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Abstract

We propose a new method for constructing a piecewise
smooth mesh from a set of unorganized data points, which
may be non-uniformly sampled, noisy, and even containing
holes. The method is based on the construction of an im-
plicit representation of the surface, by using smooth (C2 in
our case) T-spline scalar functions. We first generate the T-
spline control grid, and use an evolution process such that
the resulting T-spline level sets capture the topology and
outline of the object to be reconstructed. The initial mesh
with high quality is obtained from the implicit T-spline func-
tion through the marching triangulation method. Then we
project each data point to the initial mesh, and get a scalar
displacement field. Detailed features will be captured by the
displaced mesh. We also propose an additional evolution
process, which combines data-driven velocities and feature-
preserving bilateral filters, in order to reproduce sharp fea-
tures.

Keywords: mesh reconstruction, point cloud, displacement
maps, T-spline, level sets

1 Introduction

1.1 Background and Previous Work

Surface reconstruction from scattered data points has
many applications in computer graphics, computer aided
design, computer vision and image processing. There is a
large body of literature dealing with this problem. It is be-
yond the scope of this paper to give a detailed overview of
all the existing work. [24] gives an excellent survey of the
previous work on surface extraction from point clouds.

Typically scanned scattered data is noisy and may even
contain holes. The object surface to be reconstructed may
have a complex topology, which is not known a priori.
There have been many approaches trying to handle this dif-
ficulty [41]. Depending on the area of the application, dif-
ferent representations have been used, such as triangular
meshes [6, 3, 14, 37, 46, 48, 41], subdivision surfaces [23,

44, 11], parametric spline surfaces [15, 18], discretized
level sets [42, 57], scalar spline functions [45, 30], radial
basis functions [8, 40] and point set surfaces [2, 43, 16].
These different representations can be classified into two
types: parametric representations and implicit representa-
tions. Among the various approaches, these two represen-
tations may complement each other. On the one hand, the
implicit representations [52] offer advantages such as the
non-existence of the parametrization problem, repairing ca-
pabilities of incomplete data and simple operations of shape
editing, but they are hard to model sharp features [38]. On
the other hand, the parametric representations can easily
handle sharp features, but have difficulties when processing
topology changes.

In this paper, we suggest a new reconstruction algo-
rithm combining two types of representations: an implicit
T-spline level set and a mesh. The proposed method relies
on two main tools: displacement mapping [13] and Bilat-
eral filtering [49, 51]. In the rest part of this section, we will
describe some related work about these two tools.

Given a smooth base surfaceS0, a displaced surfaceS
can be generated by a scalar filed (a displacement map),
which specifies the displacement values along the normal
directions ofS0. The use of displacement maps is quite
popular for geometric modeling purposes. They are used in
high end rendering systems [13, 5], to capture the fine de-
tail of a 3D photography model [32], for geometric simplifi-
cation with appearance-preserving [12], for building semi-
regular multiresolution meshes from an arbitrary connec-
tivity input mesh[20] and for multiresolution mesh defor-
mations [31]. While most displacement maps are along
the surface normals, there are also vector-valued displace-
ment maps [10, 35] along an arbitrary direction. In or-
der to avoid cracks between adjacent triangles of a mesh,
the interpolated normal is used [19] to displace the sur-
face, B-spline surfaces are fitted [32] to the mesh before the
displacement mapping, displaced subdivision surfaces [33]
are suggested which is based on the butterfly subdivision
scheme. There are also existing approaches for reconstruct-
ing a displaced subdivision surface directly from a given
set of points [26, 27]. Most recently, the author in [56]
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Figure 1. Mesh reconstruction of the Rocker-Arm model. The fi gure shows the data points and the
T-mesh in (a), an intermediate T-spline level set during the evolution in (b), the final T-spline level set
(the initial mesh) in (c), the displaced mesh in (d), and the fi nal mesh (after bilateral filtering) with
sharp features in (e).

presents a displaced surface representation based on a man-
ifold structure.

Extracting sharp features from 3D data is important [50],
but difficult due to the feature-insensitive sampling and the
noise of the given data. Many approaches have been pro-
posed to address this problem [22, 25, 54, 36]. As a non-
iterative scheme for edge-preserving smoothing, the Bilat-
eral filter is used in [17] and [28] to denoise a given surface.
The author in [53] presents a robust general approach con-
ducting bilateral filters to govern the sharping of triangular
meshes. Also, the authors in [4] conduct the bilateral filter
in the reconstruction of surfaces from scattered data.

1.2 Proposed Approach and Contribution

Given a set of unorganized and noisy data points without
normals as input, we want to reconstruct a mesh surface
which approximates the data. We propose a three-phase
process to perform this reconstruction:

1. Initial mesh generation. In the first phase, we use
an evolution process to create an implicit representa-
tion, which is defined as the zero level set of aC2 T-
spline scalar function. The obtained T-spline level set
(with correct topology) is to serve as a smooth base
surface for the displacement mapping. A high-quality
initial mesh (with accurate normals) is generated from
the implicit function by using the marching triangula-
tion [21] method.

2. Displacement mapping. In the second phase, we pro-
duce a smooth scalar displacement field, which is com-
puted by projecting each data point to the initial mesh

and using Gaussian filtering. Small geometric features
are then constructed by the displacement mapping of
the mesh along the normal direction, which is guided
by the smooth gradient vector field of the implicit func-
tion.

3. Recovering of sharp features. In the third phase, we
use an additional evolution process, which combines
data-driven velocities and feature-preserving bilateral
filters, in order to better reproduce sharp features.

Our method combines two types of representations: the im-
plicit T-spline level set and the mesh. This combination
strategy makes our method benefit from both representa-
tions. The evolution of the T-spline level set is able to cap-
ture the complex topology of the noisy data, where some
existing holes also can be filled. The mesh helps to pro-
duce detailed sharp features by using a data-driven displace-
ment mapping, and a feature-preserving geometric filtering.
Compared with other existing approaches for similar pur-
poses, our method also shows the following advantages:

1) The use of two representations can improve and speed
up some geometric computations in the algorithm. For ex-
ample, with the help of implicit representation, topological
changes are efficiently dealt with during the evolution, anda
high-quality initial mesh (with accurate normals) can be ob-
tained. Also, the projection of the data points to the initial
mesh can be efficiently computed from the implicit function
by Newton iteration.

2) We use an evolution process to recover the sharp fea-
tures. The evolution is governed by a combination of two
terms: a data-driven velocity and a bilateral filtering. This
evolution process can produce sharp features, which are



faithful to the given data.

2 Initial Mesh Generation

In this section, we describe how to generate the initial
mesh. The input of our algorithm is a set of unorganized
(maybe noisy and defected) data points(pk)k=1,2,...,n,
which are scattered over an unknown piecewise smooth sur-
faceSp. The initial mesh is generated from a smooth base
surfaceS0, which should capture the complex topology and
the outline of the surfaceSp.

2.1 Base Surface Generation through T-
spline Level Set Evolution

In our case, the smooth base surfaceS0 is obtained as the
zero set of a trivaviate T-spline scalar functionf0. We use T-
splines [47] since, on the one hand, the T-spline function is
piecewise rational, the implicitly defined surface (T-spline
level set) is piecewise algebraic, and its segments can be
pieced together with any desired level of differentiability.
In this paper, we use cubic T-splines, and the resulted T-
spline level set isC2 continuous in the absence of multiple
knots. On the other hand, the use of T-splines leads to a
sparse representation of the geometry. The T-spline can be
refined locally, by adapting the number and distribution of
the degrees of freedom to the particular data.

We use the evolution process described in [55] to find
the T-spline functionf0, which defines the base surfaceS0.
Figure 3 (a) (c) shows an example of this process. First,
the T-spline control grid (or T-mesh) is generated according
to the distribution of data points through the octree subdi-
vision (see Figure 3 (a)). In order to find the T-spline con-
trol coefficients, the method applies an evolution process
to an initial level set, which contains all data points inside
(see Figure 3 (a)). The evolution is governed by a combi-
nation of prescribed, data-driven normal velocities (which
are motivated by earlier work in the field of image process-
ing [9], where they have been successfully applied to con-
tour detection and segmentation in images) with additional
distance field constraints. The constraints help to avoid ad-
ditional branches and singularities of the implicit surface,
without having to use costly re-initialization steps. Figure 3
(b) shows an intermediate level set during the evolution.

As the result, we obtain the smooth base surfaceS0

which captures the topology and the outline of the surface
Sp to be reconstructed, except for some detailed geomet-
ric features (see Figure 3 (c)). More details can be found
in [55]. In particular, that paper also discusses a ’final re-
finement’ step, which can be used to improve the result,
especially for noisy data.

In order to speed up the computation of T-spline func-
tions, we use an octree to store the information of associ-

ated T-spline control coefficients for any point within the
domain of interest. In our experiments, the maximum sub-
division depth for T-mesh generation is always set to be no
more than 6.

2.2 Initial Mesh Generation through
Marching Triangulation

After the smooth base surfaceS0 is obtained, we use the
Marching Triangulation [21] method to generate the mesh
representation ofS0. We choose the Marching Triangu-
lation since it is able to produce a high-quality triangular
mesh. Other polygonization methods (such as the March-
ing Cube [34] algorithm, the dynamic mesh approach [39]
and the Dual Contouring [29] method) can be also consid-
ered. Figure 3 (c) gives an example of our Triangulation
result.

The requirement for applying the Marching Triangula-
tion method is that the function valuef(x) and the gradient
∇f(x) are available for any pointx in the function domain.
This is satisfied by our T-spline functionf0 sincef0 is C2

continuous in the domain of interest.
A key procedure of the Marching Triangulation is the

choice of seed points on the implicit surface. If the implicit
surface contains multiple components, then at least one seed
point must be chosen for one component, otherwise those
components without seed points will not be triangulated.
Actually it is a non-trivial task to ensure the sufficiency of
the seed points such that all components are covered. How-
ever, in our case, since the implicit functionf0 defines a
good base surfaceS0 for the data points(pk)k=1,2,...,n, we
can solve this problem as follows:

1. Project each data point(pk)k=1,2,...,n to S0, get the
corresponding foot point(qk)k=1,2,...,n. (More details
will be described later in Section 3.1.)

2. Initialize the set of potential seed pointsP =
{pk}k=1,2,...,n.

3. Initialize the set of generated trianglesM = ∅.

4. Choose an arbitrary seed pointsi fromP , and apply the
Marching Triangulation to get a new meshMi. Add
Mi toM.

5. For each potential seed point(pk)pk∈P , compute the
distance from its foot pointqk to the new meshMi.
If the distance is sufficiently small, then remove(pk)
fromP . (See Section 3.1 for how to compute this dis-
tance efficiently.)

6. Repeat steps4 ∼ 5 until P = ∅.

7. Output the generated triangular meshesM.
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Figure 2. Data points projection to the mesh.

The Marching Triangulation method is very fast and also
simple to implement. As shown in Section 5, usually we can
generate over10, 000 triangles within seconds. The gener-
ated mesh is semi-regular, and the vast majority of the mesh
vertices have valence 6. The edge length of the triangles
is approximately indicated by the marching step lengthδt,
which can be determined by the feature size of the recon-
structed surface. We usually chooseδt = 0.2lT , wherelT
is the diameter of the cells at the finest level of the T-mesh.

3 Displacement Mapping

After the base surfaceS0 is triangulated by the initial
meshM0, the topology and parametrization of the surface
to be reconstructed is now defined byM0. Fine geometric
details are to be captured through a displacement mapping
of M0,

M = M0 + D (1)

where the displacement fieldD is generated from the data
points(pk)k=1,2,...,n.

3.1 Data Points Projection

In order to get the displacement fieldD, we project all
data points to the initial meshM0. SinceM0 is a discretiza-
tion of the smooth base surfaceS0, the projection process
can be turned into the computation of foot points on the
surfaceS0, which is implicitly defined by the T-spline func-
tion f0. Thus, for each data pointpk, one can compute its
foot pointqk efficiently by Newton iteration. Then we asso-
ciateqk to its closest triangleTk, which will be needed later
for the smooth filtering (smooth parametrization) of the dis-
placement field. The whole projection procedure is given as
follows:

1. For each triangleTi ∈ M0, initialize the array of in-
dices of its associated data pointsIi = ∅.

2. Initialize the displacement array(dk = 0)k=1,2,...,n.

3. For each data point(pk)k=1,2,...,n,

3.1. Initialize the foot pointqk,0 = pk.

3.2. Using Newton’s method to get the updated foot

pointqk,i+1 = qk,i −
f0(qk,i)

‖∇f0(qk,i)‖
2∇f0(qk,i).

3.3. Repeat step 3.2 until‖qk,i+1 − qk,i‖ is suffi-
ciently small. Setqk = qk,i+1.

3.4. Set the signed displacement valuedk =
sign(f0(pk)) · ‖pk − qk‖.

3.5. Find the closest vertexvkv
of M0 to the pointqk.

3.6. From the one-ring neighborhood ofvkv
, get the

closest triangle(s)Tkt
to qk.

3.7. Addk to the array of indicesIkt
.

4. Output (Ii)Ti∈M0
and the displacement array

(dk)k=1,2,...,n.

Please note that we do not compute any ray-triangle in-
tersections for the data points projection. This improvement
of efficiency has profitted from the implicit representation
of the base surface. The searching of closest triangles is
now restricted in the one-ring neighborhood of the corre-
sponding closest vertex, as shown in step 3.6. Sometimes
the closest point may be lying on an edge or a vertex of
the triangular mesh, which means there are more than one
closest triangles corresponding to certain data point. In that
case, the index of the data point will be associated with each
closest triangle. Figure 2 illustrates all of the three cases for
data points projection.

3.2 Displaced Mesh

After the scalar displacement fieldD is already sampled
at each foot point(qk)k=1,2,...,n, we then want to map it to
each vertexv of the initial meshM0,

v̂ = v + d(v) · n, (2)

such that the updated meshM better approximates the given
data points. Note that the normalsn are computed from the
implicitly defined T-spline surface instead of the discretized
mesh.

Since the given data points are often noisy, the sam-
pled field is therefore not smooth. In order to avoid cracks
between adjacent triangles of the displaced mesh, we use
Gaussian filtering to smooth the displacement field. Of
course, the use of Gaussian filtering will also smooth some
desired sharp features. The next section will describe how
to recover these sharp features.

One may ask that why not directly apply an anisotropic
filtering method to the displacement field? The displace-
ment mapping acts only along the normals of the implicitly
defined base surface, and can not ensure that the updated
mesh edges align with the corresponding sharp features.



Actually, we tried to use the (anisotropic) bilateral filtering
for displacement mapping, but did not get satisfying sharp
edges.

After the displacement mapping, the quality of the dis-
placed mesh may be degraded, although the initial mesh
has a high quality through the marching triangulation of T-
spline level sets. In the worst case, flips or self-intersections
may happen to the displaced triangles, where the displace-
ment values are too large for some deep convex or concave
parts of the object surface. The allowed displacement can
be bounded with the help of the principal curvature radii on
the mesh, which can be computed from the implicit T-spline
function.

One way to prevent this problem is to find a better base
surface by using more degrees of freedom (T-spline control
coefficients) and applying the ’final refinement’ step [55] to
make the T-spline level set more close to the data points.
In our algorithm, we use the principal curvature radii as an
indicator. If the displacement value is close to or larger than
the corresponding curvature radii, we check if the displaced
triangle is flipped. If some flips happen, we refine the T-
spline level set to make sure that the displacement mapping
is intersection free.

4 Recovering of Sharp Features

After the displacement mapping, the displaced mesh ap-
proximates the data points far better than the initial mesh.
Most parts of the object to be reconstructed are already well
fitted, except near sharp features. In this section, we intro-
duce a data-driven bilateral filtering method to reproduce
sharp features of the reconstructed mesh.

4.1 Bilateral Filter

The Bilateral filter, which was originally proposed in im-
age processing [49, 51], is a nonlinear filter derived from
Gaussian blur, with a feature-preserving term that decreases
the weights of pixels as a function of intensity differences.
Following the formulation in [49], the bilateral filtering for
imageI(p) at the pixelp∗ is defined as

ˆI(p∗)=
∑

pj∈N(p∗)

Wc(‖p∗ − pj‖)Ws(|I(p∗) − I(pj)|)

W
I(pj), (3)

whereN(p∗) is the neighborhood ofp. Wc is the standard
Gaussian filter with parameterσc: Wc(x) = e−x2/2σ2

c , and
Ws is a similarity weight function for feature-preserving
with parameterσs: Ws(x) = e−x2/2σ2

s . W is a normal-
ization factor

W =
∑

pj∈N(p∗)

Wc(‖p∗ − pj‖)Ws(‖I(p∗) − I(pj)‖)

Recently, the bilateral filter has been applied to mesh de-
noising while preserving sharp features [17, 28]. The author
in [53] uses the bilateral filtering for recovering of sharp
edges on feature-insensitive sampled edges. In [4], the bi-
lateral filter in used for data denoising such that the filtered
data points can be later connected into a mesh structure.
Unlike these previous works, we combine the bilateral fil-
tering term into a data-driven evolution process, such that
the produced sharp features faithfully represent the given
data points.

4.2 Data-Driven Bilateral Evolution

Recall that our bilateral evolution is to obtain a mesh that
meets two goals:

1. It provides a good fit to the point set(pk)k=1,2,...,n.

2. It recovers sharp features by conducting bilateral fil-
ters.

Consider a meshM with time-dependent verticesV(τ) =
(vi(τ))i=1,2,...,m (m is the number of vertices), whose evo-
lution process is governed by minimizing the following en-
ergy function

F (V(τ)) = Edist(V(τ)) + ωEbila(V(τ)) → min, (4)

where the two termsEdist andEbila correspond to the two
goals listed above, andω > 0 is a constant weighting coef-
ficient.

The distance energyEdist is defined as

Edist(V(τ)) =

n∑

k=1

(q̇k + qk − pk)2, (5)

whereqk on the mesh is the foot point ofpk, and its time
derivativeq̇k = ∂qk/∂τ can be represented as a linear com-
bination of related vertex velocitiesv̇j

q̇k =
∑

vj∈φ(pk)

λj v̇j , (6)

whereφ(pk) contains 1, 2, or 3 vertices, corresponding to
the three cases illustrated in Figure 2 (a), (b) and (c) respec-
tively, andλj are corresponding coefficients of them.

The bilateral energyEbila is defined as

Ebila(V(τ)) =

m∑

i=1

(v̇i + vi − v′
i)

2, (7)

wherev′i is the updated position ofvi according to the bi-
lateral filter [53]

v′ =
∑

Tj∈N(v)

Wc(‖v − cj‖)Ws(‖v − v∗j‖)

W
αjv∗

j , (8)



eavr (10−3) emax (10−3) Run time (s)
Dataset np nt nv MI MD MS MI MD MS TL MT D-Map B-Evl
Rocker-Arm 10044 992 8577 4.34 0.88 0.69 24.44 14.12 11.30 10.50 2.19 0.52 6.64

Bunny 6078 1638 8265 2.03 0.43 – 16.72 7.74 – 37.88 2.32 0.33 –
Fandisk(cut) 5817 1019 12856 18.27 1.27 0.21 68.86 19.90 7.93 12.30 2.94 0.39 7.78

Foot 25845 871 4517 35.86 0.62 0.55 98.47 9.07 8.22 7.94 0.81 1.19 0.63

Sculpture 25386 2551 14026 3.93 0.74 0.63 20.72 6.33 5.41 56.33 5.03 1.67 6.16

Table 1. The approximation errors and the execution time of t he given examples. np: number of
data points; nt: number of T-spline control points; nv: number of mesh vertices; MI : initial mesh;
MD: displaced mesh; MS : sharpened mesh after bilateral evolution; TL: T-spline le vel set evolution;
MT: marching triangulation; D-Map: displacement mapping; B-Evl: bilateral evolution. The right
three columns show the run time for the T-spline level set evo lution, the marching triangulation, the
displacement mapping and the bilateral evolution, respect ively. The left several columns show the
number of data points, the number of T-spline control points , and the number of mesh vertices. The
middle columns give both the approximation errors ( eavr) and the maximum errors ( emax) for the
initial meshes, the displaced meshes and the final meshes, re spectively.

wherev is any vertex of the meshM , v∗j is the projection
point of v on the plane of the triangleTj , αj is the area of
Tj , cj is the center ofTj , andN(v) is the set of neighboring
triangles contributing to the position ofv. Wc andWs are
the Gaussian filters as used in (3). See [53] for more details.

Combining (4), (5), (6) and (7), the minimizer of (4)
leads to a quadratic objective function of the unknown time
derivativesV̇ = (v̇i)i=1,2,...,m. The solutionV̇ is found by
solving a sparse linear system of equations,∇F = 0. Us-
ing explicit Euler stepsvi → vi + ∆τ v̇i, with a suitable
step-size∆τ , one can trace the evolving mesh.

Actually, in practice, we do not need to update all ver-
tices during the data-driven bilateral evolution, since the
non-sharp region of the surface is already well fitted by
the displacement mapping. Instead, we only need to update
those sharp-vertices with both a high bihedral angle and a
large approximation error, while keepingv̇ = 0 for other
vertices. Here, we use the same method as indicated in [53]
to detect potential sharp vertices with a high dihedral angle.
If the one-ring neighborhood region of a potential sharp ver-
tex is already well fitted (the approximation error is small),
then we discard it from the list of real sharp vertices. After
that, to constructEdist andEbila, we only consider those
terms related with real sharp-vertices, such that the evolu-
tion process can be fast computed.

The bilateral evolution continues until the approximation
error can not be reduced any more. In our method, the ap-
proximation erroreavr is measured as the average distance
of the data points to the mesh

eavr =
1

n

n∑

k=1

‖qk − pk)‖. (9)

4.3 Discussion

The parametersσc andσs of the bilateral filter are im-
portant to get a satisfying reconstruction result. On the one
hand, ifσc andσs are set too large, the sharp features will
be smoothed. On the other hand, if they are set too small,
the reconstruction result will be very sensitive to the noise
of the given data set. In our experimental settings, we usu-
ally chooseσs = σc = 2δt (δt is the marching step length
in Section 2.2).

Usually within 10 iterations, the sharp features can be
well reconstructed. But because most sharp-vertices are at-
tracted towards their corresponding sharp edges, many de-
generate triangles will be produced afterwards. Therefore,
in order to improve the regularity of the reconstructed mesh,
a MeshSlicing[7] operation can be used to remove degen-
erate triangles after the bilateral evolution stops.

5 Experimental results

In this section, we present some examples to demonstrate
the effectiveness of our method. All the given data points
are normalized to be contained in a cubic domain ([−1, 1]×
[−1, 1] × [−1, 1]). The maximum erroremax mentioned
below is the maximum distance of the data points to the
mesh. The average erroreavr is the approximation error
defined by Eq. (9). All the experiments are run on a PC with
AMD Opteron(tm) 2.20GHz CPU and 3.25G RAM. The
approximation errors and the execution time are reported
in Table 1.

Example 1. The first example is the Rocker-Arm model,
which contains non-uniform samples with holes and sharp
features, and has been shown in Fig. 1. The T-spline level
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Figure 3. Mesh reconstruction of the Bunny model. The figure s hows the data points and the T-mesh
in (a), the initial mesh in (b), the displaced mesh in (c), and the bottom view of the mesh in (d).

(a) (b) (c) (d)

Close-up view of (c) Close-up view of (d)

Figure 4. Mesh reconstruction of part of the Fandisk model. T he figure shows the data points in
(a), the initial mesh in (b), the displaced mesh in (c), and th e final mesh (after bilateral filtering) with
sharp features in (d).



(a) (b)

(b1) Close-up view of (b)

(c1) Close-up view of (c) (c)

Figure 5. Mesh reconstruction of the Foot model. The figure sh ows the initial mesh in (a), the dis-
placed mesh in (b), and the final mesh (after bilateral filteri ng) with sharp features in (c).

(a) (b) (c) (d)

Close-up view of (c) Close-up view of (d)

Figure 6. Mesh reconstruction of the Sculpture model. The fig ure shows the data points and the
T-mesh in (a), the initial mesh in (b), the displaced mesh in ( c), and the final mesh (after bilateral
filtering) with sharp features in (d).



set adapts its topology from genus-0 in (b) to genus-1 in (c),
where the initial mesh is constructed. The displaced mesh is
shown in (d). By using the data-driven bilateral evolution,
the approximation error is further reduced by21.6% (cf. Ta-
ble 1). And at the same time, the sharp edges are recovered,
as shown in (e).

Example 2. The second example is the Bunny model with
holes, as shown in Fig. 3. Since the data points are already
well approximated by the displacement mapping, the last
phase of our algorithm (recovering of sharp features) is dis-
carded. As shown in (d), the holes on the bottom (cf. (a))
have been closed.

Example 3. The third example is part of the Fandisk
model, which was cut by a plane, as shown in Fig. 4. By
using our method, the cutting hole can be filled by the T-
spline level set representation, and the sharp edges can be
recovered by the bilateral evolution of the mesh, as shown
in (e). The approximation error is reduced by83.5%, and
the maximum error is reduced by60.2% during the bilateral
evolution (cf. Table 1).

Example 4. The fourth example is the Foot model that
has been shown in Fig. 5. After the displacement mapping
in (d), the sharp edges can be recovered by the data-driven
bilateral evolution, as shown in (e).

Example 5. The last example is a complex sculpture
model, as shown in Fig. 6. Through the T-spline level set
evolution, the initial mesh with a correct topology is ob-
tained in (c). The updated mesh after displacement mapping
is given in (d). Finally, the sharp edges are produced in (e)
by using the bilateral evolution.

6 Conclusions

We have introduced a method for surface reconstruction
from unorganized data points. We use the displacement
mapping of a smooth base surface, which is implicitly rep-
resented by scalar T-spline functions. We have shown that,
with the help of the implicit function, the non-uniformly
sampled and incomplete data can be handled, and the dis-
placed mesh can be efficiently computed. The sharp fea-
tures of the mesh surface are produced by using a data-
driven bilateral evolution. Our method is independent of
the specific representation of the implicit functionf0 for
the base surface, as long asf0 is smooth.
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