraphic
characters, A = [a0, 0, 0, 0, a4, a5, a6, 0] = a01 + a4e12 + a5e23 + a6e31.

2.3 Solving certain quadratic equations in Cℓ(2, 1)

We analyze the solutions of the equation

A · e1 · Ā = c (9)

where c is a pure vector and A is an element of the subalgebra H consisting
of scalars and bivectors. Indeed, A · e1 · Ā is a pure vector if A ∈ H. At first
we study the case where c = e1.

Lemma 1 All solutions of W · e1 · W̄ = e1 in the subalgebra H form the four
1–parameter systems

W(1, φ) = [cosh φ, 0, 0, 0, 0,− sinhφ, 0, 0], φ ∈ R,
W(2, φ) = [− cosh φ, 0, 0, 0, 0,− sinhφ, 0, 0], φ ∈ R,
W(3, φ) = [0, 0, 0, 0,− sinhφ, 0,− coshφ, 0], φ ∈ R,
W(4, φ) = [0, 0, 0, 0,− sinhφ, 0, coshφ, 0], φ ∈ R.

(10)

These four systems can be identified with two hyperbolas in R
8.

Proof: The equation W · e1 · W̄ = e1, where W = [w0, 0, 0, 0, w4, w5, w6, 0],
leads to

w2
0 − w2

4 − w2
5 + w2

6 = 1, w0w4 + w5w6 = 0, and w0w6 + w4w5 = 0. (11)

By forming the sum and difference of the last two equations, we obtain

(w0 + w5)(w4 + w6) = 0 and (w0 − w5)(w4 − w6) = 0. (12)
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Thus, we get w0 = ±w5 and w4 = ±w6 with four possible sign combinations.
Substituting these results into the first equation yields

w2
6 − w2

4 = 1 or w2
0 − w2

5 = 1. (13)

Consequently, the two hyperbolas (10) represent all solutions. 2

Remark 2 For the sake of brevity, we denote the ordered pair (i, φ) by φ̄,
and we write W(φ̄) instead of W(i, φ). Moreover, the set of all solutions of
W · e1 · W̄ = e1 will be denoted by W,

W = {W(i, φ) : i = 1, . . . , 4; φ ∈ R}. (14)

Note that W is centrally symmetric with respect to the origin 0, i.e., W ∈ W

implies −W ∈ W.

Lemma 3 Let c be a space–like vector in R
2,1, which is identified with the

corresponding element of the Clifford algebra. Let A,B ∈ H satisfy

A · e1 · Ā = c = B · e1 · B̄. (15)

Then there exists a W ∈ W such that A = B · W.

Proof: By taking the squared norm of the equation B · e1 · B̄ = c we obtain

N(B) = B · B̄ = ±
√

||c||2. On the other hand, by multiplying

A · e1 · Ā = B · e1 · B̄ (16)

with B̄/
√

||c||2 from the left–hand side and with B/
√

||c||2 from the right–hand
side, we arrive at

(
B̄ · A

√

||c||2
) · e1 · (

B̄ · A
√

||c||2
) = e1. (17)

Due to Lemma 1 there exists a W ′ ∈ W with W ′ = (B̄·A)/
√

||c||2. Multiplying

this equation with B from the left–hand side gives A = B · (±W ′), and the
result follows from the central symmetry of W. 2

Finally we characterize all solutions of (9) in H of a space– or light–like vector.

Lemma 4 Consider a space–like or light–like vector c = (λ, µ, ν)⊤, which is
identified with the corresponding element of the Clifford algebra, and let

α(c) =
1

2
(λ+

√

||c||2). (18)
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If α(c) > 0, then all solutions of the equation X · e1 · X̄ = c in the subalgebra
H can be expressed as

X (i, φ) =
1

2
√

α(c)
[ν, 0, 0, 0, 0,−µ, 2α(c), 0] · W(i, φ), (19)

where φ ∈ R, i ∈ {1, 2, 3, 4}. If α(c) < 0, then they can be expressed as

X (i, φ) =
1

2
√

−α(c)
[0, 0, 0, 0, ν,−2α(c),−µ, 0] · W(i, φ), (20)

where again φ ∈ R, i ∈ {1, 2, 3, 4}.

Proof: If c is space–like, then any of these solutions can be obtained by
multiplying a particular solution with a suitable element of W, see Lemma 3.
A straightforward computation confirms that X (i, 0) gives indeed a particular
solution. On the other hand, if c is light–like, then the result of that Lemma
cannot be used. However, a direct computation (similar to the one in Lemma 1)
confirms that the formulas (19) and (20) represent all solutions. 2

Remark 5 If α(c) = 0, i.e. if λ ≤ 0 and µ2 = ν2, one obtains different 1–
parametric families of solutions. This is due to the fact that the particular
solution cannot be computed using Lemma 4. This is similar to [8, Eq. (22)
and Footnote 4]. Geometrically, this occurs when c lies in one of the two
half-planes obtained as bisectors of the µ and ν axes, restricted to the half-
space λ ≤ 0. We exclude this case from our considerations. This is just a
technical assumption, which we make in order to simplify the presentation.
As we shall see later in Section 5, the case α(c) = 0 does not occur if the data
are sampled from a space–like C∞ curve with sufficiently small step–size.

2.4 MPH curves

Recall that a polynomial curve in Euclidean space is called a Pythagorean
hodograph (PH) curve (cf. [7]), if the squared norm of its first derivative (or
hodograph) is the square of another polynomial. Following [13], Minkowski
Pythagorean hodograph (MPH) curves are defined similarly, but with respect
to the norm induced by the Minkowski inner product. More precisely, a poly-
nomial curve c ∈ R

2,1, c = (x, y, r)⊤ is called an MPH curve if

||c′||2 = x′
2
+ y′

2 − r′
2

= σ2 (21)

for some polynomial σ.

As observed in [4,13], if the medial axis transform (MAT) of a planar domain
is (a collection of) MPH curve(s), then the coordinate functions of the corre-
sponding boundary curves (i.e., the envelopes of the circles with centers (x, y)
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and radius r) are (piecewise) rational functions. For instance, if (x, y, r) is an
MPH quintic, then the boundaries are rational curves of degree 13.

Due to the definition of MPH curves, the tangent vector c′(t) cannot be time–
like. Also, light–like tangent vectors correspond to roots of the polynomial
σ in (21). Each regular point of an MPH curve has a space-like or light-
like tangent vector. It corresponds to two or to one point on the boundaries
of the associated planar domain, respectively. See [14, Section 2.1] for more
information concerning the relation between general curves (not only MPH
curves) in R

2,1 and the boundaries of the associated planar domain.

According to [13], the equation (21) holds if and only if there exist polynomials
u(t), v(t), p(t) and q(t) such that

x′(t) = u(t)2 − v(t)2 − p(t)2 + q(t)2,
y′(t) = −2(u(t)v(t) + p(t)q(t)),
r′(t) = 2(u(t)q(t) + v(t)p(t)),
σ(t) = u(t)2 + v(t)2 − p(t)2 − q(t)2.

(22)

This result can be reformulated using Clifford algebra Cℓ(2, 1), see [5], by again
identifying vectors with elements of the algebra, cf. (6).

Lemma 6 A polynomial curve p(t) in R
2,1 is an MPH curve if and only if

there exists a polynomial curve A(t) = u(t)+ v(t)e12 + p(t)e23 + q(t)e31 in the
subalgebra H such that

p′(t) = h(t) = A(t) · e1 · ¯A(t) (23)

holds.

Consequently, the construction of MPH curves is reduced to the construction
of a suitable curve A(t) in the subalgebra H, which will be called the preimage
curve.

3 C1 Hermite interpolation by MPH quintics

We construct MPH curves p(t) which match given C1 Hermite boundary data.
More precisely, the curves are to interpolate the boundary points

p0 = p(0), p1 = p(1) (24)

and the boundary tangent vectors

t0 = p′(0), t1 = p′(1). (25)
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As a technical assumption, we exclude the cases α(t0) = 0 or α(t1) = 0, see
Lemma 4 and Remark 5.

Two curves p(t), p̃(t) share the same hodograph if and only if they differ by
a translation. Consequently, an MPH curve p(t) is uniquely determined by its
preimage A(t) and its starting point p0 = p(0). The position of p(0) can be
matched by a suitable choice of the integration constant. Thus, 9 interpolation
conditions are to be satisfied by the control points of A(t).

We choose the degree of A(t) to be equal to 2, which gives 12 free parameters.
Since the representation of Lemma 6 has one–dimensional fibers, we expect
to obtain a 2 (= 12 − 9 − 1) – dimensional system of MPH interpolants of
degree 5 (= 2 × 2 + 1).

We express the hodograph h(t) = p′(t) and the preimage A(t) by their
Bernstein–Bézier representations,

h(t) =
4

∑

i=0

hiB
4
i (t), A(t) =

2
∑

i=0

AiB
2
i (t), t ∈ [0, 1], (26)

where hi (vectors) and Ai (scalars and bivectors) are the control points and

Bn
i (t) =

(

n
j

)

tj(1 − t)n−j are the Bernstein polynomials. The interpolation
conditions give the equations

h0 = t0, h4 = t1,
4

∑

i=0

hi = 5(p1 − p0), (27)

which have to be satisfied by the control points of the hodograph. We express
these equations in terms of the preimage control points. After a suitable re–
arranging we arrive at the equations

A0 · e1 · Ā0 = t0, A2 · e1 · Ā2 = t1 (28)

and (note that A0 · e1 · Ā2 + A2 · e1 · Ā0 is a pure vector if A0,A2 ∈ H)

(3A0 + 4A1 + 3A2) · e1 · (3Ā0 + 4Ā1 + 3Ā2) =
= 120(p1 − p0) − 15(t1 + t0) + 5(A0 · e1 · Ā2 + A2 · e1 · Ā0)

(29)

These three equations are of the form A · e1 · Ā = c, and they can therefore
be solved with the help of Lemma 4, as follows.

Firstly, we compute the solutions A0(i, φ0) = A0(φ̄0) and A2(k, φ2) = A2(φ̄2)
of (28) in the form of (19) or (20). Secondly, after substituting them into (29)
and again solving the resulting equation, we obtain a 3–parametric system
of control points A1 = A1(φ̄0, φ̄1, φ̄2). These control points depend on the
parameters φ̄i ∈ {1, 2, 3, 4} × R, i = 0, 1, 2.

Summing up, we arrive at a 3–parametric system of suitable preimages

A[φ̄0, φ̄1, φ̄2](t) = A0(φ̄0)B
2
0(t) + A1(φ̄0, φ̄1, φ̄2)B

2
1(t) + A2(φ̄2)B

2
2(t). (30)
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The hodographs of the MPH interpolants are then obtained as

h[φ̄0, φ̄1, φ̄2](t) = A[φ̄0, φ̄1, φ̄2](t) · e1 · Ā[φ̄0, φ̄1, φ̄2](t). (31)

However, as in the Euclidean case (see [8,16]), one of the three parameters is
redundant.

Lemma 7 Let h[(i, φ0), (j, φ1), (k, φ2)](t) be the hodograph of a particular MPH
interpolant to some given input data. Then there exist parameters ρ0, ρ2 and
integers p, q ∈ {1, 2, 3, 4} such that

∀t : h[(i, φ0), (j, φ1), (k, φ2)](t) = h[(p, ρ0), (1, 0), (q, ρ2)](t) (32)

holds.

Proof: We consider the preimage control points A0(i, φ0), A1(j, φ1), A2(k, φ2).
For any value of the additional parameter θ ∈ R, we consider the ‘rotated’
preimage control points, which are obtained by changing the parameters to

(i, φ0 + (−1)iθ), (j, φ1 + (−1)jθ), and (k, φ2 + (−1)kθ). (33)

Due to the identity

W(i, φ + (−1)iθ) = W(i, φ) · W(1,−θ), i ∈ {1, 2, 3, 4}, (34)

which is a direct consequence of the addition theorems for hyperbolic func-
tions, one can verify that the new preimage control points are obtained by
multiplying the original ones by W(1,−θ) from the right–hand side. Let

P(t) = A[(i, φ0), (j, φ1), (k, φ2)](t) (35)

and

P̃(t) = A[(i, φ0 + (−1)iθ), (j, φ1 + (−1)jθ), (k, φ2 + (−1)kθ)](t) (36)

be the original and the rotated preimage, respectively. The corresponding
hodographs satisfy

P̃(t) · e1 · ¯̃P(t) = P(t) · W(1,−θ) · e1 · P(t) · W(1,−θ) = P(t) · e1 · P̄(t), (37)

i.e., we obtain the same MPH interpolant for any choice of θ. In particular, by
choosing θ = (−1)j+1φ1, we find parameters ρ0 = φ0 +(−1)iθ, ρ2 = φ2 +(−1)k

such that

∀t : h[(i, φ0), (j, φ1), (k, φ2)](t) = h[(i, ρ0), (j, 0), (k, ρ2)](t). (38)

Next we observe that W(1, 0) = e, W(2, 0) = −e, W(3, 0) = −e31 and
W(4, 0) = e31. Any one of these four Clifford algebra elements can be obtained
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by multiplying one of them with all values of the set E = {e,−e, e31,−e31}
from the right–hand side. Moreover, if we right–multiply the entire preimage
by E ∈ E, i.e. P̂(t) = P̃(t) · E , then the hodograph remains unchanged, since

P̃(t) · E · e1 · P̃(t) · E = P̃(t) · e1 · ¯̃P(t). (39)

Consequently, we can always right–multiply the preimage by a suitable E ∈ E

such that the index j of the middle parameter φ̄1 becomes 1. 2

In the remainder of this paper we use the reduced set of free parameters and
denote the preimages with

A[φ̄0, φ̄2](t) = A[(i, φ0), (1, 0), (k, φ2)](t) (40)

The corresponding quintic MPH interpolants are

p[φ̄0, φ̄2](τ) = p0 +

τ
∫

0

A[φ̄0, φ̄2](t) · e1 · Ā[φ̄0, φ̄2](t) dt. (41)

Among these solutions we identify a special one.

4 Identifying a particular solution

After analyzing the influence of some specific Lorentz transforms to the free
parameters controlling the interpolant, we identify a geometrically invariant
particular solution with certain symmetry properties. More precisely, the com-
putation of the solution commutes with Lorentz transforms, translations and
reversion of the data.

4.1 The parameterization of the interpolants and Lorentz transforms

For any given C1 Hermite data p0, p1, t0, t1, the system

{p[φ̄0, φ̄2](t) : φ̄0 = (i, φ0), φ̄2 = (k, φ2), φ0, φ2 ∈ R, i, k = 1, . . . , 4} (42)

represents all MPH interpolants. Therefore, it is invariant with respect to
Lorentz transforms. More precisely, if we apply a Lorentz transform L to the
Hermite data, we obtain modified data p̃0 = L(p0), p̃1 = L(p1), t̃0 = L(t0),
t̃1 = L(t1), along with the modified interpolating MPH curves p̃[ψ̄0, ψ̄2](t).
The systems of interpolants satisfy

∀φ̄0, φ̄2 : ∃ψ̄0, ψ̄2 : ∀t : p̃[ψ̄0, ψ̄2](t) = L(p[φ̄0, φ̄2](t)). (43)

In general, however, the transform L does not preserve the parameterization of
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the interpolants by the free parameters φ̄i, ψ̄k. The relations ψ̄0 = φ̄0, ψ̄2 = φ̄2

are not always satisfied.

In order to identify a particular solution which is geometrically invariant, we
analyze the behavior of the free parameters under Lorentz transforms. We
restrict ourselves to the so–called “main branch” of interpolants:

Definition 1 We assume that the data are chosen such that the interpolants
in (42) which are obtained by choosing i = k = 1 are computed solely by using
the solutions (19). Under this assumption, these interpolants are said to form
the main branch of interpolants. They will be denoted by p0[φ0, φ2].

As shown in the following sections, the main branch of MPH interpolants
includes the one which is most useful.

Lemma 8 We consider a solution of the main branch which is obtained for
two arbitrary but fixed values φ0, φ2 ∈ R.

1) If Ξ1 is a hyperbolic rotation about the e1 axis and p̃0 the main branch of
interpolants for the transformed data, then

∀t : p̃0[φ0, φ2](t) = Ξ1(p0[φ0, φ2](t)). (44)

2) If Ξ2 is a reflection with respect to a non–light–like plane containing the e1

axis, then

∀t : p̃0[−φ0,−φ2](t) = Ξ2(p0[φ0, φ2](t)). (45)

Proof: For arbitrary but fixed φ0, φ2, let A0,A1,A2 be the control points
of the preimage for some input data p0, p1, t0, t1, and Ã0, Ã1, Ã2 for the
transformed input data.

Any hyperbolic rotation about the e1 axis through an angle θ (cf. (3)) can be
represented by the mapping

Ξ1([0, λ, µ, ν, 0, 0, 0, 0]) = [0, λ, µc+ νs, νc + µs, 0, 0, 0, 0], (46)

where c = cosh θ, s = sinh θ. We extend Ξ1 to the entire Clifford algebra,
except for the last coordinate,

Ξ1([a0, λ, µ, ν, a4, a5, a6, 0]) =
[a0c− a5s, λ, µc+ νs, νc + µs, a4, a5c− a0s, a6, 0].

(47)

Using (28) one can verify that

Ã0 = Ξ1(A0) and Ã2 = Ξ1(A2). (48)
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Moreover, due to (48) and c2 − s2 = 1, the relation

1

2
(Ã0 · e1 · ¯̃A2 + Ã2 · e1 · ¯̃A0) = Ξ1(

1

2
(A0 · e1 · Ā2 + A2 · e1 · Ā0)) (49)

holds. Consequently, the right–hand side of the equation (29) for the trans-
formed data is equal to the transformed right–hand side of this equation for
the original data. It follows that Ã1 = Ξ1(A1) and thus for the preimage
Ã(t) = Ξ1(A(t)), which implies (44).

In order to prove (45), it suffices to consider only the reflection Ξs with respect
to the space–like plane spanned by e1 and e2 and the reflection Ξt with respect
to the time–like plane spanned by e1 and e3. Indeed, any other reflection with
respect to a non–light–like plane containing the e1 axis can be obtained as a
composition of Ξs or Ξt and two hyperbolic rotations about the e1 axis.

Similarly to the first part of the proof, we extend the mappings Ξs and Ξt from
pure vectors to the whole Clifford algebra (excluding the last coordinate)

Ξs([a0, λ, µ, ν, a4, a5, a6, 0]) = [−a0, λ, µ,−ν,−a4, a5, a6, 0],
Ξt([a0, λ, µ, ν, a4, a5, a6, 0]) = [a0, λ,−µ, ν,−a4,−a5, a6, 0].

(50)

A direct computation confirms that the formulas (48) and (49) remain valid,
provided that the control points of Ã(t) are constructed using the parameters
−φ0, −φ2, while the control points of A(t) are constructed using the original
parameters φ0, φ2. 2

4.2 Standardized positions of the input data

In the remainder of this paper we assume that the sum t0 + t1 of the given
boundary derivatives is a space–like vector. We need this assumption in order
to define the standard position in a symmetric fashion. For instance, if the
data are sampled from a space–like curve with some step size h, then this
assumption is always satisfied provided that h is sufficiently small. Note that
the medial axis transform of a planar domain is a system of curves in Minkow-
ski space. The tangent vectors of these curves are never time–like, and only
isolated boundary points with light–like tangents may be present.

Definition 2 If t0 + t1 is a positive multiple of e1 and p0 = 0, then the
input C1 Hermite data are said to be in a standard position. We paramete-
rize the main branch of MPH interpolants as follows. First, we transform the
input data to a standard position. Then we construct the MPH interpolants
p0[φ0, φ2](t) of the main branch. Finally, we transform the solutions back to
the original position. This parameterized family of MPH interpolants will be
denoted by s[φ0, φ2](t)

Due to Lemma 8, this parameterization of the main branch of MPH inter-
polants is well defined, as the particular choice of a standard position does not
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matter. The labeling of the solutions (i.e., the mapping (φ0, φ2) 7→ s[φ0, φ2](.))
is invariant with respect to special Lorentz transforms, while reflections change
the signs of both parameters φ0, φ2. In addition we have the following result.

Proposition 9 We consider the interpolants s[φ0, φ2](t) and s̃[φ0, φ2](t) of
the input data p0, p1, t0, t1 and of the ‘reversed’ data p̃0 = p1, p̃1 = p0,
t̃0 = −t1, t̃1 = −t0, respectively. Then the equation

∀t : p̃[φ0, φ2](1 − t) = p[−φ2,−φ0](t) (51)

holds for all values of the parameters φ0 and φ2.

Proof: We assume that the original data are already in a standard position.
The reversed data is transformed into a standard position by a translation
by the vector −p1 and a reflection with respect to the r axis, which can be
decomposed into the reflection c → −c with respect to the origin and the
reflection Ξxy with respect to the xy plane.

The standard positions associated with the given and reversed data are related
by swapping t0 and t1 and by the reflection Ξxy. After taking the symmetry
of the equations (28) and (29) with respect to A0 and A2 into account, the
proof follows from the second part of Lemma 8. 2

Finally we apply these observations to the special case φ0 = φ2 = 0.

Theorem 10 The interpolant s[0, 0](t) is invariant under translations and
Lorentz transforms, and it is symmetric with respect to reversion of the data.

In addition to these invariance properties, we show that this particular solution
also possesses the optimal approximation order.

5 Approximation order

We assume that a sufficiently smooth (C4) space–like curve C(T ) in Minkowski
space R

2,1 is given. It may be a branch of the medial axis transform (MAT)
of a planar domain. In this situation, the curve is space–like, except for those
end points, which correspond to vertices (curvature maxima) of the boundary
of the domain.

In order to approximate this curve by a quintic MPH spline, we sample C1

Hermite boundary data from segments T ∈ [t0, t0 + h] and apply the interpo-
lation procedure. The next theorem analyzes the behavior of the error as the
step size h tends to zero. As noted in [11], the results on the approximation
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order of the MAT imply analogous results for the Hausdorff distance of the
associated planar domains.

Theorem 11 If the step–size h is sufficiently small, then the main branch of
the interpolants as introduced in Definition 1 exists, i.e., the solutions for
i = k = 1 are computed solely using (19). In particular, the interpolant
s[0, 0](t) has approximation order 4, and all other interpolants (for arbitrary
but constant values of the free parameters φ̄0, φ̄2) have only approximation
order 1.

Proof: We prove this theorem using Taylor series. Without loss of generality
we choose C(0) = (0, 0, 0)⊤ and C′(0) = (1, 0, 0)⊤, hence

C(T ) = (T +
∞
∑

i=2

xi

i!
T i,

∞
∑

i=2

yi

i!
T i,

∞
∑

i=2

ri

i!
T i)⊤, (52)

where xi, yi and ri are arbitrary but fixed coefficients, i = 2, 3, . . .. The Hermite
interpolation procedure is applied to the segment c(t) = C(th), t ∈ [0, 1],
where the step–size h specifies the length.

In order to prove the Theorem, we evaluate the Taylor expansions with respect
to h of all quantities occurring in the interpolation algorithm, using a suitable
computer algebra tool. Due to the space limitations and the complexity of the
expressions we present only the leading terms of certain quantities 1 .

First we generate the Taylor expansions of the Hermite boundary data, p0 =
(0, 0, 0)⊤, t0 = (h, 0, 0)⊤,

p1 =







h+ 1
2
x2h

2 + 1
6
x3h

3 + . . .
1
2
y2h

2 + 1
6
y3h

3 + . . .
1
2
r2h

2 + 1
6
r3h

3 + . . .





 , t1 =







h+ x2h
2 + 1

2
x3h

3 + . . .
y2h

2 + 1
2
y3h

3 + . . .
r2h

2 + 1
2
r3h

3 + . . .





 .

In order to transform these data into a standard position, we apply a Lorentz
transform with the Taylor expansion

U =









1 − y2

2
−r2

2

8
h2 + . . . y2

2
h+ y3−x2y2

4
h2 + . . . −r2

2
h− r3−x2r2

4
h2 + . . .

−y2

2
h− y3−x2y2

4
h2 + . . . 1 − y2

2

8
h2 + . . . 0

−r2

2
h− r3−x2r2

4
h2 + . . . −y2r2

4
h2 + . . . 1 +

r2

2

8
h2 + . . .









.

The squared norms of the boundary derivatives are

||t0||2 = ||U(t0)||2 = h2, ||t1||2 = ||U(t1)||2 = h2 + 2x2h
3 + . . . ,

1 The details of the computation (Maple worksheets) are available in electronic
form at www.ag.jku.at/pubs/C1 MPH Maple.tar.gz.
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i.e., these vectors are space–like for sufficiently small h. Moreover, the quan-
tities α(t0) and α(t1) (see Lemma 4) have the expansions

α(t0) = 2h+
1

8
(r2

2 − y2
2)h

3 + . . . , α(t1) = 2h+ 2x2h
2 + . . . , (53)

they are therefore positive for sufficiently small h. As the next step, we generate
the Taylor expansions of the control points of the preimage curve. Using (19)
we obtain A0(φ̄0) and A2(φ̄2). After substituting them into (29) one can verify
that the right hand side R of the equation (29) satisfies

α(R) = 10(9 + cosh(φ2 − φ0))h+ 5(9 + cosh(φ2 − φ0))x2h
2 . . . , (54)

i.e., α(R) becomes positive as h → 0. Consequently, for sufficiently small
step–size h, the solutions are obtained solely by using (19).

We refrain from presenting the expansions of the preimage control points, as
even the leading terms are rather complicated. Finally, after integration and
transforming the results back from the standard position, we arrive at the
Taylor expansion of the MPH interpolant p[φ̄0, φ̄2] and compare it with the
given curve segment. We focus on the main branch of the interpolants. The
leading term of the x coordinate of s[φ0, φ2](t) equals

[t+ 1
2
((coshφ0)

√

10 cosh(φ2 − φ0) + 90 − 3 cosh(φ2 − φ0) − 7)t2

−1
2
((3 coshφ0 + coshφ2)

√

10 cosh(φ2 − φ0) + 90 − 12 cosh(φ2 − φ0) − 28)t3

+1
2
((3 coshφ0 + 2 coshφ2)

√

10 cosh(φ2 − φ0) + 90 − 15 cosh(φ2 − φ0) − 35)t4

−1
2
((3 coshφ0 + coshφ2)

√

10 cosh(φ2 − φ0) + 90 − 6 cosh(φ2 − φ0) − 14)t5]h.

By comparing this expansion with the x–coordinate of c(t) we see that the
convergence is better than linear if and only if the coefficients of t2, t3, t4 and
t5 vanish. By solving the resulting equations it can be shown that this is the
case if and only if φ0 = φ2 = 0. Moreover, the Taylor expansion of s[0, 0]
matches the expansion of c(t) up to h3. Finally, by computing the expansions
of the interpolants p[φ̄0, φ̄2] of the other branches, one can verify that for any
values of φ0, φ2 ∈ R the approximation error converges to 0 as O(h1) only. 2

Remark 12 For a fixed step-size h, the interpolant s[0, 0] is not necessarily
the best possible one. It is a challenging problem to identify the optimal so-
lution among the four two-parameter families of interpolants. In the case of
C1 interpolants in the Euclidean plane, this problem is now completely solved
[3]. For PH quintics in the Euclidean space, [8] proposes to identify the best
solution with the help of an integral shape measure. This technique could be
adapted to the Minkowski case, possibly by restricting it to the first two com-
ponents of the curve in R

2,1, which represent the medial axis of the associated
planar domain. A detailed discussion is beyond the scope of the present paper.
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6 Examples

We illustrate the theoretical results by several examples.

Example 1 We apply the C1 Hermite interpolation scheme to the data

p0 = (0, 0, 0)⊤, p1 = (0, 1, 0)⊤, t0 = (3, 0, 0)⊤, t1 = (3, 0, 0)⊤. (55)

Note that these data lie in a space–like plane. As a natural question, one may
ask for the planar curves among all interpolants. We present the following
results, without giving a proof: Let the input data lie in a plane π and let
t0 + t1 be a space–like vector.

• If the plane π is space– or light–like, then the four interpolants p[(i, 0), (k, 0)],
i, k ∈ {1, 2} are planar.

• If the plane π is time–like, then the interpolation scheme gives 16 planar
interpolants p[(i, 0), (k, 0)], i, k ∈ {1, 2, 3, 4}.

Consequently, the ‘best’ solution s[0, 0](t) has the additional advantage of
preserving planarity.

Figure 1a shows the four planar interpolants to the given data (55). As the
data lie in the space–like plane x3 = 0, these four curves are identical to the
solutions of the C1 Hermite interpolation problem in the Euclidean plane, see
[3,7]. Note that the interpolant p[0, 0] (bold) is the ‘best’ one. In order to
illustrate the influence of the free parameters φ0 and φ2, Figure 1b shows the
interpolants p[φ0, φ2], where φ0 = φ2 = l

3
, l = −6, . . . , 6.

Example 2 The interpolation algorithm and Theorem 11 allow to approxi-
mate any space–like C∞ curve c(t) by a quintic MPH spline. Let the parameter
domain of c(t) be [0, 1]. Using binary subdivision, we split the interval into 2n

segments. For each segment we construct the MPH interpolant s[0, 0]. If the er-
ror is not sufficiently small, then we continue in subdividing. Clearly, using an
adaptive subdivision reduces the number of interpolants. Due to Theorem 11,
the error converges to 0 as O(16−n).

We demonstrate the order of convergence by the following example, see Fig-
ure 2. Consider the segment of the C∞ curve

c(t) = (1.2t, 0.25t sin(10t− 1), 1 − cosh(t− 1
2
)

cosh 1
2

)⊤; t ∈ [0, 1]. (56)
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Fig. 1. a) The four planar MPH interpolants to given planar input data,
and b) the family of MPH interpolants p[φ0, φ2] for various values of φ0 and
φ2. The projections of the interpolants into the x1x2– and x1x3– plane are
shown in grey.
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Fig. 2. Approximation of a C∞ curve (black) by an MPH quintic spline
(gray) obtained by splitting the parameter domain into 1, 2, 4, and 8 spans.
The segment boundaries are indicated by the small circles. In the last case,
the curves are almost indistinguishable. In addition to the curve in R

2,1, the
figure shows the corresponding one–parameter families of circles and their
envelopes in the x1x2–plane. The curve in R

2,1 is the medial axis transform
(MAT) of the planar domain which is bounded by the two envelopes.

The approximation error (sample–based estimation) and its improvement on
the first interval span in each step of subdivision are reported in Table 1. The
ratios of adjacent errors tend to 16, as predicted by the approximation order.
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Table 1
Numerical results obtained by uniform refinement.
no. segments error ratio no. segments error ratio

1 4.752 · 10−1 – 64 1.066 · 10−7 17.87

2 7.020 · 10−2 6.78 128 6.244 · 10−9 17.07

4 7.603 · 10−3 9.23 256 3.769 · 10−10 16.57

8 6.429 · 10−4 11.83 512 2.314 · 10−11 16.29

16 3.572 · 10−5 18.00 1024 1.433 · 10−12 16.15

32 1.905 · 10−6 18.75 2048 8.913 · 10−14 16.07

Table 2
Numerical results obtained for a curve with a light–like tangent vector.

no. segments error ratio no. segments error ratio

1 7.450 · 10−2 8 9.934 · 10−4 3.99

2 1.593 · 10−2 4.68 16 2.487 · 10−4 3.99

4 3.966 · 10−3 4.02 32 6.222 · 10−5 4.00

Example 3 Finally we consider the case of light–like tangent vectors, which
has been excluded so far. Since light–like curves do not occur as medial axis
transforms, we consider a curve segment which has a light–like boundary tan-
gent at its start point, while all other tangents are space–like. For instance,
this situation occurs at those end points of the medial axis transforms which
correspond to vertices of the boundary curve.

We consider the segment of the C∞ curve

c(t) = (1.15t−
√

2, (1.15t−
√

2)2,
1

2
(1.15t−

√
2)3 + 1.7)⊤, t ∈ [0, 1], (57)

which has a light–like tangent at t = 0. Analogously to the previous example,
Table 2 shows the approximation error and its improvement.

The theoretical analysis of this case led to challenging problems of symbolic
formula manipulation. Following our numerous numerical experiments (cf. Ta-
ble 2), we were inclined to formulate the

Conjecture 1 The approximation order at points with light–like tangents is
equal to two for the four interpolants p[(i, 0), (k, 0)](t), i, k ∈ {1, 4}. For all
other interpolants, the approximation order is equal to one.

7 Conclusion

As observed in [4,13], MPH curves are well suited for approximating the medial
axis transform of a planar domain, since they provide a rational parameteriza-
tion of the domain boundaries and of its offset curves. According to [5], MPH
curves can be generated with the help of a closed form representation using
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the Clifford algebra Cℓ(2, 1). Based on these earlier results, we presented a gen-
eral method for approximating any space–like C∞ curve by a C1 MPH quintic
spline. With the help of asymptotic analysis we proved that the approxima-
tion order is equal to four. The method is superior to the G1 interpolation
algorithm, as the solvability does not depend on the input data and the ap-
proximation order is not reduced to two at Minkowski inflections.
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