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Due to its minimal twist, the rotation minimizing frame (RMF) is widely used in computer graph-
ics, including sweep or blending surface modeling, motion design and control in computer ani-
mation and robotics, streamline visualization, and tool path planning in CAD/CAM. We present
a novel simple and efficient method for accurate and stable computation of RMF of a curve in
3D. This method, called the double reflection method, uses two reflections to compute each frame
from its preceding one to yield a sequence of frames to approximate an exact RMF. The double
reflection method has the fourth order global approximation error, thus much more accurate than
the two currently prevailing methods with the second order approximation error — the projection
method by Klok and the rotation method by Bloomenthal, while all these methods have about
the same per-frame computational cost. Furthermore, this method is much simpler and faster
than using the standard fourth order Runge-Kutta method to integrate the defining ODE of the
RMF, though they have the same accuracy. We also investigate further properties and extensions
of the double reflection method, and discuss the variational principles in design moving frames
with boundary conditions, based on RMF.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve,
surface, solid, and object representations; J.6 [Computer-Aided Engineering]: Computer-aided design (CAD); G.1.6 [Nu-
merical Analysis]: Differential Geometry—approximation

General Terms: rotation minimizing frame, motion design, sweep surface, generalized cylinder,
differential geometry

Additional Key Words and Phrases: curve, motion, rotation minimizing frame

1. INTRODUCTION

1.1 Background

Let x(u) = (x(u), y(u), z(u))T be a C1 regular curve in E
3, the 3D Euclidean space. Denote x′(u) = dx(u)/du

and t(u) = x′(u)/||x′(u)||, which is the unit tangent vector of the curve x(u). We define a moving frame
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(a) The Frenet frame of a spine curve. Only normal vectors
are shown.

(b) A rotation minimizing frame (RMF) of the same curve
in (a). Only reference vectors are shown.

(c) A snake modeled using the RMF in (b).

Fig. 1. An example of using the RMF in shape modeling.

associated with x(u) to be a right-handed orthonormal system composed of an ordered triple of vectors
U(u) = (r(u), s(u), t(u)) satisfying r(u)× s(u) = t(u) (see Figure 2). The curve x(u) in this context will be
called a spine curve. Since t(u) is known and s(u) = t(u)× r(u), a moving frame is uniquely determined by
the unit normal vector r(u). Thus r is called the reference vector of a moving frame.

From the differential geometry point of view, a readily available moving frame of a curve in 3D is the
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 2. An orthonormal frame U(u) = (r(u), s(u), t(u)) attached to a spine curve x(u).

Frenet frame, whose three orthogonal axis vectors are defined as

t(u) =
x′(u)
‖x′(u)‖ , s(u) =

x′(u) × x′′(u)
‖x′(u) × x′′(u)‖ , r(u) = s(u) × t(u). (1)

Although the Frenet frame can easily be computed, its rotation about the tangent of a general spine curve
often leads to undesirable twist in motion design or sweep surface modeling. Moreover, the Frenet frame
is not continuously defined for a C1 spine curve, and even for a C2 spine curve the Frenet frame becomes
undefined at an inflection point (i.e., curvature κ = 0), thus causing unacceptable discontinuity when used
for sweep surface modeling [Bloomenthal 1990].

A moving frame that does not rotate about the instantaneous tangent of the curve x(u) is called a
rotation minimizing frame of x(u), or RMF, for short. It can be shown that the RMF is defined contin-
uously for any C1 regular spine curve. Because of its minimal-twist property and stable behavior in the
presence of inflection points, the RMF is preferred to the Frenet frame in many applications in computer
graphics, including free-form deformation with curve constraints [Bechmann and Gerber 2003; Peng et al.
1997; Lazarus et al. 1993; Lazarus and Jancene 1994; Lazarus and Verroust 1994; Llamas et al. 2005], sweep
surface modeling [Bloomenthal and Riesenfeld 1991; Pottmann and Wagner 1998; Siltanen and Woodward
1992; Wang and Joe 1997], modeling of generalized cylinders and tree branches [Shani and Ballard 1984;
Bloomenthal 1985; Bronsvoort and Flok 1985; Semwal and Hallauer 1994], visualization of streamlines and
tubes [Banks and Singer 1995; Hanson and Ma 1995; Hanson 1998], simulation of ropes and strings [Barzel
1997], and motion design and control [Jüttler 1999]. The RMF is also closely related to the problem of
designing stable motion of a moving camera tracking a moving target [Goemans and Overmars 2004], where
the rotation about the vector connecting the camera and the target should be minimized during camera
motion, subject to possible boundary conditions.

Discussions of the RMF and its applications can be found in the recent book by Hanson [Hanson 2005],
where the RMF is treated using a parallel transport approach.

A typical application of RMF in shape modeling is shown in Figure 1. Here a canonical snake surface
model is first defined along a straight line axis possessing an RMF generated by translation along the line.
Then a new axis curve (i.e., a spine curve) is designed to produce a novel pose of the snake. For comparison,
both Frenet frame and RMF of this same axis curve are shown in Figures 1(a) and 1(b). The RMF determines
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Fig. 3. Sweep surfaces showing moving frames of a deforming curve: the Frenet frames in the first row and the RMF in the
second row.

a mapping from the space of the canonical model of the snake to the space around the new axis curve in
Figure 1(b); this mapping produces the snake in Figure 1(c). Note that the Frenet frame in this case exhibits
excessive rotation compared with the RMF, so it is less appropriate for shape modeling.

Next consider moving frames of a deforming spine curve x(u; t), as frequently encountered in computer
animation (see Figure 3). While the Frenet frame does not always experience abrupt twist for a given static
spine curve, the Frenet frame of the deforming spine curve often suddenly exhibits a radical twist at an
instant during deformation, especially when the spine curve has a nearly curvature vanishing point (i.e., an
inflection point). In contrast, the RMF of the deforming spine curve x(u; t) always varies smoothly and
stably over time as well as along the spine curve. The different behaviors of these two moving frames are
illustrated in Figure 3, visualized as sweep surfaces, through a sequence of snapshots of a deforming spine
curve. Here by continuous deformation we mean that the rate of change in both position (i.e., ∂x(u; t)/∂t)
and unit tangent (i.e., ∂t(u; t)/∂t) are bounded for any (u, t) in their finite intervals of definition. Note that,
this assumption is reasonable in practical application but does not imply that the normal vector r(u) of
x(u; t) (see Eqn. (1)) changes continuously with respect to time t, thus explaining the potential instability
of the Frenet frame.

Computation of the RMF is more difficult than that of the Frenet frame. The RMF is first proposed
and formulated as the solution of an ordinary differential equation in [Bishop 1975] and later in [Shani
and Ballard 1984; Klok 1986]. Exact (i.e., closed form) RMF computation is either impossible or very
involved for a general spine curve. Hence, a number of approximation methods have been proposed for
RMF computation. These methods fall under three categories: 1) discrete approximation; 2) spine curve
approximation; and 3) numerical integration. The discrete approximation approach is versatile for various
applications in computer graphics and computer animation, even when only a sequence of points on a path
(i.e., spine curve) is available, while the approach based on spine curve approximation is useful for surface
modeling in CAGD applications. We will see that direct numerical integration of the defining ODE of RMF
is relatively inefficient and therefore not well suited for RMF computation. The new method we are going
to propose is based on discrete approximation.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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1.2 Problem formulation

The RMF computation problem as solved by the discrete approximation approach is formulated as follows.
Let U(u) denote an exact RMF of a C1 regular spine curve x(u) in 3D, u ∈ [0, L], with the initial condition
U(0) = U0, which is some fixed orthonormal frame at the initial point x(0). Suppose that a sequence of
points xi = x(ui) and the unit tangent vectors ti at xi are sampled on the curve x(u), with ui = i ∗ h,
i = 0, 1, . . . , n, where h = L/n is called the step size. The goal of discrete approximation is to compute
a sequence of orthonormal frames Ui at xi that approximates the exact RMF frame U(u) at the sampled
points, i.e., each Ui is an approximation to U(ui), i = 0, 1, 2 . . . , n.

Error measurement is needed to evaluate and compare different approximation schemes. Suppose that the
exact RMF U(u) has the same initial frame as the approximating frame sequence at x(u0), i.e., U(0) = U0.
Then the approximation error between U1 and U(h) is called the one-step error. The approximation errors
at intermediate sampled points are normally accumulated to give a large error at the end of the spine curve.
However, due to error fluctuation, the maximum error may not always occur at the endpoint x(L). Therefore,
we define the global error Eg to be the maximum error of frame approximation over all the sampled points
x(ui), i.e.,

Eg =
n

max
i=0

{|∠(Ui, U(ui))|}, (2)

where |∠(Ui, U(ui))| measures the magnitude of the angle between the reference vectors ri and r(ui) of
frames Ui and U(ui).

We shall present a new discrete approximation method, called double reflection method, for RMF com-
putation. The main idea is based on the observation that the rigid transformation between two consecutive
frames for RMF approximation can be realized by two reflections, each being a reflection in a plane. The
resulting method is simple, fast, and highly accurate – its global approximation error is of order O(h4),
where h = L/n is the step size. This compares favorably with the second order (i.e., O(h2)) approximation
error of two prevailing discrete approximation methods, i.e., the rotation method [Bloomenthal 1990] and
the projection method [Klok 1986]. The accuracy of the double reflection method matches that of using
the standard 4-th order Runge-Kutta method to integrate the defining differential equation of RMF, but is
much simpler and faster than the latter.

In the following we shall first review related works in Section 2 and present necessary preliminaries in
3. The double reflection method is presented and analyzed in Section 4. Then we present experimental
verifications in Section 5, discuss extensions in Section 6 and conclude the paper in Section 7.

Readers interested only in implementation may skip to Section 4.1 for a simple description of the double
reflection method; the pseudo code is given in Table I in Section 4.

2. RELATED WORK

2.1 Discrete approximation

In discrete approximation an RMF is approximated by a sequence of orthogonal frames located at sampled
points xi on the spine curve x(u). The projection method, as originally proposed in [Klok 1986], computes
an approximate RMF for modeling a sweep surface. Suppose that the the sampled points xi and the unit
tangent vectors ti of x(u) at the sampled points xi are provided as input. For RMF computation, the
projection method projects, along the direction x1 −x0, an initial reference vector r0 in the normal plane of
the spine curve at x0 to the next reference vector r1 on the normal plane at x1. Then this step is repeated to
generate on the subsequent normal planes a sequence of reference vectors ri, which, together with the tangent

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



6 · Wenping Wang et al.

vectors ti, define a sequence of orthonormal frames that approximate an exact RMF. The projection method
is empirically demonstrated to have the second order of approximation error [Chung and Wang 1996]. Note
that the above projection between normal planes is not length preserving. Therefore the reference vectors
ri need to be normalized to give unit vectors.

Another popular discrete approximation method is the rotation method [Bloomenthal 1990; Siltanen and
Woodward 1992; Poston et al. 1995]. The rotation method also needs as input the sampled points xi on the
spine curve and the unit tangent vectors ti of the spine curve at xi. Consider the first two sampled points
x0 and x1. Given the initial frame U0 at x0, suppose that we need to compute the next frame U1 at x1

from the boundary data (x0, t0;x1, t1). To minimize the rotation about the tangent of the spine curve, this
method rotates U0 into U1 about an axis b0 perpendicular to t0 and t1, that is, b0 = t0 × t1; the rotation
angle θ is such that the frame vector t0 of U0 is brought into alignment with the frame vector t1 of U1, i.e.,
θ = arccos(t0 · t1). Here, for frame computation, we ignore the translational difference between the origins
of U0 and U1. The rotation method has the second order global approximation error [Poston et al. 1995].

A major problem with the rotation method is its lack of robustness for nearly collinear data. When
the two consecutive tangent vectors t0 and t1 are collinear, the rotation axis becomes undefined, since
b0 = t0 × t1 = 0; but, since no rotation is needed in this case, we just need to set U1 := U0. However,
numerical problems will be experienced when t0 and t1 approach each other, i.e., becoming closer and closer
to being collinear; this happens, for example, when the spine curve is densely sampled for high accuracy
RMF computation. In this case some threshold value has to be used to avoid the degeneracy of the rotation
vector b0 by treating nearly collinear data as collinear data. But if a spine curve is so densely sampled
that all consecutive data segments are deemed as collinear due to thresholding, then there will be a large
accumulated error in the computed RMF, because the spine curve will be treated as a straight line and all
the frames Ui will be set to be identical to the initial frame U0. We note that this numerical problem for
nearly collinear data does not exist with the double reflection method we are going to propose.

2.2 Methods based on spine curve approximation

If a spine curve is first approximated by some simple curves whose RMF can be computed exactly or more
accurately, then the RMF of this simple approximating curve can be taken as an approximation to the
RMF of the original spine curve. An intuitive argument for this idea is that if two spine curves are close
to each other, then their RMFs should also be. This type of intuition lacks rigorous justification and could
be unreliable for moving frames defined by differential properties; recall that the Frenet frames of two spine
curves close to each other can be radically different. However, for RMF it is proved by Poston et al [Poston
et al. 1995] that the RMF of a spine curve x̃(u) approaches the RMF of another spine x(u) if and only if
the unit tangent vector t̃(u) of x̃(u) approaches the unit tangent vector t(u) of x(u).

Discrete approximation methods, such as the projection method or the rotation method, can be regarded
as the simplest methods based on spine curve approximation, using a polygon to approximate the spine
curve. A G1 spline curve composed of circular arcs is used to approximate an input spine curve in [Wang
and Joe 1997] to compute an approximate RMF for modeling sweep surfaces in NURBS form. The spine
curve is approximated by PH curves using Hermite interpolation in [Jüttler and Mäurer 1999] for generating
sweep surfaces in rational representation. Exact description of the RMF of a PH curve and its rational
approximation are provided in [Jüttler 1999; Farouki 2002; Farouki and Han 2003; Choi et al. 2004]. A
closely related technique is to approximate the rotation minimizing motions (RMM) by affine motions (cf.
[Pottmann and Wagner 1998]) and rational motions from the point of view of spherical kinematics [Jüttler
1998].
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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2.3 Numerical integration

Since the RMF is defined by a vector-valued ODE of the type y′ = f(x,y) [Bishop 1975; Shani and Ballard
1984; Klok 1986; Pottmann and Wagner 1998], naturally one may consider computing the RMF using a
numerical method to directly solve this ODE. Suppose that the classical fourth order Runge-Kutta method
is used. Then the RMF thus computed has the 4-th order global approximation error, which is the same as
that of the double reflection method that we are to propose. However, this general approach to solving the
ODE does not take into account the special geometric property of the problem of RMF computation and
therefore has severe drawbacks.

Firstly, the Runge-Kutta method requires the spine curve x(u) to be C2, since the right hand side f
of the ODE is a function of the second derivative of x(u) (cf. Eqn. (6) in Section 3). This requirement is
unnecessarily restrictive, since the RMF is continuously defined for any C1 spine curve. Secondly, deriving
and evaluating the second derivative of x(u) can be tedious and costly, rendering the method inefficient. In
the RMF computation problem under consideration, only the sampled points xi and the tangent vectors ti

are available as input. But both first and second derivatives of the spine x(u) are required by the Runge-
Kutta method. This mismatch between the input data of the RMF computation problem and the data it
requires makes the Runge-Kutta method not well suited for RMF computation.

Another problem is that the Runge-Kutta method does not strictly enforce the orthogonality between
the solved reference vectors ri and the tangent vectors ti, even though in the initial conditions r0 = r(0) is
orthogonal to t0 = t(0). Therefore each ri has to be projected onto the normal plane of the spine curve to
make it perpendicular to ti; this adds further to the cost of the method.

Another method is based on the observation that the RMF and the Frenet frame differ by a rotation
determined by the torsion in the normal plane of the spine curve. Let θ(u) be the angle of this rotation. Let
τ(u) be the torsion of the spine curve x(u). Then θ(u) is given by [Guggenheimer 1989]

θ(u) = −
∫ u

u0

τ(v)‖x′(v)‖dv. (3)

With this formula, θ(u) may be computed with some quadrature rule and used to compute the RMF by
compensating the rotation of the Frenet frame. However, at inflection points of a spine curve, the Frenet
frame itself becomes discontinuous and exhibits abrupt change, and the torsion τ(u) becomes ill-defined (i.e.,
unbounded), making it difficult to evaluate the integration (3) accurately; therefore in this case the method
becomes unstable.

3. PRELIMINARIES

3.1 Definition by differential equations

First we introduce the rotation minimizing frame under weak assumptions on a spine curve, using differential
equations. These results will later be connected to the classical results from differential geometry. Generally,
we assume the spine curve x(u) to be a C1 regular curve, i.e., x′(u) �= 0 in its domain of definition, but
higher differentiability is needed for analysis of approximation orders. Again we use t(u) = x′(u)/||x′(u)||
to denote the unit tangent vector.

Consider a one-parameter family of unit vectors f(u) perpendicular to the tangent vector t(u). Such
a vector function f(u) is said to exhibit the minimal rotation, and therefore called a rotation minimizing
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vector, if it is a solution to the following system of differential–algebraic equations (DAE)

f ′(u) − φ(u) t(u) = 0
f(u) · t(u) = 0

}
(4)

for the functions f(u) = (f1(u), f2(u), f3(u))� and some function φ(u). Here the first equation (in vector
form) constrains the evolution of f(u) to be parallel to the tangent, and the second equation serves to preserve
orthogonality.

A rotation minimizing vector f(u) is not necessarily differentiable for a C1 spine curve x(u); (e.g., consider
the case of a C1 curve composed of a circular arc and a straight line segment). In view of this, one may
adopt the following weak form of the DAE (4)

f(u) −
∫ u

0

φ(v) t(v) dv = 0

f(u) · t(u) = 0

⎫⎬
⎭ (5)

which does not involve any derivative of f(u).

If the spine curve is of the C2 class, then the above DAE is equivalent to the ODE

f ′(u) = [t(u) × t′(u)] × f(u) (6)

since

φ t = (f ′ · t)t = (−f · t′)t = [t(u) × t′(u)] × f(u) (7)

A rotation minimizing frame (RMF) is determined by a rotation minimizing vector. Specifically, we have

Definition 1: [Rotation minimizing frame] Given a C1 curve x(u) ⊂ E
3, u ∈ [0, L], a moving orthonormal

frame U(u) = (r(u), s(u), t(u)), where r(u) × s(u) = t(u), is called a rotation minimizing frame (RMF) of
x(u) if t(u) = x′(u)/||x′(u)|| and r(u) is a solution of Eqn. (5) (or Eqn.(4) if x(u) is C2) for some initial
condition U(0) = U0. Here r(u) is called the reference vector of the RMF U(u).

Since the frame vector t(u) of U(u) is always constrained to be the unit tangent vector of x(u), U(u)
is uniquely determined by its reference vector r(u), which is a rotation minimizing vector. The third frame
vector is given by s(u) = t(u) × r(u).

The evolution defined by DAE (4) preserves the inner product of two vectors. Indeed, if vectors f(u)
and g(u) both satisfy Eqn.(4) with associated functions φ(u) and ψ(u), then

d
dt

(f · g) = f ′ · g + f · g′ = (φ t) · g + f · (ψ t) = 0 (8)

Hence, the inner product (f · g) is a constant. From this we have the following observations:

Corollary 3.1. If two vectors f1(u) and f2(u) satisfy Eqn. (4) and the three vectors f1(0), f2(0) and
t(0) form a right–handed orthonormal frame, then f1(u), f2(u) and t(u) define an RMF of the spine curve
x(u).

Corollary 3.2. Suppose that r(u) is a rotation minimizing vector of a spine curve x(u). Then another
normal vector r̃(u) of x(u) is a rotation minimizing vector of x(u) if and only if r̃(u) keeps a constant angle
with r(u).

Or, equivalently,
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Corollary 3.3. Suppose that U(u) = (r(u), s(u), t(u)) is also an RMF of a spine curve x(u). Then
another right-handed orthonormal moving frame Ũ(u) = (r̃(u), s̃(u), t(u)) of x(u) is an RMF of x(u) if and
only if Ũ(u) keeps a constant angle with U(u).

Finally, we note that the RMF is determined only by the geometry of a spine curve and independent of
any particular parameterization x(u) of the curve.

3.2 Some differential geometry

In this subsection we shall use the arc-length parameterization x(s) of the spine curve. Using the Frenet
formulas one may express (6) as

f ′(s) = κ(s)b(s) × f(s), (9)

where κ(s) and b(s) are the curvature and the binormal vector of x(s). The vector

ωRMF(s) = κ(s)b(s) (10)

is the angular velocity of the RMF.

The angular velocity of the Frenet frame is the so–called Darboux vector [Kreyszig 1991]

ωFrenet(s) = κ(s)b(s) + τ(s)t(s) (11)

This shows that, compared to the RMF, the Frenet frame involves an additional rotation around the tangent,
whose speed equals the torsion τ . This observation explains the integral formula (3) for computing the RMF
by correcting the “unwanted” rotation of the Frenet frame. The Frenet frame coincides with the RMF for
planar curves, for which τ ≡ 0.

The RMF is also closely related to developable surfaces and principal curvature lines of a surface.
Suppose that U(u) = (r(u), s(u), t(u)) is an RMF of a curve x(u). Then the surface D(u, v) = x(u) + vr(u)
is developable. Let g(u) be the edge of regression of the developable surface D(u, v). Then the spine curve
is an involute of the curve g(u). This observation suggests a natural (but restrictive) way of modeling a
developable ribbon surface along a spine curve using the RMF.

Suppose that x(u) is a principal curvature line of a surface S. Then the consistent unit normal vector
of S along the curve x(u) is a rotation minimizing vector of x(u), thus determining an RMF of x(u). This
follows from the well known fact that the normals of S along x(u) form developable surface if and only if
x(u) is a principal curvature line of S. It therefore also follows that the spine curve x(u) is a principal
curvature line of the developable D(u, v) defined in the last paragraph.

Another important property of the RMF is that it is preserved by conformal transformation of E
3, which

is a fact that we will formally prove in a forthcoming paper. This means that, given a spine curve x(u) ⊂ E
3

and a conformal mapping C of E
3, the RMF of x(u) is mapped by C to the RMF of the transformed spine

curve C(x(u)). In other words, the operation of computing RMF of a curve and a conformal transformation
commute. This property will be needed later in the analysis of the approximation order of our new method
for computing the RMF.

Note that the group of conformal mappings in 3D is exactly the group generated by translations, rota-
tions, uniform scalings and sphere inversions (reflections with respect to spheres). Since a straight line is
mapped to a circle by a sphere inversion, in the above the transform of a unit vector v in RMF is understood
to be the unit tangent vector of the circle which is the image of the straight line associated with v.
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4. DOUBLE REFLECTION METHOD

In this section we shall first give an outline of the double reflection method, and, through a study of the
RMF of a spherical curve, explain why the method works well. Then we shall give a procedural description
of the method that has an optimized number of arithmetic operations, and finally present an analysis of the
approximation order of the method. The double reflection method is straightforward and can very easily be
described; however, its justification takes interesting geometric arguments that do not appear to be trivial.

4.1 Outline of method

Given boundary data (x0, t0;x1, t1) and an initial right-handed orthonormal frame U0 = (r0, s0, t0) at x0,
the next frame U1 = (r1, s1, t1) at x1 for RMF approximation is computed by the double reflection method
in the following two steps.

Step 1 : Let R1 denote the reflection in the bisecting plane of the points x0 and x1 (see Figure 4). Use R1

to map U0 to a left-handed orthonormal frame UL
0 = (rL

0 , s
L
0 , t

L
0 ).

Step 2 : Let R2 denote the reflection in the bisecting plane of the points x1 + tL
0 and x1 + t1 (see Figure 5).

Use R2 to map UL
0 to a right-handed orthonormal frame U1 = (r1, s1, t1). Output U1.

An efficient implementation of the above steps is given by the pseudo code in Table I.

r0

t0

x0

rL
0

tL
0 x1

R1

Fig. 4. The first reflection R1 of the double reflection
method.

r0

t0

x0

rL
0

tL
0 x1

r1

t1

R2

Fig. 5. The second reflection R2 of the double reflection
method.

4.2 Geometric interpretation

The reasons why the double reflection method described above computes an accurate approximation of an
RMF are the following: 1) the double reflection method is designed to produce an exact RMF when the
spine curve is a spherical curve; and 2) any spine curve x(u) with boundary data (x0, t0;x1, t1) can well
be approximated by a spherical curve x̂(u) interpolating the same boundary data. Therefore the double
reflection method should compute an accurate approximation of the exact RMF of an arbitrary spine curve.
Furthermore, we note that any two consecutive frames in a sequence of approximate RMF are related to
each other by a rigid motion. Since, as well known, a rigid motion can be realized by the composition of two
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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reflections in a plane, we seek these two simple reflections in our implementation to realize the desired rigid
motion. This explains the efficiency of the double reflection method.

In the remaining of this section we shall provide a geometric argument about the intuition and mechanism
behind the double reflection method and discuss its properties. First consider the RMF of a spherical curve.
The next lemma indicates that there is a simple explicit characterization of the RMF of a spherical curve.
(We will treat a planar curve as a special case of a spherical curve where the radius is infinite.)

Lemma 4.1. Let x(u), u ∈ [0, h], be a curve segment lying on a sphere S or a plane P (see Figure 6).
Let n(u) be the outward unit normal vector of the sphere S along the curve x(u) or a unit (constant) normal
vector of the plane P . Then an RMF of x(u) is given by Ū1 = (r̄, s̄, t1), where

r̄(u) = n(u) and s̄(u) = t(u) × n(u). (12)

Proof. Suppose that x(u) is on a sphere. Without loss of generality, suppose that the sphere S is centered
at the origin and has radius r. It is clear that r(u) = n(u), s(u) = t(u)×n(u) and t(u) form a right-handed
orthonormal moving frame. Since n(u) = 1

rx(u), r′ = n′ = 1
rx

′, which is parallel to t(u). Therefore, r
satisfies Eqn. (4), i.e., it is a rotational minimizing vector. Hence, by Definition 1, U(u) = (r, s, t) is an
RMF of x(u).

The proof is similar when x(u) is a plane curve. �.

Lemma 4.1 suggests that, given the initial frame U0 at x0, the RMF U1 of a spherical curve x(u) at
the point x1 does not depend on the in-between shape of x(u), but depends only on the boundary data
(x0, t0;x1, t1). This will be referred to as the path independence property, as stated below.

Lemma 4.2. [Path independence property] 1 Let x(u) and y(v) be two curve segments, u ∈ [0, h1] and
v ∈ [0, h2], on a sphere (or a plane) sharing the same boundary data (x0, t0;x1, t1). Let U(u) and V (v)
denote the RMFs of x(u) and y(v), having the same initial frame U0, i.e., U(0) = V (0) = U0. Then
U(h1) = V (h2).

Proof. We will only consider the case of x(u) and y(u) being on a sphere S; the case of their being
on a plane can be proved in a similar way. First suppose that the initial frame U0 is the special frame
Ū0 = (r̄0, s̄0, t0) where r̄0 is the unit outward normal vector of the sphere S at x0 and s̄0 = t0 × r̄0. Then,
by Lemma 4.1, the RMFs Ū1 and V̄1 of x(u) and y(u) at x1 are the same, i.e., Ū1 = V̄1 = (r̄1, s̄1, t1), where
r̄1 is the unit outward normal vector n1 of the sphere S at x1 and s̄1 = t1 × r̄1.

Now suppose that the initial frame U0 = (r0, s0, t0) is arbitrary. Let α0 be the angle between U0 and
Ū0. Then, by Corollary 3.3, U(h1) and Ū1, as two RMFs of x(u) at the endpoint x1, keep the same angle
α0. Similarly, the angle between the V (h2) and V̄1, as two RMFs of y(v) at the endpoint x1, is also α0. It
follows that U(h1) = V (h2), since Ū1 = V̄1 . �.

Next we show that the double reflection method yields the exact RMF for a spherical curve.

Theorem 4.3. Let x(u) be a curve segment, u ∈ [0, h], on a sphere or a plane with boundary data
(x0, t0;x1, t1). Let U(u) be an RMF of x(u). Let U0 = U(0) and U1 = U(h). Then, given boundary data
(x0, t0;x1, t1) and the initial frame U0, the double reflection method produces the frame U1.

Proof. Again we will only consider the case of the curve x(u) being on a sphere S; the case of a plane
can be proved similarly. First consider the special case of U0 = Ū0 = (r̄0, s̄0, t0), as defined in the proof of

1This property is equivalent to the fact that the integral
∫ b

a
τ(s)ds vanishes for closed spherical curves [Kreyszig 1991].
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Fig. 6. An RMF of a spherical curve.

x0

x(u)

x1

x̂(u)

Fig. 7. Spherical projection of a curve segment.

Lemma 4.2. Then, by Lemma 4.1, U1 = Ū1 = (r̄1, s̄1, t1). Here, r̄0 and r̄1 are unit outward normal vectors
of the sphere S at x0 and x1, respectively. Recall that in the double reflection method (cf. Section 4.1) the
first reflection R1 is in the bisecting plane (denoted as H1) of x0 and x1, and R1 maps Ū0 to a left-handed
frame ŪL

0 = (r̄L
0 , s̄

L
0 , t

L
0 ). Because the two normals r̄0 and r̄1 of S at x0 and x1 are symmetric about the

plane H1, we have r̄L
0 = r̄1.

Let H2 denote the bisecting plane of the two points x1 + tL
0 and x1 + t1. Clearly, r̄L

0 (or r̄1) is contained
in H2. Since the second reflection R2 of the double reflection method is in the plane H2, it preserves r̄L

0 = r̄1.
Furthermore, by its construction, R2 maps tL

0 to t1. Therefore, R2 maps ŪL
0 to Ū1 = (r̄1, s̄1, t1). Hence,

the theorem holds in the special case of U0 = Ū0.

Now consider an arbitrary initial frame U0 = (r0, s0, t0). Let α0 denote the angle between U0 and Ū0.
Let R denote the composition of R1 and R2, i.e., the total rotation effected by the double reflection method.
Clearly, R maps U0 to a right-handed orthonormal frame Û1 = (r̂1, ŝ1, t̂1) such that t̂1 = t1. Therefore,
Û1 and Ū1 differ by a rotation in the normal plane of x(u) at x1. Furthermore, since the rotation R is
angle-preserving, the angle between Û1 and Ū1 is also α0, since R maps Ū0 to Ū1, and U0 to Û1. On the
other hand, by Corollary 3.3, the angle between U1 = U(h) and Ū1 is also α0. It follows that Û1 = U1, i.e.,
the exact RMF U1 of the curve x(u) at x1 is generated by the double reflection method. �.

Not only the RMF of a spherical or plane curve x(u) is computed exactly by the double reflection method,
but also this computation does not make use of the sphere or the plane containing x(u). That is possible
because of the path independence property of the RMF of a spherical curve (cf. Lemma 4.2). Note that
when the curve segment x(u) is C1 regular and parameterizes a line segment, since x(u) is a plane curve,
its RMF is computed exactly by the double reflection method, with no need of threshold as in the rotation
method to avoid numerical instability (see Section 2.1).

Now consider applying the double reflection method to computing the RMF of a general spine curve
x(u) ⊂ E

3, u ∈ [0, h], which has boundary data (x0, t0;x1, t1) and is not necessarily spherical or planar. In
general, there is a unique sphere S such that x0 and x1 are on S and t0 and t1 are tangent to S at x0 and x1.
Let x̂(u) denote the projection of the curve x(u) onto the sphere S through the center of S (see Figure 7).
Then it is easy to see that the curve x̂(u) shares the same boundary data (x0, t0;x1, t1) with x(u), so it
follows from the basic results of Hermite curve interpolation that the approximation error ‖x(u) − x̂(u)‖
between x(u) and its spherical projection x̂(u) is of the order O(h4). Since x(u) is well approximated by
x̂(u) and the double reflection method computes an exact RMF of the spherical curve x̂(u), it is reasonable
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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to expect that the double reflection method computes an accurate approximation to the RMF of the original
spine curve x(u).

Note that the above argument does not constitute a formal analysis of the approximation accuracy of the
double reflection method; it merely provides a geometric and intuitive understanding of why the method is
expected to work well for RMF computation. It will be proved in Section 4.7 that the global approximation
error of the double reflection method has the order O(h4).

4.3 Procedural description

The description of the double reflection method in Section 4.1, though simple in geometric terms, is not
for efficient implementation. In this section we will give a procedural description of the method, aiming at
minimizing the number of arithmetic operations required.

Since only transformation of vectors matters in RMF computation, we may just use the linear parts,
denoted by matrices R1 and R2, of the two reflections R1 and R2. Since R1 is a reflection in a plane with
normal vector v1 ≡ x1 − x0, it can be shown that its linear part is

R1 = I − 2(v1vT
1 )/(vT

1 v1), (13)

where I is the 3× 3 identity matrix. We will call v1 the reflection vector of R1. (Note that R1 is none other
than the Householder transform used for QR matrix decomposition.)

The reflection R2 has the reflection vector v2 ≡ (x1 + t1) − (x1 + tL
0 ) = t1 − tL

0 , where tL
0 = R1t0. So

its linear part is

R2 = I − 2(v2vT
2 )/(vT

2 v2). (14)

Let r0 be the reference vector of U0. Then r1 = R2R1r0 is the reference vector r1 of the next frame U1.
With the known tangent vector t1, the remaining vector s1 of U1 = (r1, s1, t1) is given by s1 = t1 × r1.

The procedure of the double reflection method is given in Table I. For a given sequence of sampled points
xi and associated unit tangent vectors ti, with an initial frame U0 defined at x0, one just needs to apply the
two reflections R1 and R2 to successively generate the approximate RMF Ui at xi. In each step, from the
current frame Ui, we form the first reflection R1 following Eqn.( 13) and use R1 to map the reference vector
ri to rL

i , and also the tangent vector ti to tL
i . Then we use tL

i and ti+1 to form the second reflection R2

following Eqn. (14) and use R2 to map rL
i to the reference vector ri+1 of the next frame Ui+1.

4.4 Degeneracy, stability and symmetry

By degeneracy we mean that either of the reflections R1 and R2 becomes undefined. Clearly, R1 is undefined
if and only if x1−x0 = 0, and R2 is undefined if and only if x1 +tL

0 = x1 +t1, i.e., the two points x0 +t0 and
x1 + t1 are symmetric about the bisecting plane of x0 and x1; this is equivalent to (x1 − x0) · (t1 + t0) = 0
and (x1 − x0) × (t1 − t0) = 0. Hence, for proper application of the double reflection method, we need to
ensure that the following two conditions are satisfied: (1) x1 − x0 �= 0; and (2) (x1 − x0) · (t1 + t0) �= 0 or
(x1 − x0) × (t1 − t0) �= 0. Both conditions are simple to test and can easily be satisfied provided that the
spine curve is sufficiently subdivided or sampled.

It has been commented earlier (cf. Section 2.1) that the rotation method suffers from numerically
instability when the vectors t0 and t1 are collinear or nearly so. Now we examine the stability of the double
reflection method for the same kind of local data (x0, t0;x1, t1) , i.e., when v1 = x1 − x0, t0 and t1 are
collinear or nearly so. Two reflections are used in the double reflection method. The first reflection R1 uses
v1 = x1 − x0 as the reflection vector, thus R1 is numerically stable because v1 can be assumed to be a
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Table I. Algorithm — Double Reflection

Input: Points xi and associated unit tangent vectors ti, i = 0, 1, . . . , n.
An initial frame U0 = (r0, s0, t0).

Output: Ui = (ri, si, ti), i = 0, 1, 2, . . . , n, as approximate RMF.

Begin

for i = 0 to n − 1 do

Begin

1) v1 := xi+1 − xi; /*compute reflection vector of R1. */

2) c1 := v1 · v1;

3) rL
i := ri − (2/c1) ∗ (v1 · ri) ∗ v1; /*compute rL

i = R1ri. */

4) tL
i := ti − (2/c1) ∗ (v1 · ti) ∗ v1; /*compute tL

i = R1ti. */

5) v2 := ti+1 − tL
i ; /*compute reflection vector of R2. */

6) c2 := v2 · v2;

7) ri+1 := rL
i − (2/c2) ∗ (v2 · rL

i ) ∗ v2; /*compute ri+1 = R2rL
i . */

8) si+1 := ti+1 × ri+1; /*compute vector si+1 of Ui+1. */

9) Ui+1 := (ri+1, si+1, ti+1);
End

End

nonzero vector, and this stability has nothing to do with whether v1 is collinear with t0 (or t1) or not. The
second reflection R2 uses the reflection vector v2 = t1 − tL

0 , where tL
0 is the image of t0 under R1. Hence,

when t0 and t1 become collinear or nearly so, v2 would approach to t1 + t0 ≈ 2t1, since tL
0 approaches to

−t1 in this case. Hence, v2 well be defined, which ensure the numerical stability of the second reflection R2.

Clearly, the above argument for the stability of the double refection method applies also when the spine
curve is specified only by a sequence of sample points {xi}n

i=0 (see Section 6.1. In this case the tangent
vectors ti have to be estimated from the points xi, and nearly collinear data would results if the points xi

are densely sampled. As a consequence of its stability in the presence of nearly collinear data, the double
reflection method is free of the threshold problem which plagued the rotation method (cf. Section 2.1).
Hence, the double reflection method produces the RMF exactly (or accurately) in a numerically stable
manner even for a sequence of points on a spine curve which is a straight line (or nearly a straight line),
using the same unified procedure, i.e., free of threshold testing.

Finally, we note that the double reflection method is symmetric in the following sense. Given a sequence
of sampled points xi, i = 0, 1, . . . , n, on a spine curve x(u), suppose that the Ui are the frames computed by
the double reflection method applied to x(u) with U0 as the initial frame. Then the same sequence of frames
in the reversed order, i.e., Un−i, i = 0, 1, . . . , n, will be generated by applying the double reflection method
starting from xn, using Un as the initial frame. This symmetry property can be proved by examining the
basic steps of the double reflection method, but we will skip the proof. The projection method and the
rotation method also possess this symmetry property, while the Runge–Kutta method does not.

4.5 Axis-angle representation

It is instructive to derive the axis-angle representation of the rigid motion R that relates any two consecutive
orthonormal frames produced by the double reflection method. Using the notation in 4.3, the two reflection
vectors used in the double reflection method are v1 = x1 − x0 and v2 = t1 − tL

0 . Denote their normalized
vectors by v̄1 = v1/‖v1‖ and v̄2 = v2/‖v2‖. Based on elementary geometric argument, it is easy to see that
the rotation axis vector of R is v = v̄1 × v̄2 and the rotation angle is α = 2 arcsin(‖v̄‖).
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Substituting in the expression tL
0 = R1t0, where R1 is given by Eqn. (13), it is straightforward to derive

the axis vector

v = γ(x1 − x0) × (t1 − t0),

where γ−1 = ‖x1−x0‖2‖t1−x1‖2 +[(x1−x0)T t0][(x1−x0)T t1]. Clearly, v approaches to zero if the vectors
x1 −x0, t0 and t1 become nearly collinear. Therefore, regardless of its efficiency, if this axis-angle reflection
is used to compute the RMF for nearly collinear data, it will experience numerical instability and thus need
threshold testing, as in the case of the rotation method (see Section 2.1). In contrast, the double reflection
method avoids this instability elegantly by computing the same rigid motion using two reflections in a plane.
Hence, we conclude that the stability issue in the presence of collinear data is not inherent to the problem
of RMF computation; rather, it is due to a particular algorithm for solving the problem.

4.6 Invariance under conformal mappings

We have seen that conformal mappings in 3D preserve the RMF of a space curve (cf. Section 3.2). It turns
out that the approximate RMF computed with the double reflection method is also preserved by conformal
mappings, in the following sense. Suppose that the sampled points xi of a spine curve x(u) are used to
compute the approximate RMF Ui of x(u). Then the images of Ui under a conformal mapping C are the
same as the approximate RMF of the curve C(x(u)) that are computed by the double reflection method
using the sampled points C(xi).

This property follows easily from the fact that the basic step of the double reflection method is performed
on the sphere Si touching the two ends of the data (xi, ti;xi+1, ti+1) and this sphere is preserved by any
conformal mapping C (which is the composition of a sequence of sphere inversions), i.e., the image C(Si) is
the sphere touching the transformed data (C(xi), C(ti); C(xi+1), C(ti+1)).

Since both exact RMF and approximate RMF computed with the double reflection method are preserved
by conformal mappings, and the conformal mapping is angle preserving, we conclude that the approximation
error of the double reflection method is invariant under conformal mappings.

The double reflection method is an ideal method from the viewpoint of discrete differential geometry.
Because the exact RMF of a smooth curve is preserved by conformal mappings, we naturally expect that a
good method acting on a discretization of the curve for computing its approximate RMF is invariant under
the same group of transformations. The double reflection method indeed satisfies this property. We note
that the projection method, the rotation method and the Runge–Kutta method do not possess this property.

4.7 Order of approximation

First consider an analytic curve segment with the arc length parameterization x(s), s ∈ [0, h], of length h.
Suppose that the initial frame U(0) = U0 ≡ (r0, s0,y0) of an RMF U(s) of x(s) is given. We approximate
the frame U(h) at x1 = x(h) by the frame U1 computed with the the double reflection method.

Theorem 4.4. The one-step error U(h) − U1 in RMF computation introduced by the double reflection
method has the order of O(h5). Specifically,

‖r(h) − r1‖ = 1
720Kh

5 + O(h6). (15)

Here K = 2 κ1
2τ0 + κ0

2τ0
3 + κ1κ0τ1 − κ2κ0τ0 is a bounded constant for a smooth curve, where κi =

(d/ds)iκ(s)|s=0, τi = (d/ds)iτ(s)|s=0 are the curvature, torsion and their respective derivatives at s = 0.
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The proof of Theorem 4.4 is given in Appendix I. The constantK in Eqn.(15) has an interesting geometric
interpretation. A spherical curve x(s) is characterized by the differential equation [Kreyszig 1991]

τ

κ
− d

ds

{
κ′

κ2τ

}
= 0.

It is easy to verify that the numerator of this equation is

K(s) = 2 κ1(s)2τ0(s) + κ0(s)2τ0(s)3 + κ1(s)κ0(s)τ1(s) − κ2(s)κ0(s)τ0(s).

Therefore, K(s) = 0 if and only if x(s) is a spherical curve. Hence, intuitively speaking, K = K(0) measures
how close x(s) is to a spherical curve at s = 0.

As an obvious corollary of Theorem 4.4, we have the next theorem that the RMF computation by the
double reflection method applied to a general regularly parameterized spine curve has the fourth order global
approximation error.

Theorem 4.5. Given a regularly parametrized spine curve x(u), u ∈ [0,M ], let xi = x(ui), i = 0, 1, . . . , n,
be points sampled on x(u) with equally spaced parameter values, i.e., ui = i∗h and h = M/n. Then the global
error of the approximate RMF of x(u) computed by the double reflection method applied to the sequence {xi}
has the order O(h4).

5. COMPARISON AND EXPERIMENTS

We first give the numbers of operations used in the three methods (i.e., double reflection, projection, and
rotation) for computing RMF in order to compare the efficiency of these methods. To save space, the
detailed counting is referred to our technical report [Wang et al. 2007]. The double reflection method can
be implemented such that the per frame computation of the double reflection method costs 28 additions, 32
multiplications and 2 divisions. For the projection method [Klok 1986], the per frame computation needs 5
additions, 21 multiplications, 2 divisions and 1 square root to compute a new frame; considering the cost of
the square root, this is less than, but comparable to, the cost of the double reflection method.

A procedure of the rotation method is given in [Poston et al. 1995]. Given the two consecutive unit
tangent vectors t0 and t1, the rotation axis is computed as (a, b, c) = t0 × t1 and the cosine of rotation angle
is cosα = t0 · t1. Then the rotation matrix is given by

R =

⎡
⎣ cosα −c b

c cosα −a
−b a cosα

⎤
⎦ +

1 − cosα
a2 + b2 + c2

⎡
⎣ a2 ab ac
ab b2 bc
ac bc c2

⎤
⎦ .

From here it is easy to see that the per frame computation of the rotation method can be implemented with
26 additions, 36 multiplications and 1 division.

The number of operations for the three methods are summarized in Table II. The three methods have
similar computational costs, as our tests show that a sqrt or a division is about six times more time consuming
than a multiplication; this makes sense because square root and division are approximated by a truncated
series in arithmetic hardware. The actual timing comparison will be given in the next subsection.

Another procedure of the rotation method is given in [Bloomenthal 1990], which uses 19 mults and a
square root to compute the rotation matrix R after using 6 mults to get the rotation axis t0×t1. Hence, that
version of the rotation method requires in total 40 multiplications and one square root to compute a new
frame, assuming that the ti are unit tangent vectors. In the subsequent experimental comparisons involving
the rotation method we will refer to the faster implementation in [Poston et al. 1995].
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Method # of adds # of mults # of divs # of sqrt

Projection 15 21 2 1

Rotation 26 36 1 0

Double reflection 28 32 2 0

Table II. The operations counts of the three methods.

Fig. 8. Timings of the double reflection method, the pro-
jection method and the rotation method.

Fig. 9. Timings of Runge-Kutta method and the double
reflection method.

Two examples will be used to compare the double reflection method with the following existing methods:
the projection method, the rotation method and the 4-th order Runge-Kutta method, in terms of efficiency
and accuracy. All test cases were run on a PC with Intel Xeon 2.66 GHz CPU and 2.00 GB RAM.

Example 1: In the first example we use the four methods to compute the RMF of the spine curve,
which is a torus knot, given by

x(u) = [(0.6 + 0.3 cos(7u)) cos(2u), (0.6 + 0.3 cos(7u)) sin(2u), 0.3 sin(7u)]T , u ∈ [0, L] (16)

We compute the RMF using different step sizes h = 0.01 ∗ 2−k, k = 0, 1, . . . ; that is, for each fixed step size
h, the sampled points are x(i ∗ h), i = 0, 1, . . . , L/h.

The timings of computing the sequence of frames by the four methods are shown in Figures 8 and 9.
We see that the projection method, the rotation method and the double reflection method have similar time
costs. The Runge-Kutta method costs much more time than the double reflection method, since it needs
more function evaluations in each step than the other three methods.

To observe approximation errors, we need an exact RMF of the spine curve or an approximate RMF of
very high accuracy against which the computed approximate RMF by the four methods can be compared.
Since the exact RMF of the torus knot given by Eqn.(16) is difficult to obtain, we use the integration function
provided in Maple to get an approximate RMF of x(u) whose approximation error is known to be less than
10−16. This highly accurate RMF is used in place of an exact RMF to measure the global approximation
error Eg defined in (2).

The global approximation errors ek of the four methods are shown in Figure 10 and also in Tables III
and IV, where ek is the error of using 2k segments, k = 6, 7, . . . , 11. These data confirm that the projection
method and the rotation method have the second order of global approximation error O(h2), and the Runge-
Kutta method and the double reflection method have the fourth order of global approximation error O(h4).

Example 2: In the second example we use the double reflection method to approximate the RMF of a PH
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Fig. 10. Global errors of the four methods for the torus
knot in Example 1.

Fig. 11. Global errors of the four methods for the PH
curve in Example 2.

Double reflection Runge-Kutta

# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 5.10E−3, N.A. 3.58E−2, N.A.

27 3.24E−4, 0.063577 2.32E−3, 0.064846

28 2.03E−5, 0.062776 1.46E−4, 0.062737

29 1.27E−6, 0.062571 9.10E−6, 0.062408

210 7.95E−8, 0.062578 5.68E−7, 0.062422

211 4.97E−9, 0.062575 3.55E−8, 0.062438

Table III. Global approximation errors ek of the double reflection method and by using the 4-th order Runge-Kutta method
for the torus knot in Example 1. The error ratios ek/ek−1 show that the approximation orders of these two methods are both
O(h4).

Projection method Rotation method

# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 1.56E−1, N.A. 2.60E−1, N.A.

27 9.03E−2, 0.579295 1.91E−1, 0.736606

28 2.26E−2, 0.249757 4.76E−2, 0.248776

29 5.64E−3, 0.249939 1.19E−2, 0.249668

210 1.41E−3, 0.249983 2.97E−3, 0.249906

211 3.52E−4, 0.249995 7.42E−4, 0.249971

Table IV. Global approximation errors ek of the projection method and the rotation method for the torus knot in Example 1.
The error ratios ek/ek−1 show that the approximation orders of these two methods are both O(h2).

(Pythagorean-hodograph) curve, whose RMF can be computed exactly by a closed-form formula [Farouki
2002]. Given two points x0 = (1000, 0, 0)T and x1 = (1000, 2000, 4000)T with associated un-normalized
tangent vectors t̂0 = (1, 5,−1)T , t̂1 = (−3, 2, 5)T , we obtain a cubic PH curve x(u) as the spine curve using
G1 Hermite interpolation, following [Jüttler and Mäurer 1999]. Let the Frenet frame of x(u) at u = 0 be the
initial frame U0. Compared with the exact RMF of x(u) at the endpoint x1 = x(1), we obtain the errors
of the approximate RMF computed by the four methods. These errors are shown in Figure 11. The errors
of the double reflection method and the rotation method are also given in Table V and their color coded
surface representations in Figure 12. These data confirm again the fourth order approximation error O(h4)
of the double reflection method.
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Double reflection Rotation method

# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 9.29E−9, N.A. 1.78E−4, N.A.

27 5.94E−10, 0.063919 4.47E−5, 0.250721

28 3.75E−11, 0.063181 1.12E−5, 0.250321

29 2.36E−12, 0.062926 2.80E−6, 0.250151

210 1.48E−13, 0.062789 7.00E−7, 0.250073

211 9.25E−15, 0.062521 1.75E−7, 0.250036

Table V. Global approximation errors ek of the double reflection method and the rotation method for the PH curve. The error
ratios ek/ek−1 confirm again the O(h4) global error of the double reflection method and the O(h2) global error of the rotation
method.

(a) Double reflection method. (b) Rotation method. (c) Frames computed by double reflection.

(d) Error coding bar

Fig. 12. The color coded sweep surfaces showing the errors of the double reflection method and the rotation method for the
PH curve in Example 2, with 256 segments.

6. EXTENSIONS

6.1 Spine curve defined by a sequence of points

In some applications a spine curve is specified by a sequence of points xi in 3D, which we may assume to
lie on some unknown regularly parameterized spine curve, and we need to compute a sequence of frames Ui

which has minimal rotation about the spine curve. In order to apply the double reflection method in this
case, we need to furnish each data point xi with a unit tangent vector ti.

In the following we assume that the given points xi, i = 0, 1, . . . , n, are sampled from a regular parametric
x(u) with equally spaced parameter values, i.e., xi = x(ui), where ui = u0 + i ∗ h. In actual computation,
this underlying curve x(u) is not known, so the tangent vectors ti at xi need to be estimated from the given
points xi. The key requirement for computing the ti is that the approximation error of ti to the true tangent
vector x′(ui) is of the order O(h5), so the global error of the double reflection method for computing the
RMF based on the estimated tangent vectors will be of the order O(h4).

We use the following formulas to estimate the tangent vectors at an internal point xi, i.e., when 2 ≤ i ≤
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n− 2, we have

ti = xi−2 − 8xi−1 + 8xi+1 − xi+2.

For boundary points, i.e., when i = 0, 1, n− 1 or n, we have

t0 = −25x0 + 48x1 − 36x2 + 16x3 − 3x4,

t1 = −3x0 − 10x1 + 18x2 − 6x3 + x4,

tn−1 = 3xn + 10xn−1 − 18xn−2 + 6xn−3 − xn−4,

tn = 25xn − 48xn−1 + 36xn−2 − 16xn−3 + 3xn−4.

Using Taylor expansion, it is straightforward to verify that the error of approximation of the ti to the
true tangent x′(ui) is O(h5). After normalization, the error of the unit tangent vector t̃i = ti/‖ti‖ is at most
O(h5). Hence, the global error of the double reflection method based on the local data (xi, t̃i;xi+1, t̃i+1)
is O(h4). This has also been confirmed by our numerical experiments, which are not included here due to
space limitation.

It is assumed above that there are at least 5 sample points xi, i.e., n ≥ 4. If n < 4, some other simpler
method can be used to estimate the tangent vectors ti (which would necessarily have approximation errors
larger than O(h5)). We skip the discussion on this special case for the sake of brevity.

6.2 Using only tangent vectors

According to its defining equation (4), the RMF of a spine curve x(u) is entirely determined by the unit
tangent vector t(u). Thus it is natural to consider computing the RMF of x(u) using only the sampled
tangent vector ti = ẋ(ui). From a practical point of view, this treatment is also desirable when the points
x(ui) are overly densely sampled, which may make the first reflection vector v1 = xi+1 − xi too small and
therefore make computation of the reflection R1 less stable.

In order to apply the double reflection method in this case, all we need to do is provide a reflection vector
for the first reflection R1. Our analysis shows that the global approximation order O(h4) to the true RMF
of x(u) is preserved if the first reflection vector is chosen to be

v1 = 13(ti + ti+1) − (ti−1 + ti+2). (17)

Then the remaining steps of the double reflection method are the same. This assertion can be proved in a
similar way to that of proving Theorem 4.7. Note that the computation of v1 in Eqn. (17) does not involve
subtraction between two close quantities, and therefore is numerically robust. Note, however, a different
treatment is needed to compute v0 and vn−1, such that an order O(h4) approximation to x1 − x0 and
xn − xn−1 are achieved. We skip the details here.

6.3 Variational principles for RMF with boundary conditions

In general, the RMF of a closed smooth spine curve does not form a closed moving frame. Therefore, when
a closed moving frame with least rotation is needed, it can be generated by adding a gradual rotation to the
RMF along the closed spine curve to make the resulting moving frame closed. Even for an open spine curve,
it is often required that its moving frame meet given end conditions while having a natural distribution of
rotation along the spine curve. So an appropriate additional rotation to the RMF needs to be computed in
this case. We study in this section how this additional rotation can properly be determined.

More specifically, consider a curve segment x(s), s ∈ [ 0, L ], in arc-length parameterization. We would
like to find a one-parameter family of unit vectors g(s) orthogonal to the tangent vector t(s) and satisfying
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the boundary conditions

g(0) = g0 and g(L) = g1 (18)

The vector g(s) defines an orthonormal frame M = (t,g, t × g) along the spine curve.

We compare the frame M(s) with the RMF generated by a vector r(s) satisfying r(0) = g(0). Let
α(s) = ∠(r(s),g(s)) be the angle between the two frames, where the sign is chosen such that it corresponds
to a rotation around the oriented line determined by the tangent vector t(s). In addition, assume that α(s)
is continuous and satisfies α(0) = 0. We will call M(s) the modified frame, since it is obtained by adding a
rotation of angle α(s) to the RMF. In this sense the RMF serves as a reference frame with respect to which
another moving frame is specified.

The boundary conditions (18) imply that

α(0) = 0 and α(L) = ∠(r(L),g1) + 2kπ (19)

for a some fixed integer k. The angular velocity vector of the modified frame M(s) is

ωmodified(s) = κ(s)b(s) + α′(s)t(s) (20)

The function s �→ α′(s) specifies the angular speed of the rotation of M(s) around the tangent of the curve
x(u). We now consider two possible ways of choosing α(s).

Minimal total angular speed. One may choose α(s) that minimizes the functional∫ L

0

||ωmodified|| ds =
∫ L

0

√
κ(s)2 + α′(s)2 ds → Min (21)

and satisfies the boundary conditions (19). Let F (s, α, α′) =
√
κ2 + α′2. Then we have at hand a functional

of the angular function α(s). The moving frame M(s) corresponds to a curve on the unit quaternion sphere,
and minimizing the functional in (21) amounts to minimizing the length of this curve subject to that g(s) is
perpendicular to t(s); this is the computational approach taken in [Hanson 1998].

Here we will analyze this variational problem to give it a simple geometric interpretation as well as an
easy computational method. Solving Euler’s equation of the functional (21) using calculus of variations
yields

0 = Fα − d
ds
Fα′ = − κ

(κ2 + α′2)3/2
(κα′′ − α′κ′) = − κ3

(κ2 + α′2)3/2

(
α′

κ

)′
(22)

assuming κ �= 0. It follows that

α′(s) = Cκ(s) (23)

for some constant C, which can be determined from the boundary conditions and the total curvature.
Consequently, the angular speed of the additional rotation around the tangent is proportional to the curvature
of the curve. Hence, minimizing (21) makes the additional rotation more concentrated on curve segments of
higher curvatures.

The above analysis is only valid for curved segments with κ(s) �≡ 0. For straight line segments, the
variational problem (21) does not have a unique solution. In fact, the integrand in this case simplifies to
|α′|, and any monotonic function α(s) which satisfies the boundary conditions is a solution. Because of
this non-uniqueness of solution, optimization methods as used in [Hanson 1998] for minimizing (21) will
experience numerical problems with a spine curve that is close to a straight line. Based on our analysis, a
more efficient method is to compute the curvatures at sampled points of the spine curve, and then distribute
the additional rotation proportional to the curvatures along the curve, with respect to the RMF.
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Minimal total squared angular speed. One may also choose α(s) that minimizes∫ L

0

||ωmodified||2ds =
∫ L

0

(κ(s)2 + α′(s)2)ds → Min (24)

and satisfies the boundary conditions (19). Now, with F = κ2 + α′2, Euler’s equation gives α′′ = 0, or
α(s) = as for some constant a; that is, the rotation of M is linearly proportional to the arc length parameter s.

This choice of the additional rotation is not only easy to implement, but also free of the numerical problem
with the method based on minimizing (21); so it is recommended over the first one based on minimizing the
total angular speed. Note that this means of applying the additional rotation as proportional to arc-length
has been suggested in the literature (e.g. [Bloomenthal 1990; Wang and Joe 1997]), but here we provide
theoretical justification from the viewpoint of the variational principle through minimization of the total
squared angular speed.

Efficient implementation of the above methods of computing a moving frame with boundary conditions
is based on angle adjustment to the RMF, either according to curvature or arclength. When the RMF
is computed approximately, the resulting solution is only an approximate one. In this regard, the higher
accuracy of the double reflection method makes this solution more accurate than using the projection method
or the rotation method.

One may choose the integer k in (19) to minimize the rotation if the least deviation to the RMF is
desired, or choose k to design a moving frame with a specified amount of total twist along the spine curve.
Figure 13 shows comparison of the two methods above for computing frames meeting certain boundary
conditions. The method based on total angular speed minimization (i.e., rotation proportional to curvature)
and the method based in total squared angular speed minimization (i.e., rotation proportional to arclength)
are shown in the first row and the second row, respectively. In each row, the four figures are for the case
of using RMF computed by the double reflection method with no twist adjustment, the case of using the
minimal twist to close the frame, the case of a twist of 2π, and the case of a twist of 4π. We see that the
twist is more concentrated in high curvature parts of the spine curve in the first row, while it is distributed
more uniformly along the curve in the second row.

In Figure 14, the support structure of a glass table, as a closed sweep surface, is modeled with a moving
frame meeting six conditions to make the structure have proper contact (i.e., along a line segment) with the
table at four locations and with the ground at the other four locations. These conditions are met by adjusting
an RMF by a twist linearly proportional to arclength between every two consecutive contact locations.

7. CONCLUDING REMARKS

We have presented a new discrete approximation method for computing the rotation minimizing frame of a
space curve. The method uses two reflections in a plane to compute the next frame from the current frame,
and is therefore called the double reflection method. This method is simple, fast, and more accurate than the
projection method and the rotation method, which are currently often used in practice. We have shown that
the approximation error of the double reflection method is O(h4), while the errors of the other two methods
are O(h2), where h is the step size used to sample points on a spine curve of fixed length.

The double reflection method is also much superior to direct application of the standard 4-th order
Runge-Kutta method. Although the two methods have the same order of approximation error, the double
reflection method is simpler and faster, and requires only C1 information of a spine curve, while the Runge-
Kutta method needs C2 information. We have also discussed the applications of RMF in modeling moving
frames meeting boundary conditions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. Comparison in computing a closed moving frame. Minimization of total angular speed is shown in row one. Minimization
of total squared minimization is shown in row two. In each row, from left to right, the four figures are for the case of RMF
computed by the double reflection method, the case of using the minimal twist to close the frame, the case of an additional
twist of 2π, and the case of an additional twist of 4π.

We conjecture that O(h4) is the maximum accuracy that can be achieved in RMF computation using
only the sampled position and tangent data (x0, t0;x1, t1) of a curve segment.

REFERENCES

Banks, D. C. and Singer, B. A. 1995. A predictor-corrector technique for visualizing unsteady flows. IEEE Transactions on
Visualization and Computer Graphics 1, 2, 151–163.

Barzel, R. 1997. Faking dynamics of ropes and springs. IEEE Computer Graphics and Applications 17, 3, 31–39.

Bechmann, D. and Gerber, D. 2003. Arbitrary shaped deformation with dogme. The Visual Computer 19, 2-3, 175–186.

Bishop, R. L. 1975. There is more than one way to frame a curve. American Mathematics Monthly 82, 3, 246–251.

Bloomenthal, J. 1985. Modeling the mighty maple. In Proceedings of SIGGRAPH 1985. 305–311.

Bloomenthal, J. 1990. Caculation of reference frames along a space curve.

Bloomenthal, M. and Riesenfeld, R. F. 1991. Approximation of sweep surfaces by tensor product NURBS. In SPIE
Proceedings: Curves and Surfaces in Computer Vision and Graphics II. Vol. 1610. 132–154.

Bronsvoort, W. F. and Flok, F. 1985. Ray tracing generalized cylinders. ACM Transactions on Graphics 4, 4, 291–302.

Choi, H. I., Kwon, S.-H., and Wee, N.-S. 2004. Almost rotation-minimizing rational parametrization of canal surfaces.
Gomputer Aided Geometric Design 21, 9, 859–881.

Chung, T. L. and Wang, W. 1996. Discrete moving frames for sweep surface modeling. In Proceedings of Pacific Graphics’96.
159–173.

Farouki, R. 2002. Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves. Graphical Models 64, 382–395.

Farouki, R. and Han, C. Y. 2003. Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph
curves. Computer Aided Geometric Design 20, 7, 435–454.

Goemans, O. and Overmars, M. 2004. Automatic generation of camera motion to track a moving guide. In Proceedings of
WAFR (Workshop on the Algorithmic Foundations of Robotics) 2004. 201–216.

Guggenheimer, H. W. 1989. Computing frames along a trajectory. Gomputer Aided Geometric Design 6, 77–78.

Hanson, A. 1998. Constrained optimal framing of curves and surfaces using quaternion gauss map. In Proceedings of Visuliza-
tion’98. 375–382.

Hanson, A. 2005. Visualizing Quaternions. Morgan Kaufmann.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



24 · Wenping Wang et al.

(a) An RMF based moving frame meeting boundary conditions. (b) Angle difference between the RMF and the frame in (a).

(c) A table modeled with the moving frame in (a).

Fig. 14. An RMF based moving frame is used to design the supporting structure of a glass table as a sweep surfaces

Hanson, A. J. and Ma, H. 1995. A quaternion approach to streamline visualization. IEEE Transactions on Visualization and
Computer Graphics 1, 2, 164–174.
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8. APPENDIX I

Proof of Theorem 4.4. There are two parts in this proof. In the first part we derive an expression of
the order O(h5) term of the one-step error. In the second part we show that coefficient of this error term is
bounded for a regular curve, thus yielding the claimed order of magnitude.

We will obtain the error expression using the canonical Taylor expansion of the curve x(s) at x(0), which
can be derived from the Frenet formulas [Kreyszig 1991]. In a neighborhood of x(0), x(s) is approximated
by the series

x(s) =

⎛
⎝ s − 1

6κ
2
0s

3 − 1
8κ0κ1s

4 + · · ·
1
2κ0s

2 + 1
6κ1s

3 + 1
24 (κ2 − κ3

0 − τ2
0κ0)s4 + · · ·

+ 1
6κ0τ0s

3 + 1
24 (κ0τ1 + 2κ1τ0)s4 + · · ·

⎞
⎠ , (25)

where the Frenet frame at s = 0 is aligned with the axes of the Cartesian coordinates, and κi = (d/ds)iκ(s)|s=0,
τi = (d/ds)iτ(s)|s=0. With the help of computer algebra tools, we generate Taylor series for all quantities
needed for computing the variables listed in the procedure of the double reflection method (Table I). Due
to space limitation, only an outline of the derivation will be given.

Consider a segment of x(s) of length h starting at the origin, i.e.,

(0, 0, 0)� = x0 = x(0), x1 = x(h), (1, 0, 0)� = t0 = ẋ(0), t1 = ẋ(h). (26)

Let r0 = (0, C, S), where C2 + S2 = 1, be the reference vector of U0 at x0. We compute the new reference
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vector r1 using steps from (1) to (7) of the algorithm Double Reflection (see Table I):

v1 = (h+ O(h3), 1
2κ0h

2 + O(h3), O(h3))�

c1 = h2 − 1
12κ0

2h4 + O(h5)

rL
0 = (−Cκ0h− 1

3 (Cκ1 + κ0τ0S)h2 + O(h3), C − 1
2κ0

2Ch2 + O(h3), S + O(h3))�

tL
0 = (−1 + 1

2κ0
2h2 + O(h3),−κ0h− 1

3κ1h
2 + O(h3),− 1

3κ0τ0h
2 + O(h3))�

v2 = (2 − κ0
2h2 + O(h3), 2κ0h+ 5

6κ1h
2 + O(h3), 5

6κ0τ0h
2 + O(h3))�

c2 = 4 − 1
36 (τ02κ0

2 + κ1
2)h4 + O(h5)

r1 = (−Cκ0h− 1
2 (Cκ1 + κ0τ0S)h2 + O(h3), C − 1

2κ0
2Ch2 + O(h3), S + O(h3))�

On the other hand, using the angular velocity of the RMF (Eqn. (10)) we generate the Taylor expansion of
the reference vector r(h) of the exact RMF U(h),

r(h) = r(s)

∣∣∣∣∣
s=0

+ κ(s)b(s) × r(s)︸ ︷︷ ︸
=r′(0)

∣∣∣∣∣
s=0

h+
d
ds

(κ(s)b(s) × r(s))︸ ︷︷ ︸
=r′′(0)

∣∣∣∣∣
s=0

h2

2
+ . . .

Using the Frenet formulas and the fact that the derivatives of r(s) are given by the previously generated
terms of the Taylor expansion, r(h) can be expressed solely by using derivatives of curvature and torsion at
s = 0, and by the initial value r(0) = (0, C, S)�. Finally, we compare the Taylor expansions of r(h) and r1

to obtain

r(h) − r1 = (O(h6),− 1
720 SK h5 + O(h6), 1

720 C K h5 + O(h6))�,

where

K = 2 κ1
2τ0 + κ0

2τ0
3 + κ1κ0τ1 − κ2κ0τ0 (27)

Hence,

‖r(h) − r1‖ =
1

720
Kh5 + O(h6)

Next, we need to show that the coefficient K in the O(h5) term above is finite for a regular smooth
curve. This is a concern because the torsion τ0 appearing in K (Eqn. (27)) and τ0 can become unbounded
for a regular curve (see our technical report [Wang et al. 2007]). Note that only the curvature κ0, torsion τ0
and their derivatives are present in K. Since

κ(s) = ‖ẍ(s)‖, τ(0) =
‖(ẋ(s) × ẍ(s)) · ...x(s)‖

‖ẍ(s)‖3

it is easy to see that, if a spine curve has non-vanishing curvature, then κ0 = κ(0) is bounded from zero, and
τ0 = τ(0) and its derivative are finite; consequently, K will be finite in this case.

We will use a conformal mapping to turn an arbitrary curve segment x(s), s ∈ [0, h], possibly with
vanishing curvature, into another curve segment with curvature bounded from zero. First take the osculating
plane of x(s) at s = 0. With a rigid motion we take this plane to be the x-y plane and have the point x(0)
positioned at the origin (0, 0, 0). Let Cs denote the inversion with respect to the sphere S1 of radius 1 and
centered at (0, 0, 1). Then the plane x-y is mapped by Cs to the sphere S2 of radius 1/2 and centered at
(0, 0, 1/2). Clearly, Cs is conformal, and the point x(0) = (0, 0, 0) is fixed by Cs.

Let κ0 be the curvature of x(s) at s = 0. Let xc(s) denote the transformed curve Cs(x(s)). With a bit
abuse of notation, we use xc(t), t ∈ [0, hc], to denote arclength parameterization of the segment xc(s). At
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t = 0, the curve xc(t) has the normal curvature equal to 2, which is the reciprocal of the radius of S2, and
the geodesic curvature equal to κ0, which is the curvature of x(s) at s = 0. (The curve xc(s) has the same
normal curvature and geodesic curvature at xc(0) as any spherical curve on S2 that has the second order
contact with xc(s) at xc(0). ) It follows that the curvature of xc(u) at xc(0) is κc = (κ2

0 + 4)1/2.

Clearly, κc is bounded away from zero. Hence, if we apply the double reflection method to the transformed
curve segment xc(t), t ∈ [0, hc], according to the preceding analysis, the fifth order term of the approximation
error takes the form 1

720Kch
5
c ; here Kc is finite, since κc is bounded away from zero. On the other hand,

because the approximation error produced by the double reflection method is invariant under a conformal
mapping (cf. Section 4.6), in the limit we have

K

720
h5 =

Kc

720
h5

c

When h is sufficiently small, due to the regular nature of the mapping Cs in the neighborhood of x(0), there
exists a constant d > 0 such that hc < dh. It follows that

K =
h5

c

h5
Kc < d5Kc

Hence, K is also finite. This completes the proof that the local one-step error of the double reflection method
is of the order of O(h5). �
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