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3D Shape Metamorphosis Based on T-spline Level Sets

Abstract We propose a new method for 3D shape meta-
morphosis, where the in-between objects are constructed
by using T-spline scalar functions. The use of T-spline
level sets offers several advantages: First, it is convenient
to handle complex topology changes without the need of
model parametrization. Second, the constructed objects
are smooth (C2 in our case). Third, high quality meshes
can be easily obtained by using the marching triangula-
tion method. Fourth, the distribution of the degrees of
freedom can be adapted to the geometry of the object.

Given one source object and one target object, we
firstly find a global coordinate transformation to ap-
proximately align the two objects. The T-spline con-
trol grid is adaptively generated according to the ge-
ometry of the aligned objects, and the initial T-spline
level set is found by approximating the signed distance
function of the source object. Then we use an evolution
process, which is governed by a combination of the signed
distance function of the target object and a curvature-
dependent speed function, to deform the T-spline level
set until it converges to the target shape. Additional in-
termediate objects are inserted at the beginning/end of
the sequence of generated T-spline level sets, by gradu-
ally projecting the source/target object to the initial/final
T-spline level set. A fully automatic algorithm is de-
veloped for the above procedures. Experimental result
are presented to demonstrate the effectiveness of our
method.

Keywords Computer animation · Morphing · T-spline ·
level sets

1 Introduction

Given two geometric models, one source ΩA and one
target ΩB, shape metamorphosis generates a sequence
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of in-between models {Ωt|t ∈ [0, 1]}, where Mt contin-
uously changes its shape from the source (Ω0 = ΩA)
into the target (Ω1 = ΩB). It is also called morphing
within the community of image processing and computer
graphics. Shape metamorphosis has been used frequently
in computer animation, medical imaging and scientific
visualization [1]. In comparison with image morphing,
where the 2D image (appearance) of an object is grad-
ually transformed into the image of another object, 3D
shape metamorphosis directly manipulates the 3D ob-
ject itself such that the shape of one object is smoothly
changed into the shape of another object. While 2D im-
age morphing techniques are unable to correctly handle
changes in illumination and visibility, the morphing re-
sults created by 3D metamorphosis is independent of the
viewing and lighting parameters.

Depending on the different representations of the in-
termediate objects, 3D shape morphing techniques can
be divided into two categories: surface-based (or boundary-
based) methods and volume-based methods. The surface-
based morphing methods transform the surface patches
(usually polygonal meshes) of the source model into the
surface patches of the target model. The volume-based
morphing methods represent 3D objects as zero level
sets of volumetric implicit functions, and manipulate the
function values in order to make one embedded object
become another.

Most existing 3D morphing techniques are based on
the polygonal mesh representation, due to the popularity
and widespread use of mesh geometry in graphics. Mesh-
based morphing methods are typically faster to compute
and require less memory because they operate on a lower-
dimensional representation of an object than do volume-
based methods. However, transforming between objects
of different topologies is considerably more difficult with
mesh-based methods, since it is really far from trivial
to define a good mapping (correspondence) between the
source object and the target object. Also, even the corre-
spondence problem is solved, a reasonable path still has
to be found in order to prevent self-intersections of the in-
between mesh surfaces. On the contrary, volume-based
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(a) T-mesh (b) Source (c) Frame 15 (c1)

(d) Frame 23 (e) Frame 26 (f) Target (f1)

Fig. 1 Morphing a bunny into a petal torus. The T-mesh is constructed for the two objects that have already been aligned
in (a). The morphing sequence of T-spline level sets is shown in (b), (c), (d), (e) and (f). Close-up views of (c) and (f) are
shown in (c1) and (f1) (flat shading used).

morphing methods gracefully handle changes in topol-
ogy between objects and do not create self-intersecting
surfaces.

In this paper, we present a new volume-based method
for 3D shape metamorphosis. Different from most com-
monly used level set approaches [6,8], where discretized
voxel grids are used to store the implicit function values,
we use smooth T-spline scalar functions to implicitly de-
fine the in-between objects. As the result, the generated
in-between objects are smooth (C2 for cubic T-splines),
and the differential geometry (normals and curvatures)
of them can be analyzed and exactly computed. Since
the T-spline control grid (or T-mesh, see Figure 1(a))
is fixed during the morphing process, only the T-spline
control coefficients need to be stored for the intermediate
objects. High quality meshes (see Figure 1 (c1) and (f1))
can be easily obtained from the implicit T-spline func-
tions by using the marching triangulation [10] method.
Our method is general enough to produce transforma-
tions between shapes of any topology.

The remainder of the paper is organized as follows:
Section 2 describes related work. Section 3 describes the
key part of our method – the T-spline level set model for
metamorphosis. Section 4 describes the complete algo-
rithm of our morphing approach and some implementa-
tion details. After presenting some experimental results
in Section 5, we conclude this paper and discuss future
work.

2 Related Work

As described previously, most existing 3D morphing al-
gorithms generally fall into two categories: surface-based
approaches and volume-based approaches. Besides these
two categories, Turk and O’Brien [26] perform shape
transformation between 3D shapes by solving a 4D in-
terpolation problem. Bao et al. [3] present a physically
based morphing method via dynamic meshless simula-
tion on point-sampled surfaces.

Surface-based approaches are usually used for mor-
phing 3D polygonal meshes, where the correspondence
problem and the path [27] problem are believed to be
the two main difficulties for mesh morphing methods.
The correspondence problem means to find a good map-
ping (correspondence) between pairs of locations on the
boundaries of two meshes. The path problem is to create
smooth paths between corresponding vertices of the two
meshes, such that no self-intersections happen in the in-
termediate meshes. Numerous surface-based approaches
have been proposed to deal with these two problems. The
readers are referred to [1] for more details.

Volume-based approaches do not suffer from these
problems [17]. They deal deal with sampled or volumet-
ric representations of the objects, where the objects are
described as (zero) level sets of functions defined in the
whole 3D space. Although it seems that any kind of con-
tinuous interpolation between the functions defining the
source object and the target object will at least pro-
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duce some ”smooth” transformation [22], a simple lin-
ear interpolation scheme yields unsatisfactory results in
some cases. A nice morphing process should avoid un-
necessary distortions or change in topology [17], such as
the creation of many connected components. Hughes [12]
performs interpolation on the frequency domain of the
shapes by utilizing Fourier transforms of the two volu-
metric models. He et al. [11] decompose the volumetric
functions with a wavelet transform. They also present
a technique for establishing a suitable correspondence
among object voxels. Kaul and Rossignac [15,23] use a
weighted Minkowski sum with time changing coefficients
to compute the metamorphosis. Galin and Akkouche [9]
also use Minkowski sums in order to characterize the
skeletons of intermediate shapes. Jin et al. [13] propose
a practical method for blob-based liquid morphing by
employing the medial axis sphere-tree of a polygonal
model. Chen et al. [7] develop a volume distortion al-
gorithm based on the control of two sets of disk fields
in an interactive environment. Nieda et al. [20] propose
an approach to detect and classify topological changes of
shape metamorphosis based on R-functions [21].

Lerios et al. [19] present a two-staged algorithm for
creating volume morphs: first a warping of the two input
volumes, then a blending of the resulting warped vol-
umes. The first stage is just a 3D extension of Beier and
Neely’s [4] 2D image warping technique. In order to re-
duce the distortion of the intermediate shapes, Cohen-Or
et al. [8] decompose the warp function into a rigid (rota-
tion and translation) part and an elastic part, which is
based upon a set of user-supplied corresponding anchor
points. Breen et al. [6] describe the metamorphosis as an
optimization process of an objective function which mea-
sures the similarity between two shapes. The proposed
metric is simple, which is just trying to maximize the
volume shared by the interiors of the two objects until
the two objects become the same. Based on this met-
ric, the level set deformation is governed by the signed
distance transform of the target surface.

We use a similar strategy as proposed by Breen et
al. [6]. The difference is that we use smooth T-splines
instead of discretized voxels to define the level set func-
tions. The number and distribution of T-spline control
points can be made adaptive to the geometry of the two
shapes. In order to reduce the possibility of unnecessary
topology changes during the morphing process, we incor-
porate a curvature-dependent speed term into the evo-
lution speed function, instead of use the signed distance
transform only as in [6]. We also insert additional an-
imation frames into the beginning/end of the sequence
of intermediate T-spline level sets, by continuously pro-
jecting the source/target object onto the initial/final T-
spline level set. This is to make sure that the morphing
process starts from the source object and ends at the
target object, since the corresponding T-spline level sets
are only approximations of them.

3 T-spline Level Sets for Metamorphosis

In this section, we give the definition of T-spline level
sets, and describe how to (approximately) convert the
given objects (e.g. mesh surfaces) into T-spline level sets.
Then we discuss the evolution process of T-spline level
sets, in order to transform the shape of the source object
ΩA into that of the target shape ΩB . We assume ΩA and
ΩB are given by triangular meshes, although other kinds
of representations can also be handled by our method.

3.1 Definition of T-spline level sets

T-splines [24] are generalizations of tensor product B-
splines. We now introduce T-spline level sets in 3D. Let
f(x, y, z) be a trivariate T-spline function defined over
some domain D,

f(x, y, z) =

∑n
i=1 ciBi(x, y, z)∑n
i=1 Bi(x, y, z)

, (x, y, z) ∈ D ⊂ R
3 (1)

with the real coefficients (control points) ci, i = 1, 2, ..., n,
where n is the number of control points. For cubic T-
splines, the basis functions are Bi(x, y, z) = N3

i0(x)N3
i0(y)N3

i0(z)
where N3

i0(x), N3
i0(y) and N3

i0(z) are certain cubic B-
splines, whose associated knot vectors are determined
by the T-spline control grid (T-mesh). The zero set of
the function f is defined by

Γ (f) = { (x, y, z) ∈ D ⊂ R
3 | f(x, y, z) = 0 }, (2)

and it is called a T-spline level set.

In order to simplify the notation, we use x to repre-
sent the point x = (x, y, z) in 3D, and gather the control
coefficients (in a suitable ordering) in a column vector c.
The T-spline basis functions form another column vector
b = [b1, b2, ..., bn]⊤, where

bi = Bi(x)/

n∑
i=1

Bi(x), i = 1, 2, ..., n.

The T-spline level set Γ (f) is defined as the zero set of
the function f(x) = b(x)⊤c. For a fixed T-spline control
grid (thus b is fixed), the T-spline level set is determined
only by the control coefficients c.

Since a T-spline function is piecewise rational, the T-
spline level sets are piecewise algebraic surfaces. More-
over, if no singular points are present, they inherit the
order of differentiability of the basis functions, i.e., they
are C2 in the cubic case. Derivatives of f , which will
be needed for formulating the evolution, can easily be
evaluated.
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3.2 Conversion to T-spline level sets

We use T-spline level sets to represent 3D objects. The T-
spline control grid (T-mesh) is fixed from the beginning,
and only the T-spline control coefficients are changed
during the morphing process. Before the generation of T-
mesh, the source object and the target object are aligned
with each other, such that the two shapes are made rel-
atively similar. An automatic alignment method will be
described in Section 4.2.

After the alignment, we normalize the two objects to
be within a cubic domain D = [−1, 1]× [−1, 1]× [−1, 1],
and uniformly sample a set of points on the surfaces (tri-
angular meshes) of the two objects. Then we generate
the T-mesh in the domain, through octree subdivision
of those cells containing more than nT sample points.
The sampling density and the threshold value nT are
pre-scribed constant coefficients. In this way, the distri-
bution of T-spline control coefficients is adapted to the
geometry of the objects. In order to speed up the com-
putation of T-spline functions, we use a similar octree to
store the information of associated T-spline control coef-
ficients for any point in the domain. In our experiments,
the maximum subdivision depth for T-mesh generation
is always no more than 6.

After the T-mesh is obtained, we initialize the T-
spline level set as an approximation of the source object.
The initial T-spline control coefficients c are computed
by minimizing the following objective function

E0 =

∫
D

ω(x)(f(x) − dA(x))2 dD → Min, (3)

where f(x) is the trivariate T-spline function as defined
in (1), dA(x) is the signed distance function to the source

object ΩA, and ω(x) = e−d2

A
(x) is a positive weighting

function. More precisely, we choose the T-spline func-
tion f as a weighted least–squares approximation of the
signed distance function dA. The weighting function ω(x)
takes a smaller value when the point x is farther from
the source object.

For the actual computation, a discretized version (which
can be seen as a numerical integration) is more appro-
priate, i.e., we replace E0 with

E =
V (D)

N0

N0∑
j=1

ω(xj)( f(xj) − dA(xj) )2, (4)

where xj , j = 1, . . . , N0 (N0 >> n) is a sequence of
sampling points, which are uniformly distributed in the
T-spline function domain D. V (D) is the volume of the
domain D.

In our case, the function f has the form f(x) =
b(x)⊤c, hence the function E is a non-negative definite
quadratic function of the unknown T-spline control co-
efficients c. The solution c is found by solving a sparse
linear system of equations, ∇E = 0, and the initial T-
spline level set L0 is obtained.

If the accuracy of the approximation is not sufficient,
a better L0 can be found by using more degrees of free-
dom (T-spline control coefficients) and applying the ’fi-
nal refinement’ step [29]. The same strategy can be also
used for the approximation of the target object after the
evolution of T-spline level sets stops.

3.3 Metamorphosis of T-spline level sets

Since the T-mesh is fixed during the morphing process,
the T-spline level set function can be written as

f(x, τ) = b(x)⊤c(τ), (5)

with the time variable τ . Consider the evolution process

ẋ = v(x, τ)n, x ∈ Γ (f), (6)

where the dot of ẋ means the time derivative, and v is a
scalar-valued speed function along the normal direction
n = ∇f/|∇f | of Γ . In [29], we have shown that this kind
of T-spline level sets evolution can be formulated as a
least squares problem, where a distance field constraint
is incorporated to avoid additional branches and singu-
larities without having to use re-initialization steps. An
extended version of this paper is available as a technical
report on the webpage [28].

There are a number of choices of the speed function v
for the metamorphosis from ΩA to ΩB. In order to avoid
numerical difficulties and to avoid discontinuities in the
solution, v should be continuous. Furthermore, v should
carry information about the shape of the target into 3D
so that shapes tend to ”look like” the target as they get
nearer. Breen and Whitaker [6] suggest that a natural
choice of v is the signed distance transform of the target
surface ΩB or some monotonic function thereof, i.e.,

v(x) = g(dB(x)), g(0) = 0 and g′(x) > 0, (7)

where dB is the signed distance function to the target
object ΩB . The source object will shrink in those areas
where it is outside the target object and will expand in
those areas inside the target object. It is also proved [6]
that if the initial object (L0) and the target object over-
lap, the final solution of the metamorphosis will be iden-
tical to the target.

However, direct use of dB as the speed function may
cause additional topology changes, which is undesired
for a nice morphing process. Figure 2 shows a morphing
example when v(x) = dB(x), where the source object
(”⊢” shape) and the target object (”⊏” shape) have the
same topology (genus 0). The morphing sequence in Fig-
ure 2 demonstrates that the ”⊢” shape is first split into
two components, then one component is vanished and
the other component is transformed into the final ”⊏”
shape. This undesirable artifact is a typical problem for
Breen and Whitaker’s method [6] when the source object
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(a) (b) (c) (d) (e)

Fig. 2 Morphing a ”⊢” into a ”⊏” by using the original speed function proposed in [6].

(a) (b) (c) (d) (e)

Fig. 3 Morphing a ”⊢” into a ”⊏” by using the improved speed function.

has some long narrow features, which are not matched
by the target object.

In order to handle this problem, we use the speed
function v as a linear combination of two terms, the
signed distance function dB and the mean curvature κ
of the morphing object, i.e.,

v(x) = λ(x)dB(x) + (1 − λ(x))κ(x), (8)

where λ(x) = e−d2

B
(x) is a variable weighting coefficient.

By using this improved speed function, the mean curva-
ture term will play the key rule when the morphing ob-
ject is far away from the target (dB(x) is large), which is
helpful to avoid additional topology changes of the mor-
phing object. When the morphing object gets close to
the target ΩB, the signed distance term will converge
the morphing process to ΩB. Of course there are many
choices of the weighting function λ(x). In our experi-

ments we chose λ(x) = e−d2

B
(x) to get successful exam-

ples.
Figure 3 shows the morphing sequence by using the

new speed function. Thanks to the incorporated mean
curvature speed term, now the right bar of the ”⊢” shape
is smoothly dissolved without unwanted splitting. Hence,
the new speed function generates a better morphing se-
quence than the signed distance function, see Fig. 2.

As described in our previous paper [29], for each evo-
lution (morphing) step, the time derivatives ċ(τ) of the
T-spline control coefficients can be found by solving a
sparse linear system of equations. Then we generate the

updated control coefficients

c(τ + ∆τ) = c(τ) + ċ∆τ. (9)

by using an explicit Euler step ∆τ . ∆τ is chosen as
min(1, {h/v(xj , τ)}j=1,...,N1

), where xj , j = 1, . . . , N1

(N1 >> n) are a set of uniformly sampled points along
the T-spline level set Lτ , and h is a user-defined constant
to indicate the morphing step size. We use the march-
ing triangulation [10] method to get the uniformly dis-
tributed sample points xj .

4 Algorithm and Implementation

This section describes the whole algorithm of 3D shape
metamorphosis based on the proposed T-spline level set
models. The algorithm takes two triangular meshes (the
source object ΩA and the target object ΩB) and the
morphing step size h as input, and produces a sequence
of in-between objects (represented by T-spline level sets
or triangular meshes) as output.

4.1 Outline of the Algorithm

The presented algorithm can be divided into three stages:
initialization, evolution, and post-processing. Figure 4
shows the flow chart of our algorithm.

In the initialization stage (stage 1), the source object
ΩA is aligned with the target object ΩB such that the
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Fig. 4 Flow chart of the algorithm.

two objects have similar shapes and orientations, which
will be described in Section 4.2. After alignment, the
T-mesh is generated and the T-spline level set L0 is ini-
tialized as an approximation of the source object ΩA,
following the steps described in Section 3.2.

During the evolution stage (stage 2), the T-spline
level set Lτ is evolved towards the target shape ΩB step
by step, guided by the morphing speed function, as de-
scribed in Section 3.3, until some stopping criteria is sat-
isfied (e.g. Lτ is close enough to ΩB). If nl T-spline level
sets are generated, then the nl sequences of T-spline con-
trol coefficients {c(τi)|i = 0, 1, . . . , nl − 1} are stored.

Finally, in the post-processing stage (stage 3), we
insert additional frames (meshes) to the beginning/end
of the sequence of generated T-spline level sets {Li|i =
0, 1, . . . , nl − 1}, by gradually projecting ΩA/ΩB to the
initial/final T-spline level set (L0/Lnl−1) (cf. Section 4.3).
The final morphing sequence is obtained by combining
the generated objects with the alignment transformation
(cf. Section 4.4).

4.2 Objects Alignment

There are at least three reasons to align the two ob-
jects (ΩA and ΩB) for metamorphosis: First, the conver-
gence of the T-spline level sets evolution is guaranteed
only if the two objects overlap [6]. Second, a more nat-
ural and realistic metamorphosis may be produced after
alignment. Third, it provides an intuitive way for the
user to control the morphing process [2].

The authors in [6] present an automatic method to
accomplish the alignment by calculating two affine trans-

formations (consisting of rotation, translation, and non-
uniform scaling), which are defined by the centroids and
principal axes of the two objects. The principal axes are
computed as the eigenvectors of the covariance matrix
associated with each object. We have developed a simi-
lar technique for automatically aligning objects ΩA and
ΩB, such that the transformation matrix T = TsTrTt is
acquired (Ts, Tr, and Tt represent for the scaling, rota-
tion and translation respectively). The updated objects
after alignment are represented by Ω′

A and Ω′

B respec-
tively.

The alignment also can be done interactively by the
user. For this purpose, we have also developed a software
tool that allows a user to interactively position, rotate
and scale the source and target objects in order to pro-
duce the transformation T . The coordinate systems of
the two objects are aligned and the user is able to ma-
nipulate the objects until they are properly overlapped.

4.3 Insertion of Additional Frames

The evolution stage generates the sequence of T-spline
level sets {Li|i = 0, 1, . . . , nl −1}. Since L0 is an approx-
imate representation of the aligned source object Ω′

A,
it may contain aliasing artifacts, especially when Ω′

A has
some sharp features. In order to make sure that the mor-
phing animation smoothly starts from the source object,
we insert additional frames between Ω′

A and L0. These
inserted objects are represented by triangular meshes
MA(τ) and obtained by continuously projecting Ω′

A to
L0:

v̇i = qi − vi, i = 0, 1, . . . , nA − 1 (10)

where {vi|i = 0, 1, . . . , nA−1} are the vertices of MA(τ)
(MA(0) = Ω′

A), qi is the closest point (foot point) on
L0 to vi, and v̇i is the time derivative of vi. Thanks to
the implicit representation of L0, the foot point qi can
be efficiently computed by a Newton iteration. By using
an explicit Euler integration (similar as that described
in Section 3.3), and restricting the update of vi to be
within the indicated morphing step size h, the inserted
frames {MA(τi)|i = 0, 1, . . . , mA−1} are computed. Due
to the projection operator, no self-intersections are in-
troduced into MA(τi), as long as the initial mesh Ω′

A is
self-intersection free.

Similarly, we generate additional frames {MB(τi)|i =
0, 1, . . . , mB − 1} (MB(τmB−1) = Ω′

B) by projecting the
aligned target mesh Ω′

B to the final T-spline level set
Lnl−1. Now the complete morphing sequence has totally
mA +nl + mB frames, including mA anterior meshes, nl

T-spline level sets and mB posterior meshes.

4.4 Combine Alignment Transformations

As noted previously, until now, the generated morphing
sequence are with respect to the local coordinates which
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(a) Source and Target objects (b) T-mesh after alignment

(c) Frame 6 (d) Frame 10 (e) Frame 12 (f) Frame 16

Fig. 5 Morphing a sphere into a cube with holes.

are created by the alignment of two objects ΩA and ΩB.
Suppose TA = Ts,ATr,ATt,A is the transformation matrix
for the alignment of ΩA (ΩA → Ω′

A), where Ts,A, Tr,A,
and Tt,A represent for the scaling, rotation and transla-
tion matrices respectively. Similarly TB = Ts,BTr,BTt,B

is the alignment matrix for ΩB (ΩB → Ω′

B). Then the
inverse transformation matrix for the i-th object in the
morphing sequence is

Wi = Wt,iWr,iWs,i, (11)

where Wt,i = (1 − u)T−1
t,A + uT−1

t,B is the linear inter-

polation of the translation matrices between T−1
t,A and

T−1
t,B, Ws,i = (1 − u)T−1

s,A + uT−1
s,B is the linear interpo-

lation of the scaling matrices between T−1
s,A and T−1

s,B,

and u = i/(mA + nl + mB − 1). For the interpolation
of rotation matrices Wr,i, we use the spherical linear in-
terpolation based on the quaternion representation [25].
To transform the intermediate objects back to the world
coordinate system, the T-spline level sets are first con-
verted into triangular meshes by using the marching tri-
angulation [10] method (which generates over 10, 000 tri-
angles within seconds), then each vertex is transformed
by Wi to produce the final morphing sequence of trian-
gular meshes.

Note that the interpolation of alignment transforma-
tions is symmetric for the morphing between ΩA and ΩB,
i.e., W (u)A→B = W (1 − u)B→A. But the final morph of
ΩA → ΩB is different from that of ΩB → ΩA, since the
speed function v is not symmetric. A possible solution is

to average the two shapes Ω(u)A→B and Ω(1 − u)A→B.
As a future work we will try to find a symmetric speed
function v for the shape metamorphosis between two ob-
jects.

5 Experimental Results and Discussion

In this section, we present some examples to demonstrate
and discuss the effectiveness of our method. The given
source objects and target objects are aligned and nor-
malized within a cubic domain D = [−1, 1] × [−1, 1] ×
[−1, 1]. The experiments are run on a PC with AMD
Opteron(tm) 2.20GHz CPU and 3.25G RAM. Please note
that all the presented examples are generated fully auto-
matically without any user interaction, although interac-
tive controls are also possible in the developed software.

5.1 Examples

Example 1: A bunny morphing into a petal torus. In the
first example (see Figure 1), the source object (a bunny)
is deforming into the target (a petal torus). The T-spline
control grid is constructed with 2449 control coefficients
and shown in (a). The morphing sequence is shown be-
tween (b) and (f), where the topology of the objects
adaptively changes from genus-0 to genus-1. Since the
bunny and the petal torus are appropriately overlapped
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(a) Source (b) Frame 8 (c) Frame 13 (d) Target

Fig. 6 Morphing an apple into a teapot.

under the initial configuration, no alignment transfor-
mation is needed to interpolate the intermediate shapes.
The entire computation took about 5 minutes.

Example 2: A sphere morphing into a cube with holes.
The second example illustrates the morphing process
between a sphere and a cube with holes (produced by
boolean operations between a cube and three cylinders),
as shown in Figure 5). The T-spline control grid is con-
structed with 651 control coefficients. Note that the align-
ment transformation is pre-computed and interpolated
for the morphing sequence, such that the orientation of
the objects gradually changes into that of the target. The
entire computation took about 1 minute.

Example 3: An apple morphing into a teapot. In the
thrid example (see Figure 6), the source object (an ap-
ple) is deforming into the target (a teapot). The T-spline
control grid is constructed with 1104 control coefficients.
The entire computation took about 2 minutes.

Example 4: A sculpture morphing into the Happy Bud-
dha. The fourth example illustrates the morphing pro-
cess between a sculpture and the Happy Buddha (Fig-
ure 7). The T-spline control grid is constructed with 4327
control coefficients. The entire computation took about
12 minutes.

Example 5: A dragon morphing into a tricorn. The last
example illustrates the morphing process between a dragon
and a tricorn (Figure 8). The T-spline control grid is
constructed with 4915 control coefficients. During the
metamorphosis, the translation, rotation and scaling of
the objects are smoothly interpolated according to the
alignment transformation. The entire computation took
about 14 minutes.

5.2 Discussion

In our algorithm, most in-between shapes (except the
additional frames) are represented by T-spline level sets.

Since the T-spline control grid is fixed during the mor-
phing process, we only need to store the T-spline control
coefficients for each T-spline level set. Thus the space
complexity is linearly dependent on the number of T-
spline control coefficients. Due to the local refinement
property of T-splines, the distribution of T-spline con-
trol coefficients can be made adaptive to the geometry
of the source and target objects (after alignment), which
means that ideally the number of T-spline control coef-
ficients increases roughly linearly with the area of the
objects.

For each evolution step of a T-spline level set, a sparse
linear system is to be solved, and the computation time is
dependent on the number of T-spline control coefficients
and different solvers used (See [5] for a detailed complex-
ity analysis for solvers for sparse linear systems arising
in geometry processing). For the combination of align-
ment transformations, the T-spline level sets need to be
first converted into triangular meshes, and the computa-
tion time is linearly dependent on the number of mesh
vertices (the resolution of the mesh surface).

6 Conclusions and Future Work

We have introduced a method for 3D shape metamor-
phosis based on the evolution of T-spline level sets. The
T-spline representation of the level set function is sparse
and piecewise rational, the distribution of T-spline con-
trol coefficients can be made adaptive to the geometry of
the objects to be morphed. We have also shown that the
morphing process of T-spline level sets can be formulated
as least squares problems. A fully automatic algorithm
is developed to produce metamorphosis between shapes
of any topology.

For the mesh-based morphing methods, the corre-
spondence problem is difficult [16], especially for two ob-
jects with different genus [18]. However, this correspon-
dence does provide a powerful way for the user to define
a desired morphing process [14]. Since the volume-based
morphing methods are parametrization–free, on the one
hand they can easily handle complex topology changes,
but on the other hand they have problems to (dynami-
cally) maintain the correspondence of features between
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(a) Source (b) Frame 10 (c) Frame 17 (d) Target

Fig. 7 Morphing a sculpture into the Happy Buddha.

Fig. 8 Morphing a dragon into a tricorn.

two objects. Thus, in the future, we plan to couple the
two approaches in order to obtain a more powerful and
flexible hybrid model for metamorphosis.
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