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Abstract. In order to represent and reconstruct sharp features (i.e.,
corners) by an implicitly defined curve, we add so–called corner de-
tector functions, which are special radial basis functions, to the func-
tion defining the initial curve. The parameters controlling them are
automatically adjusted by applying an evolution process.

§1. Introduction

Implicitly defined curves and surfaces have found numerous applications in
shape modeling and geometric computing, including object reconstruction
from unorganized points [3, 7, 16, 15] and geometric modeling [4, 8].

While implicit representations offer some advantages for shape recon-
struction from unorganized data points, such as the non–existence of the
parameterization problem, repairing capabilities of incomplete data and
simple operations of shape editing, they also face serious difficulties in ac-
curate reconstruction of sharp features. In order to address this difficulty,
[6] proposes anisotropic basis functions which model the asymmetric na-
ture of the object near the sharp feature, where the direction of anisotropy
is obtained through principal component analysis. More recently, [8] uses
piecewise quadratic functions resulting from Boolean operations.

In the remainder of this paper we consider the following problem: given
a set of unorganized data points (pk)k=1,2,...,n in the plane, compute an
implicitly defined curve which approximates the points pk. The shape
represented by the data points may contain sharp features, and it may
consist of several components.

Our approach consists of two steps. In the first step, we generate an
initial function f0, which is represented by a T-spline, in order to cover the
basic shape by an implicitly defined curve. In the second step we detect
the sharp features and use corner detector (CD) functions in order to
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Fig. 1. Comparison a tensor product scalar B-spline (left) and a scalar T-
spline (right). The figures show the control grid of the B-spline with 225 control
coefficients (left), and that of the T-spline with 133 control coefficients (right).

improve the accuracy of the representation in the vicinity of these curves.
The CD functions are special radial basis functions.

Usually, sharp features (vertices) are modeled by combining the im-
plicit equations of the two curves which meet in this point, e.g., using
Rvachev’s R–functions (cf. [9]). We take a different approach: the vertex
is obtained by adding a single CD function, which is described solely by
the position of the vertex and the influence radius, to the implicit equa-
tion of an existing curve, which remains unchanged. This makes it easy
to optimize the position of the vertex by using a local procedure.

§2. Fitting Unorganized Points by Implicitly Defined Curves

The implicitly defined curve Γ = Γ(f0) is obtained as the zero set of a suit-
able function f0. We use a bivariate scalar T-spline function, see [11] for
details. On the one hand, since the T-spline function is piecewise rational,
the implicitly defined curve is piecewise algebraic, and its segments can
be pieced together with any desired level of differentiability. On the other
hand, the use of T-splines leads to a sparse representation of the geometry.
It can be refined locally, by adapting the number and distribution of the
degrees of freedom to the particular data.

As an example, Fig. 1 shows the control grids of a tensor product B-
spline and a T-spline which define the same curve Γ. In comparison with
the use of tensor product splines, the use of T-splines normally needs less
control coefficients (in this example: 59%).

In order to find the T-spline f0, we use the method described in [14].
First, the T-spline control grid (or T-mesh) is generated according to
the distribution of data points. In order to generate the coefficients, the
method applies an evolution process to an initial curve. The evolution
is governed by a combination of prescribed, data-driven normal velocities
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(which are motivated by earlier work in the field of of image process-
ing [5], where they have been successfully applied to contour detection
and segmentation in images) with additional distance field constraints.
The constraints help to avoid additional branches and singularities of the
implicit curve, without having to use re-initialization steps.

As the result, we obtain a slightly smoothened version of the target
shape described by the data points. Most parts of the target shape are
already well fitted, except for sharp features (cf. Fig. 2 (a)). More details
can be found in [14]. In particular, that paper discusses a ‘final refinement’
step, which can be used to improve the result, especially for noisy data.

The remainder of the paper is independent of the particular fitting
method and on the specific representation of the function f0. Other tech-
niques and representations (such as tensor–product splines, radial basis
functions, hierarchically defined functions or grid–based discretizations)
can be used instead [3, 4, 7, 10, 16].

§3. Dealing with sharp features

After introducing corner detectors and estimating the number and the
parameters controlling them, we apply an optimization step in order to
obtain the final result.

3.1. Corner detectors

In order to model the sharp feature at a point of the implicitly defined
curve, we define the corner detector (CD) function

g(x) = ga,r,c(x) = a · (‖x− c‖ − r)2+, (1)

where r > 0 and a 6= 0 are constant coefficients which represent the radius
of influence region and the magnitude of function value of g, respectively,
while c is the center of the region of influence. Clearly, this is a special
instance of a radial basis function (RBF), cf. [3, 13].

By adding this function to an existing bivariate function f0, we obtain
the new function f0+g. By setting suitable parameters of the CD function,
we are able to model sharp features of the implicit curve Γ(f0 + g).

The CD function g has the following properties:

(1) g is locally supported, supp g = { x | ‖x − c‖ ≤ r }.

(2) g is non-negative (non–positive) whenever a > 0 (a < 0).

(3) g is C∞ within its support, except for the point c.

(4) For any C1 function f0 with domain D, the sum f0+g is C1 in D\{c}.

CD functions with higher smoothness can be obtained by increasing the
exponent in (1). The shape of the curve Γ(f0 + g) will be discussed in the
next section.
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3.2. Initial estimates and a bound on the radius

By using the smooth T–spline function f0 only, the data points around
sharp features are not fitted very well (i.e., with a relatively large distance
to the curve Γ(f0)), and they often correspond to regions with relatively
high curvature. Based on this observation we propose the following pro-
cedure for estimating the number and initial values of the parameters of
the CD functions (cf. Fig. 2):

(a) Without CDs (b) Initial CDs (c) Optimized CDs

Fig. 2. Estimation of sharp features of a pentacle. The figures show graphs
of the data points (solid dots), the implicit curve (solid line), and the control
grid of the T-spline function f0. The bottom row shows the close-up view of the
mid-left corner of the pentacle, where the clustered points (hollow dots) with
large approximation errors, and the estimated features points (hollow triangles)
are also shown.

(1) Project each data point pk onto the implicit curve Γ(f0), in order
to get the closest point qk and compute the curvature radius ρk of
Γ(f0) at qk. Robust methods for computing foot points on implicitly
defined curves have been studied in [1].

(2) Let Q be the set of all closest points qk where the distance ‖pk −qk‖
exceeds a certain threshold εd and where the curvature radius satisfies
ρk < ερ. Here, εd and ερ are user-defined constants.

(3) Use a region–growing–type process in order to cluster the points in
Q into several groups (Qj)j=1,...,nQ

(nQ is the number of clustered
groups). More precisely, for any two points qa and qb in the same
group Qj , we can always find a polygon (qa = q0,q1, . . . ,ql = qb)
with qi ∈ Qj , i = 0, . . . , l satisfying ‖qi+1 − qi‖ < εq , , where εq is a
user-specified constant.

(4) Within each group Qj , we identify the point q0j with the maximum
distance value, i.e., ‖p0j − q0j‖ = maxqi∈Qj

‖pi − qi‖. The corre-
sponding data (p0j)j=1,...,nQ

are the estimated sharp feature points.
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Fig. 3. Implicitly defined
curves obtained by combining
a circle and CD functions with
different values of the radius r.

During this procedure we use three user-specified constants: εd, ερ and εq.
A natural choice of εd is the expected accuracy of the fitting method, i.e.,
the tolerated fitting error. The value of the curvature radius ερ has the
same order of magnitude. Finally, the value of εq , which is needed to form
clusters of points, is chosen as εq = lT , where lT is the diameter of the
cells at the finest level of the T-mesh.

Each feature point p0j is now used to create a CD function

gj(x) = gaj ,rj ,cj
(x), j = 1, . . . , nQ, (2)

with the following initial values of the parameters:

cj = p0j , rj = lT , and (3)

aj = −f0(cj)/r2
j . (4)

Consequently, the support of gj is contained in a certain neighborhood
of cells in the T-mesh to the cell containing p0j . Moreover, the point
cj = p0j is contained in Γ(f0 + gj) and the implicitly defined curve has a
singular point there.

By combining the CD functions (gj)j=1,2,...,nQ
with the T-spline f0,

we define the new curve Γ(f) as the zero set of the sum

f = f0 + g where g =

nQ
∑

j=1

gj . (5)

As a simple example, Fig. 3 shows the curves which are obtained by
adding a CD function to the equation of the unit circle. Depending on the
choice of the radius r, which is visualized by the grey circles, we obtain a
family of curves. Note that this family contains the tangents of the circle
passing through the center c. We mention two properties of these curves:

(1) If f0 is a quadratic polynomial and the tangent of Γ(f0) at one if its
intersections p with the boundary circle of suppgj passes through the
center c, then Γ(f0+gj) contains the line segment connecting p and c.
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(2) If the radius parameter is below a certain threshold (see below), then
the implicitly defined curve splits into a regular part and a isolated
point at the center c.

Lemma 1. If the radius rj satisfies

rj >
2f0(cj)

‖∇f0(cj)‖
, (6)

then the Γ(f0 +gj) has the corner cj with two different tangent directions.

If the radius is smaller than the right–hand side, then cj is an isolated

point.

Proof: The slope of the CD function gj at its apex cj equals −2ajrj ,
and the slope of the T-spline is ‖∇f0‖. If the slope of the CD function at
its apex is smaller than the slope of the T-spline, then we obtain a corner
with two different tangent directions. The inequality (6) is now obtained
by using (4). �

The value of |f0|/‖∇f0‖ , which is sometimes called the Sampson dis-
tance [12], is an estimate of the distance of a point from Γ(f0). The bound
in (6) is approximately equal to twice the distance between cj and Γ(f0).

Remark 1. We assume that the support of each CD functions does not
contain the center of any other CD function. This can always be guaran-
teed by decreasing the values of the radii rj .

3.3. Optimizing the parameters of the CD functions

The parameter values controlling the CD functions gj will now be opti-
mized, in order to reduce the least–squares error

E =

n
∑

k=1

‖dk‖
2 with dk = pk − qk (7)

between the data points pk and the associated closest points qk on Γ(f).
We use an evolution process in order to find optimal values of the

parameter values controlling the CD functions. More precisely, we assume
that the parameters rj , aj and cj controlling the CD functions depend
on a time parameter τ . Starting from the initial values, we evolve them
according to a differential equation.

The parameters rj (influence radius of the CD function) and cj (posi-
tion of the vertex) are independent parameters. The value of aj , however,
is chosen according to (4). Consequently, the implicitly defined curve Γ(f)
has always vertices at cj , j = 1, . . . , nQ.

The evolution is to move the closest points qk towards the data points
pk. We consider two cases:
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Case 1: qk 6= cj, i.e., the closest point qk is different from all centers cj .
In this situation, the normal velocity of the implicitly defined curve at qk

is to satisfy
q̇k · ~nk ≈ dk · ~nk, k = 1, . . . , n, (8)

where ~nk = ∇f(qk)/‖∇f(qk)‖ is the unit normal of Γ(f) and the dot
“ ˙ ” indicates the differentiation with respect to the time variable τ . By a
short computation, this can be shown to be equivalent to

−
ḟ(qk)

‖∇f(qk)‖
≈ dk · ~nk, k = 1, . . . , n (9)

Case 2: qk = cj, i.e., the closest point qk is one of the centers. Since
the implicitly defined curve has a vertex at cj , we cannot consider the
normal velocity. Instead, the velocity vector of the vertex cj is to satisfy

ċj ≈ dk. (10)

In general, it is impossible to satisfy all conditions (9) and (10) ex-
actly. Instead, we adopt a least–squares approach and try to satisfy them
approximately by minimizing the objective function

G=
∑

k=1,...,n
qk 6=cj

(

ḟ(qk)

‖∇f(qk)‖
+ dk · ~nk

)2

+
∑

k=1,...,n
j=1,...,nQ

qk=cj

(ċj − dk)
2
→ Min. (11)

Note that we optimize only the parameters controlling the CD functions gj ,
while the T-spline coefficients remain unchanged. Hence,

ḟ =

nQ
∑

j=1

∇gj(cj) · ċj +
∂gj

∂rj

ṙj +
∂gj

∂aj

(

−∇f0(cj) · ċj

r2
j

+
2f0(cj)ṙj

r3
j

)

(12)

By substituting (12) into (11) we obtain a non-negative definite quadratic
function of the unknowns ċj and ṙj , j = 1, . . . , nQ. The solution to (11)
is obtained by solving a sparse linear system of equations, which defines
the evolution of the CD functions. For any values of the parameters cj

and rj , we compute its time derivatives by solving the linear system and
use a simple Euler method to integrate the path of the evolution.

The step size is determined with the help of the (normal) velocities.
More precisely, we assume that the user specifies the maximum allowed
displacement D of a point and choose the step size h such that the in-
equalities

|ḟ(qk)|

‖∇f(qk)‖
h ≤ D if qk 6= cj , and ‖ċj‖h ≤ D (13)
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(k = 1, . . . , n; j = 1, . . . , nQ) are satisfied. The evolution continues until
the approximation error defined in (7) is no longer reduced.

According to Lemma 2 of [2], the evolution process defined by (11)
produces a sequence of curves which converges to a local minimum of E,
see (7), and the Euler steps with step size h are equivalent to Gauss–
Newton iterations with the same step size, provided that the second case
(i.e., the second sum in (11)) is not present. Moreover, the proof of that
Lemma can even be extended to the situation where the second case is
present. Consequently, the evolution defined by (9) can be shown to be
equivalent to Gauss–Newton iterations for minimizing E.

Remark 2. (1) The evolution has to maintain the property that the sup-
port of each CD function does not contain the center of any other CD
function. Under this assumption, the computation splits into nQ in-
dependent optimization problems which can be dealt with separately.
If such a ‘collision’ between two CD functions takes place, then one
should modify the objective function G by adding a term which penal-
izes the collision, or add suitable inequality constraints to the problem.
Alternatively, the parameters controlling two colliding CD functions
can be optimized simultaneously, but (4) can then no longer be used.

(2) One may also simultaneously optimize both the parameters controlling
the CD functions gj and the T-spline coefficients of f0. In order
to prevent the linear system from being ill-posed, a regularization
method, such as a Levenberg-Marquardt strategy, has to be used. In
order to avoid additional branches of the implicitly defined curve, the
T-spline should be constrained to stay relatively close to the initial
one (with respect to a suitable norm, e.g., in the coefficient space).

(3) In practice, in order to improve the robustness of the method, it is
helpful to optimize only the radii rj first and to optimize all parame-
ters cj , rj later.

3.4. Experimental results

We present some examples to demonstrate the effectiveness of our method.
All the given data points are contained in a square domain (−1 ≤ x, y ≤ 1).

Example 1. The data points are sampled on a pentacle, see Fig. 2. The
scalar T-spline function f0 has 133 control points, and the implicit curve
Γ(f0) without using of CD functions is shown in (a). The 10 CD functions
are initialized for the detected sharp features in (b). After optimizing the
parameters of the CD functions, the final result of Γ(f0+g) is shown in (c).

Example 2. The data points are sampled from the contour of a Chinese
character, see Fig. 4. The scalar T-spline function f0 has 262 control
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points, and the implicit curve Γ(f0) is shown in (a). The 11 CD functions
are initialized for the detected sharp features in (b). After optimizing the
parameters of the CD functions, the final result of Γ(f0+g) is shown in (c).

(a) Without CDs (b) Initial CDs (c) Optimized CDs

Fig. 4. Fitting a Chinese character. The bottom row shows the close-up view
of the middle part of the character.

§4. Conclusion and future work

We have shown how to detect and represent sharp features with corner
detector (CD) functions for implicit curve reconstruction from unorganized
data points. These functions can be combined with a smooth implicit
representation, such that the sharp features of the object can be well
represented, without having to estimate the normal orientation at each
point. The parameters controlling the CD functions are obtained by a
local optimization procedure. Consequently, the relative computational
costs to that of generating the function f0, which is often obtained from
a global computation, are small.

As a matter of future research, we plan to extend our results to the
case of edge detector functions in 3D.
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7. B. Jüttler and A. Felis, Least–squares fitting of algebraic spline surfaces,
Advances in Computational Mathematics 17 (2002), 135–152.

8. Y. Ohtake, et al., Multi-level partition of unity implicits, ACM Trans-

actions on Graphics 22 (Siggraph’03), 463–470.

9. G. Pasko, A. Pasko and T. Kunii, Bounded blending for function–based
shape modeling, IEEE CG & A 25 (2005), 36–45.

10. A. Raviv and G. Elber, Three dimensional freeform sculpting via zero
sets of scalar trivariate functions, in: Proc. Solid Modeling and Appli-

cations, ACM 1999, 246–257.

11. T.W. Sederberg, J. Zheng, A. Bakenov and A. Nasri, T-splines and T-
NURCCs, ACM Transactions on Graphics 22 (Siggraph’03), 477–484.

12. P. Sampson, Fitting conic sections to very scattered data: An itera-
tive improvement of the Bookstein algorithm, Computer Graphics and

Image Processing 18 (1982), 97–108.

13. H. Wendland, Scattered data approximation, Cambridge University
Press, 2005.
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