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ABSTRACT

We describe Gauss-Newton type methods for fitting implicitly de-
fined curves and surfaces to given unorganized data points. The
methods can deal with general error functions, such as approxima-
tions to theℓ1 or ℓ∞ norm of the vector of residuals. Depending
on the definition of the residuals, we distinguish between direct and
data–based methods. In addition, we show that these methodscan
either be seen as (discrete) iterative methods, where an update of
the unknown shape parameters is computed in each step, or as con-
tinuous evolution processes, that generate a time–dependent family
of curves or surfaces, which converges towards the final result.

It is shown that the data–based methods – which are less costly,
as they work without the need of computing the closest points–
can efficiently deal with error functions that are adapted tonoisy
and uncertain data. In addition, we observe that the interpretation
as evolution process allows to deal with the issues of regularization
and with additional constraints.

1 INTRODUCTION

The next section summarizes the literature on Gauss–Newton–type
techniques for parametric curve and surface fitting. We thencon-
sider implicit representations and techniques of robust fitting, be-
fore describing the content and the contributions of this paper.

1.1 Gauss–Newton–type techniques for parametric
curve and surface fitting

Fitting a curve or surface to a given set of unorganized points (e.g.,
laser range data) is an important problem in various fields, includ-
ing geometric modeling and computer vision. Many techniques
have been developed for curves and surfaces which are described
by parametric representations (NURBS curves and surfaces). Due
to the influence of the parameterization, the fitting problemthen
leads to a non–linear optimization problem. Different approaches
for dealing with the effects of this non–linearity have beendevel-
oped.

[24] presents a general optimization–based approach to B-spline
curve and surface fitting. The optimization of the parameteriza-
tion has been studied in [26]. A simple alternating method, which
switches between fitting and optimization of the parameterization
(parameter correction) is described in [12]. [29] presentsa Gauss–
Newton methods for simultaneous optimization of an approximat-
ing spline curve and of its parameterization. Methods from the field
of optimal control have been used in [7].
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The method of squared distance minimization, which uses a
modified quadratic approximation of the signed distance function
of curves and surfaces, was presented in [21]. It has later been
extended to scattered data approximation [20, 32] and it wascom-
pared with the Gauss–newton type technique of normal (or tangent)
distance minimization of [9].

The choice of a good initial solution is of outmost importance
for the success of the optimization. Geometrically motivated opti-
mization strategies [20, 32] replace the initial solution by an initial
curve or surface. It is tempting to view the intermediate results of
an iterative (Gauss–Newton–type) optimization method as atime–
dependent curve or surface which adapts itself to the unorganized
point data [20, 32]. This is related to the concept of active curves
and surfaces, which are used for image and video segmentation in
Computer Vision [9].

In our previous work [5, 4] we considered geometric evolution
processes driving a curve (and similarly a surface) towardsgiven
point cloud data, where the evolution is governed by a differential
equation. [2] discusses this processes in a more abstract setting and
shows that the result is independent of the choice of the particular
geometric representation.

1.2 Fitting of implicitly defined curves and surfaces

Implicit representations of curves and surfaces [31] offervarious
advantages for curve and surface fitting. The most importantones
are the non-existence of the parameterization problem, repairing
capabilities of incomplete data and simple operations of shape edit-
ing.

Different representations of implicitly defined curves andsurface
have been used. Besides polynomials, these representations include
discretized level sets [19, 40], scalar spline functions [23, 16] and
scalar fields defined by radial basis functions [10, 18].

Several computational techniques for approximating unorga-
nized point cloud data by implicitly defined curves and surfaces
exist. The fitting of conic sections to scattered data is discussed in
[25]. [22] uses a simple linear normalization in order to avoid the
trivial solution (the null scalar field). In [30], a data–dependent nor-
malization is introduced, which gives results that are independent of
the choice of the coordinate system. The fitting is formulated as a
non–linear least–squares problem that leads to a generalized eigen-
value problem.

Discretized Level set evolution for surface reconstruction is pre-
sented in [40, 39]. In [28] the reconstruction from implicitsurfaces
from given polygonal models is considered.

Different techniques for the case of orientable point clouddata,
where each point can be equipped with a normal vector, are de-
scribed in [15, 10, 16]. These techniques use off–surface points or
the simultaneous approximation of points and normals in order to
avoid the trivial solution.



[38] have used active implicit B-spline curves for fitting unorga-
nized point clouds, by extending the geometric distance minimiza-
tion in the case of implicitly defined curves using a trust-region
algorithm.

The evolution of T-spline level sets is proposed in [35, 36].The
use of T-splines, which were presented on [27], makes it possible
to adapt the distribution of the degrees of freedom to the given ge-
ometric data. The first paper proposes to use a distance field con-
straint that completely avoids the use of frequent re-initialization
steps. A technique that is capable of dealing with various con-
straints such as convexity, area/volume and range constraints are
described in the forthcoming publication [11].

1.3 Robust fitting – other norms

Most fitting techniques for curves and surfaces are based on vari-
ants of least–squares approximation, i.e., they consider theℓ2 norm
of the vector of residuals (which may be defined in different ways,
depending in the representation). However, this may not be the opti-
mal approach in many situations, as one tacitly assumes a Gaussian
distribution of the error that may be present in the data.

Often, this implicit assumption concerning the error is notjusti-
fied. In the presence of outliers (data with large error), these may
destroy the quality of the approximation, since their influence grows
quadratically with the distance to the curve or surface. If the data
are very precise, then it is more appropriate to minimize themax-
imum deviation between the model and the data. Obviously, itis
important to adjust the norm carefully to the problem.

As an alternative, one may use other norms, such asℓp norms
of the vector of residuals or approximations thereof. So far, this
has been done mostly for curves and surfaces that are defined by
parametric representations. [33] describes two methods for discrete
ℓp approximation. [14] uses linear programming for approximate
ℓ1 and approximateℓ∞ fitting of parametric curves.

The Gauss–Newton method forℓ1 orthogonal distance regres-
sion is studied in [34]. [6] use theℓ1 and ℓ∞ for fitting para-
metric curves and surfaces. The case of generalℓp norms is de-
scribed in [8]. In a recent manuscript [3], we study the relation
between Gauss–Newton–type methods for approximation withre-
spect to general norm–like functions and the technique of iteratively
re–weighted least squares, which is a classical tool in the field of ro-
bust statistics [13], by extending the observations in [17]to the case
of vector–valued residuals.

1.4 Contributions and outline

In the present paper we describe Gauss-Newton type methods for
fitting implicitly defined curves and surfaces to given unorganized
data points. Here we extend the results concerning parametric
curves and surfaces to the implicit case. As another new contri-
bution, the methods can deal with general error functions, such as
approximations to theℓ1 or ℓ∞ norm of the vector of residuals.

We consider two different possible definitions of the residuals.
This leads to two classes of methods, which will be calleddirect
methodsanddata–based methods, respectively.

Both methods can be seen as (discrete) iterative methods, where
an update of the unknown shape parameters is computed in each
step. Alternatively they can be identified with continuous evolu-
tion processes which generate a time–dependent family of curves
or surfaces. We show that both viewpoints are equivalent.

The data–based methods are less costly, as they work withoutthe
need of computing the closest points. They can efficiently deal with
error functions that are adapted to noisy and uncertain data. The

interpretation as evolution process allows to deal with theissues of
regularization and with additional constraints.

The remainder of the paper is organized as follows. In the second
section we recall some basics about least-squares fitting for implicit
curves. We mention exemplarily three existing methods for curve
fitting that base on a least-squares approximation. In the third sec-
tion we generalize the least-squares technique and providesome
theoretical results. Section 4 is dedicated to the discussion of the
method and presents several examples. Finally, in Section 5, we
conclude this paper.

2 FITTING BY IMPLICITLY DEFINED CURVES AND SURFACES

First we recall the description of implicitly defined curvesand sur-
faces. Then we formulate two approaches to the fitting problem:
the direct distance minimizationand thealgebraic distance mini-
mization. Finally we summarize the evolution–based approach to
fitting, where the result is obtained via an evolution process.

2.1 Implicitly defined curves and surfaces

Consider the problem of fitting an implicitly defined planar curve
or surface to a given point set{p j} j=1..M ⊂ R

d, where the dimen-
sion d satisfiesd = 2 in the curve case andd = 3 in the curve of
surfaces. More precisely, we consider hypersurfaces in dimension
two or three. For the sake of brevity, we will almost always refer
simply to surfaces.

The curve/surface is described as the zero-set of aC 2 smooth
bivariate or trivariate functionfs : R

d → R, i.e.

F = {x ∈ Ω ⊂ R
d| fs(x) = 0}. (1)

We assume that the scalar fieldfs is described by a vector

s= (s1, . . . ,sm)⊤ (2)

of m shape parameters, wheres∈ R
m. We assume thatfs is twice

differentiable with respect to the shape parameterss. The gradients
with respect tox ands will be denoted by

∇x = (
∂

∂x1
, . . . ,

∂
∂xd

) (3)

and

∇s = (
∂

∂s1
, . . . ,

∂
∂sm

), (4)

respectively.

Example 1 For instance, the functionfs(x) can be chosen as a bi-
variate polynomial of a given degreen. In the cased = 2, one may
e.g. choose the bivariate Bernstein-Bézier basis with respect to a
suitable domain triangle∆ABC⊂ R

2,

fs(x) = ∑
i+ j+k=n

bi jk
n!

i! j !k!
uiv jwk, (5)

where(u,v,w) are the barycentric coordinates of the pointx ∈ R
2

with respect to the domain triangle. In this case, the vectorof shape
parameters is simply the collection of all coefficientsbi jk .

Example 2 More generally, one may consider implicitly defined
surfaces where

fs(x) =
N

∑
i=0

siφi(x), (6)

where the basis functionsφi can be chosen, e.g., as radial basis
functions [10], tensor–product splines or subsets thereof[16] or T-
splines [37].



2.2 Direct distance minimization

When fitting a surface to a given set of data, one minimizes certain
distances from the data points to the surface. These distances can
be measured in different ways.

The geometric distance from a data pointp j to the surface is
given by its (minimal) Euclidean distance to the surface,

d j = min‖p j −pc
j‖ (7)

subject tofs(pc
j) = 0. (8)

The minimization of the squares of the geometric distancesd j =
‖R j‖, where

R j = p j −pc
j , (9)

leads to the least-squares problem

M

∑
j=1

R2
j =

M

∑
j=1

d2
j → min

s
(10)

Due to the non-linearity, an iterative approach is used to solve this
problem. Starting with an initial surface, one computes – for each
data point – the associated closest points. Substituting these points
in (10) one obtains a least-squares problem for the shape parameters
s that can be solved using Newton or Newton-like techniques.

Note that the solution of (10) is not unique since all functions
λ f (x,y) with λ ∈ R\{0} possess the same zero contour (1). In
order to avoid this ambiguity, suitable regularization terms have to
be incorporated.

For instance, if additional normal vector information is available
(that is, if the given data are orientable in the sense that each point
can be equipped with a normal vector), then one may use this infor-
mation to define additional terms in the objective function that mea-
sure the deviation between the given normals and the real ones, see
[16]. Otherwise one may use data-dependent regularizationfunc-
tionals as in [30], or one may simply constrain the values of some
coefficients, such as the constant term [22]. In addition, inorder
to avoid unwanted oscillations, one may add regularizationterms
which are based on the thin plate energy, see [16].

2.3 Algebraic distance minimization

A point x lies on an implicitly defined surface if its algebraic dis-
tance to the surface is zero, i.e.,f (x) = 0. For points in the vicinity
of the surface the function value is also expected to be closeto zero.
This gives raise to the idea of using

M

∑
j=1

| fs(p j)|
2 → min

s
, (11)

which minimizes the squared algebraic distances to all datapoints.
Clearly, this problem has the trivial solutionfs(x) ≡ 0 which is

not useful. Again, additional constraints have to be introduced in
order to exclude this unwanted solution, see the discussionin the
previous section and Section 4.1.

2.4 Surface fitting via an evolution process

In the case of curves, [5] proposed a geometrically motivated ap-
proach to the fitting problem, which can be extended to surfaces.
The approximation process is interpreted as a continuous evolution
process that drives an initial surface towards the target, which is
specified by the data points. In particular, the closest points of the
data points on the curve are attracted by the associated datapoints.

Assuming that the shape parameterssdepend on a time–like pa-
rametert, the normal velocity of a point on the surface is

vn = −
∇x f⊤s

‖∇x fs‖2 ḟs = −
∇x f⊤s

‖∇x fs‖2 ∇s fsṡ, (12)

whereṡ is the time derivative ofs. The velocity of the closest points
in normal direction shall be equal to their distance to the data point.
As this requirement cannot be fulfilled for all points simultaneously,
we formulate this as the least squares problem

M

∑
j=1

((R j −vn)n j)
2 → min

ṡ
. (13)

The shape parameterss+ = s(t +h) for the updated surface can now
be found via an explicit Euler steps+ = s+hṡ where 0< h≤ 1 is
a given step size.

Again, in order to avoid a convergence to the trivial solution fs≡
0, suitable regularization terms have to be added. See Section 4.1
for a detailed discussion.

2.5 Computation of closest points

Note that for both, the direct distance minimization and theevolu-
tion approach, the closest point of each data point has to be com-
puted. See [1] for a robust method for closest point computation.
Although the computation of a single closest point requiresonly
the solution of a non-linear system of two or three unknowns,the
overall effort may be quite substantial.

First, the systems are in general non-linear and can not be solved
directly. Second, the number of data points can be quite high, and
the closest points need to be computed in each step of the iterative
method and in each time-step of the evolution process.

Consequently, it is desirable to avoid te computation of closest
points, and this will be achieved by the use of point–based approx-
imation techniques.

3 EXTENSION TO GENERALIZATION NORM -LIKE FUNCTIONS

We generalize the direct and the algebraic distance minimization
from the last section to the case of general norm–like functions of
the residuals. These general functions include approximations of
theℓ1 and theℓ∞ norm of the vector of residuals. They are particu-
larly well suited for data containing outliers, and for highly accurate
date data, respectively.

3.1 Generalized direct distance minimization

3.1.1 The generalized fitting problem and norm-like func-
tions

We extend the exact geometric distance minimization by consider-
ing the objective function

F =
M

∑
j=1

N(‖p j −pc
j‖) → min (14)

subject tofs(pc
j) = 0. (15)

The functionN(x) replaces the usualℓ2 norm. It is assumed to
satisfy the following definition of a norm-like function (cf. [3]):

Definition 3 A C 2 functionN(x) : R
+ → R

+ is said to benorm-
like if there existsε ∈ R

+ such that the derivative satisfies

N′(x) = xw(x) for x∈ (0,ε] (16)



where the associatedweight function w(x) is positive. If the weight
functionw(x) can smoothly be extended such thatw(x)) : [0,ε] →
[c,C] with c,C∈ R

+, then we will call itpositive andbounded.

The norm-like functions

N(x) = xp (17)

are associated with the weight functions

w(x) = pxp−2. (18)

For 1< p < 2, the weight functions are positive, but not bounded.
In the casep> 2 the weight functions are bounded but not positive.
For p = 2 the weight function is both, positive and bounded.

The norm–like function

N(x) = 1−exp(−x2) (19)

has the weight function

w(x) = 2exp(−x2) (20)

and can be used as an alternative to theℓ1 norm. The weight func-
tion is positive and bounded.

3.1.2 A Gauss–Newton–type method

In order to cope with the non–linearity of (14), we apply an itera-
tive technique, more precisely a Gauss-Newton-type method. Con-
sequently, we need the gradient and the Hessian of the objective
function. First we consider the gradient

∇F =
M

∑
j=1

N′(‖R j‖)
R⊤

j

‖R j‖
∇sR j

=
M

∑
j=1

w(‖R j‖)‖R j‖
R⊤

j

‖R j‖
∇s(−pc

j).

The gradient ∇s(−pc
j) can be computed from the condition

fs(pc
j) ≡ 0, which implies

∇s fs(pc
j)+∇x fs(pc

j)∇spc
j = 0 (21)

and hence

∇s fs(pc
j)

‖∇x fs(pc
j)‖

+
∇x fs(pc

j)

‖∇x fs(pc
j)‖

∇spc
j = 0 (22)

Note that for a regular surface point, i.e.∇x fs(pc
j) 6= 0, the residual

R j is parallel to the gradient∇x fs(pc
j). Consequently, we have that

∇x fs(pc
j)

‖∇x fs(pc
j)‖

sign(∇x fs(pc
j)R j ) =

R⊤
j

‖R j‖
. (23)

Combining (22) and (23) yields

R⊤
j

‖R j‖
∇s(−pc

j) =
∇s fs(pc

j)

‖∇x fs(pc
j)‖

sign(∇x fs(pc
j)R j). (24)

Summing up, the gradient of the objective function is

∇F =
M

∑
j=1

w(‖R j‖)‖R j‖
∇s fs(pc

j)

‖∇x fs(pc
j)‖

sign(∇x fs(pc
j)R j ) (25)

Note that the functionfs and its gradient are evaluated at the point
pc

j . We keep this fact in mind and suppress the arguments from now
on. In particular, we use the abbreviation

w j = w(‖R j‖). (26)

In this sense the Hessian is

HF = ∇(∇F⊤) (27)

=
N

∑
j=1

w′
j‖R j‖

∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

+w j
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

+w j‖R j‖(
∇s∇s fs
‖∇x fs‖

−
∇s f⊤s ∇x fs∇s∇x fs

‖∇x fs‖3 )

The computation of the exact Hessian (27) might be very costly or
even impossible, if no second order derivatives are available. For
this reason – adopting the paradigm of Gauss–Newton methods–
we consider a simplified Hessian, where the first and the last part of
the expansion (27) are omitted,

H∗
F =

M

∑
j=1

w j
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

. (28)

The following result justifies the choice of this simplification.

Proposition 4 Let s̄ be a minimizer of (14) such thatfs(p j) = 0
and‖∇x fs(p j)‖ > 0 for all data pointsp j . Assume thatfs(x) ∈ C 2

is bounded for allx ∈ Ω ⊂ R
2 and thatw is a positive and bounded

weight function. Then

lim
s→s̄

HF = H∗
F .

Proof: First we note that the boundedness offs(x) implies that
the derivatives offs(x) of all orders are bounded as well. Now we
consider the three terms in (27) separately. For the first term we
obtain

T1 ≤ |w′
j |‖R j‖

∥

∥

∥

∥

∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

∥

∥

∥

∥

≤ |w′|‖R j‖
‖∇s fs‖2

‖∇x fs‖2 .

Consequently,T1 vanishes in the limit as‖R j‖→ 0 for s→ s̄since
w′ is bounded and‖∇x fs(p j)‖ > 0. The third part can be bounded
by

T3 ≤ |w j |‖R j‖(
‖∇s∇s fs‖
‖∇x fs‖

+‖∇s f⊤s ‖
‖∇x fs‖

‖∇x fs‖3‖∇s∇x fs‖).

Again, this part vanishes due to the boundedness of all involved
derivatives and‖∇x fs‖ > 0. �

Summing up, the simplified and the exact Hessian coincide in
the limit of a zero-residual case.

Now we use the simplified Hessian in order to build the system

H∗
F ∆s+∇F⊤ = 0 (29)

which leads to

M

∑
j=1

w j
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

∆s (30)

+
M

∑
j=1

w j‖R j‖
∇s f⊤s
‖∇x fs‖

sign(∇x fsR j) = 0.



3.1.3 Relation to surface evolution

As all functions and gradients are evaluated at points of thesur-
face, we will refer to (30) as thesurface–based Gauss-Newton-type
methodfor minimizing general functions of the residuals in the case
of implicitly defined surfaces.

Proposition 5 The surface–based Gauss-Newton-type method in
the sense of (30) gives exactly the same system of equations as a
weighted version of the surface evolution (13).

Proof. The system (30) can be interpreted as the minimum con-
dition of

M

∑
j=1

w j





(

R j +
∇x f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

∆s

)⊤
∇x f⊤s
‖∇x fs‖





2

→ min
∆s

.

With the setting

vn = −
∇x f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

ṡ

and

n j =
∇x f⊤s
‖∇x fs‖

we get
M

∑
j=1

w j((R j −vn)⊤n j)
2 → min

∆s
, (31)

which is the weighted version of equation (13) that governs the sur-
face evolution. �

Note that the weights in (31) depend on the residuals. Hence (31)
cannot be minimized directly. Most often, such problems aresolved
via re-weighting, i.e. during the iteration process the weights are
computed from the residuals of the previous step. Thus, replacing
the usualℓ2 norm by a general norm like functionN(x) increases
the computational costs only marginally. The additional effort lies
solely in the computation of the additional weights that have to be
incorporated.

In the statistics community, this weighting technique is known
as Iteratively-Reweighted Least-Squares (IRLS), see [13,17]. Also
[30] has used this (iterative) re-weighting procedure in order to re-
fine the result obtained from the (direct) eigenvector fit applied to
the algebraic distances.

3.2 Minimizing an approximate distance

3.2.1 The generalized fitting problem for Sampson dis-
tances

As pointed out in Section 2.5, the closest point computationfor
methods relying on the exact distance can be quite costly. This is
particularly true as it may be needed many times during the evolu-
tion / iteration process.

For this reason we consider an approximation instead of the ex-
act geometric distance. In the following we discuss the use of the
Sampson distance [25], which is also known as Taubin distance
[30]. It is the gradient–weighted algebraic error,

dS =
| fs(p j)|

‖∇x f (p j)‖
. (32)

With this, the objective function for exact distance minimization
transforms into

F =
M

∑
j=1

N(
| fs(p j)|

‖∇x fs(p j)‖
) → min. (33)

In contrast to the direct distance minimization, the gradients and
functions are now evaluated at the data points.

3.2.2 A Gauss–Newton–type method

Again we skip the arguments in the following discussion. Thegra-
dient of (33) is

∇F =
M

∑
j=1

N′(
| fs|

‖∇x fs‖
)(

sign( fs)∇s fs
‖∇x fs‖

−
| fs|∇x fs∇s∇x fs

‖∇x fs‖3 ) (34)

The second term vanishes for zero-residual problems. Omitting it
yields an approximate gradient,

∇F∗ =
M

∑
j=1

w(
| fs|

‖∇x fs‖
)

fs∇s fs
‖∇x fs‖2 . (35)

The Hessian of (33) is

HF = ∇(∇F∗⊤) =

=
M

∑
j=1

w′
j

fs∇s fs
‖∇x fs‖2

(

sign( fs)∇s fs
‖∇x fs‖

−
| fs|∇x fs∇s∇x fs

‖∇x fs‖3

)

+w j
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

+w j fs(
∇s∇s fs
‖∇x fs‖2 −

2∇s fs∇s∇x fs
‖∇x fs‖4 ).

Again, we consider a simplified version of the exact Hessian:

H∗
F =

M

∑
j=1

w j
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

Proposition 6 Let s̄ be a minimizer of(33) such that fs(p j) = 0
and‖∇x fs(p j)‖ > 0. Assume that fs(x) is bounded for allx ∈ Ω ⊂
R

2 and that w is a positive and bounded weight function. Then

lim
s→s̄

HF = H∗
F .

The proof is similar to the one of Proposition 4.
Now we can formulate the system for the update vector∆s:

H∗
F∆s+∇F∗⊤ = 0

which leads to

M

∑
j=1

w j
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

∆s+
M

∑
j=1

w j
fs∇s f⊤s
‖∇x fs‖2 = 0 (36)

Note that equation (36) has the same shape as (30). Nevertheless,
the difference is significant. No closest point computationis needed
since all functions and derivatives are evaluated at the data points.
Therefore we call (36)data–based Gauss-Newton-type method.

Figure 1 shows a first example of a data–based Gauss–Newton–
type method forℓ2 approximation. We will see shortly that it is
equivalent to an evolution process.

3.2.3 Relation to surface evolution

Now we can proceed similar to Proposition 5 and obtain the follow-
ing result.

Proposition 7 The data–based Gauss-Newton-type method (36) is
equivalent to a weighted evolution, where the error distances are
measured with the Sampson distance and the velocities are applied
at the data points.
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Figure 1: Initial value (left), an intermediate step (center) and the final result (right) of a data–based Gauss–Newton–type method (or equivalently:
of an evolution process) for ℓ2–approximation.

Proof. Formulating a weighted evolution according to (13),
where the residuals are computed via the Sampson distance, yields

M

∑
j=1

w j

(

(
∇x fs fs
‖∇x fs‖2 +

∇x fs∇s fs
‖∇x fs‖2 ṡ)

∇x f⊤s
‖∇x fs‖

)2

→ min
ṡ

. (37)

The necessary condition for a stationary point of this minimization
problem is now given by (36) where we rename∆s into ṡ. �

4 DISCUSSION AND EXAMPLES

We compare direct methods and iterative (evolution-based)meth-
ods and describe the use of regularization by the distance field con-
straint. Next we analyze the differences between surface–based and
data–based methods. Finally we address the use of general norm–
like functions.

4.1 Direct methods vs. iterative methods and evolution,
regularization by distance field constraint

Many direct techniques, such as Taubin’s method [30], provide the
result after a single step (though an iterative method may beneeded
in order to solve the generalized eigenvalue problem). On the one
hand this seems to be an advantage, since no iterations and therefor
no convergence analysis is needed. On the other hand, once the re-
sult is computed it can no longer be influenced. Iterative methods
provide the flexibility to adjust certain parameters – such as regu-
larization parameters – during the approximation.

An example – which compares Taubin’s method and anℓ2 ap-
proximation by evolution – is shown in Figure 2. It can be seenthat
the latter technique gives the correct result, while Taubin’s fit has
some problems.

The interpretation of an iteration as discrete steps of a continuous
evolution offers even more flexibility. This is especially true for the
choice of the regularization parameters.

We use the technique ofdistance field constraint, which was pro-
posed in [37]. As the underlying idea, in each step, the levelset
function is to be pushed towards a signed distance function.This
can be achieved by adding the term

∫

Ω
(

d
dt

‖∇x fs(x)‖+‖∇x fs(x)‖−1)2dx → min (38)

to the objective function.
The interpretation of this regularization term is as follows. If

the norm of the gradient in a point equals 1 then its time derivative
is zero, hence it shall remain unchanged. Otherwise the normof
the gradient is modified such that it gets closer to 1. Clearlythis
condition avoids the zero solution for the level set function.

Since the integration over the domain of interest might be com-
plicated, we adopt the following approach. We discretize (38) by
applying it to a number of pointsxi in the domain of interest. This
leads to

∑
i
(

d
dt

‖∇x fs(xi)‖+‖∇x fs(xi)‖−1)2 → min. (39)

Theoretically, the distance field constraint can be imposedto a very
dense grid of points in the domain of interest. However, a unit
gradient field exists only in some neighborhood of the zero contour,
bounded by the evolute of the curve or by the focal surfaces ofthe
surface.

Since this neighborhood is unknown we use the following strat-
egy. We sample a number of points on a regular grid and choose
those points that are close to the curve or surface. In order to avoid
the time consuming distance computation we allow all pointsthat
have a small Sampson distance or alternatively, a small absolute
function value.

4.2 Surface–based evolution vs. data–based iteration
or evolution

As shown earlier, the Gauss-Newton approach to exact distance
minimization led to the surface–based evolution process. On the
other hand, the approximate distance minimization (based on the
Sampson distance) can be interpreted as a data–based evolution pro-
cess. Figure 3 shows a comparison of the two evolution methods.

In the first (surface–based) approach, the velocities (dotted ar-
rows) are directly prescribed at the closest points which lie on the
surface. Thus the closest points – and consequently the curve / sur-
face f = 0 – is pushed towards the data points. The magnitude of
the movement is derived from the Euclidean distance from a data
point to its associated closest point.

Using the data–based approach, the velocities are applied to the
data points. The geometric interpretation is now slightly different.
We do not move the surface directly, but instead the forces are ap-
plied to a certain level set surfacef = c that passes through the
data point. The magnitude of the velocity is given by the Samp-
son distance from the data point to the surface. In the sketchthese
velocities are represented by the dashed arrows.

As an obvious difference between the data–based and the
surface–based evolution, no closest points are needed for the first
technique. When considering the computational costs, thisis a
powerful argument to favor the approximate distance minimiza-
tion. Moreover, this method can handle a specific class of topology
changes more easily as demonstrated in the next example which is
shown in Figure 4.
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Figure 2: The figures show 50 points which where sampled from a parametric curve and per-
turbed with randomly generated error. The left picture (a) shows an ℓ2 fit obtained with the
data–based evolution technique combined with the regularization technique of distance field
constraint, see text for details. In the second picture (b), the same point cloud is approximated
with Taubin’s method.
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Figure 3: Comparison of data–based and
surface–based evolution. Velocities at data
points are shown as dashed arrows. Velocity
at surface points are shown as dotted arrows.
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Figure 4: We consider a point cloud that consists of two nested loops. As an initial value we choose a closed curve that contains all data points.
During the evolution process for ℓ2 approximation of the Sampson distances, the curve shrinks until it matches the outer part of the points (b).
Simultaneously, a second branch of the curve emerges inside the outer loop, which fits itself to the second part of the point cloud (c).

On the other hand, the surface–based technique act directlyon
the true geometric distance errors, and not on an approximation.
Consequently, one may expect that the results are more reliable.
The choice of the most appropriate method depends on the applica-
tion background.

Following our experiences, the data–based method is able to
cope with such situations as in Figure 4 better than the surface–
based approach. Using the latter method, the initial surface con-
verges in the beginning towards the outer loop as expected. But
then it does not stop at the boundary but is pulled inside the point
cloud as it is attracted be the inner points too.

The data–based method seems to be more appropriate to deal
with this kind of topology changes. However, this flexibility causes
also problems, since unwanted branches may appear during the evo-
lution.

Summing up, for simple shapes one may choose the surface–
based evolution since it is not so vulnerable to unwanted topology
changes. If one needs more flexibility in order to fit complicated
shapes, the data–based evolution is more appropriate. But one has
to use more rigorous regularization techniques in order to guarantee
a stable evolution.

The application of the data–based technique to spatial datais
shown in Figure 6. A point cloud sampled from two spheres was

approximated using theℓ2 norm.

4.3 Robust fitting via general norm–like functions

Finally we demonstrate the advantages of using general norm–like
functions.

Figure 5 compares the results of data–basedℓ2 andℓ1 approxi-
mation, where one of the data has been moved away, thereby creat-
ing an outlier.

The approximateℓ1 approximation (which uses the norm like
function (19)) simply ignores the outlier, while the resultof theℓ2
approximation has additional near–singular points. This confirms
the theoretically expected higher robustness ofℓ1 approximation
with respect to outliers.

Finally we present a comparison of an approximateℓ1, anℓ2, and
an approximateℓ∞ fit, see Figure 7. While the first one uses again
the weight function which is obtained from (19), the last oneuses
ℓp approximation for a relatively large value ofp.

Starting from the initial position shown in the top left corner, we
obtain three different approximations. The figure also shows the
residual vectors.

The norm of the residuals is shown in the three plots on the right–
hand side. One may clearly see that the approximateℓ∞ approxi-
mation produces the smallest maximum distance error (0.4 vs. 0.52
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Figure 5: Approximation of a data set with an outlier, via data–based ℓ2 evolution (a) and via data–based approximate ℓ1 evolution (b).
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Figure 6: Step wise ℓ2 approximation of 280 points sampled from two
spheres with additional random error of 0.1.

and 0.62 for theℓ2 and the approximateℓ1 approximation).
On the other hand, one of the data points can again be seen as an

outlier, and the approximateℓ1 ignores this point. More precisely,
if the sum of the residuals can be decreased at the expense of one
of them, then theℓ1 approximation will do it.

Figure 8 shows the same effect for spatial data, sampled froma
sphere. Again one can see the approximations obtained with differ-
ent norm like functions along with the different residuals of the 141
data points.

Summing up by using the various approximation methods, dif-
ferent assumptions or experiences concerning the error distribution
can be taken into account.

5 CONCLUSION

We investigated several methods for fitting implicit curves/surfaces
to a given data set. More precisely, we generalized the usualGauss-
Newton technique for a least-squares approximation by replacing
the ℓ2 norm of the vector of residuals vector by a norm-like func-
tion N(x). In particular, this norm like function can be chosen as
an approximation ofℓ1 or ℓ∞. Each choice provides certain advan-
tages, depending on the error distribution.

All methods can be equipped with two equivalent interpretations.
One may either see them as discrete iterative methods, or as evolu-
tion processes, where the evolution of a shape is governed bya dif-
ferential equation. We prefer the latter framework, as it allows to in-
troduce additional constraints, such as the distance field constraint
(see Section 4.1 and [35]) as well as range, volume and convexity
constraints, see [11].

If the residuals are chosen to be the geometric distances from
the data point to the curve, then one obtains a weighted version of
the evolution method introduced by [5], but now for the case of
implicitly defined curves and surfaces. In this setting the evolution
is obtained by assigning to certain curve points a given velocity.
The curve points are simply the closest points on the curve and the
velocities are obtained from the distances from these points to their
associated data points. This technique has been called thedirect
approach.

Alternatively, one can replace the exact geometric distances by
some approximate distance. When choosing the Sampson distance,
the obtained Gauss-Newton-type technique yields again a method
that can be interpreted as an evolution. But in contrast to the pre-
vious method the velocities are assigned at the data points,and the
method has been called thedata–basedone.
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Clearly, the latter method does not need closest point computa-
tions, which is an advantage. On the other hand, one may feel more
comfortable with the the direct method, as it works with the real
distances, and not with approximations.

The aim of this paper was to analyze the different methods from
a theoretical point of view, and to illustrate the theory by afew
simple but representative examples. Future work will be devoted to
the practical exploitation of these observations in a framework for
3D object reconstruction, similar to the results in [36].
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