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ABSTRACT

We describe Gauss-Newton type methods for fitting impicite-
fined curves and surfaces to given unorganized data poirtte. T
methods can deal with general error functions, such as gippae
tions to thel; or ¢, norm of the vector of residuals. Depending
on the definition of the residuals, we distinguish betweeeatiand
data—based methods. In addition, we show that these methods
either be seen as (discrete) iterative methods, where asteljod
the unknown shape parameters is computed in each step, @nas c
tinuous evolution processes, that generate a time—depefzoheily
of curves or surfaces, which converges towards the finaltresu

It is shown that the data—based methods — which are lesg,costl
as they work without the need of computing the closest peints
can efficiently deal with error functions that are adapteddcsy
and uncertain data. In addition, we observe that the intéaiion
as evolution process allows to deal with the issues of regal#on
and with additional constraints.

1 INTRODUCTION

The next section summarizes the literature on Gauss—Netytoa
techniques for parametric curve and surface fitting. We tten
sider implicit representations and techniques of robusidit be-
fore describing the content and the contributions of thizepa

1.1 Gauss—Newton-type techniques for
curve and surface fitting

parametric

Fitting a curve or surface to a given set of unorganized pdiag.,
laser range data) is an important problem in various fielgud-
ing geometric modeling and computer vision. Many technsque
have been developed for curves and surfaces which are loedcri
by parametric representations (NURBS curves and surfatag)
to the influence of the parameterization, the fitting probken
leads to a non-linear optimization problem. Different agghes
for dealing with the effects of this non—linearity have belavel-
oped.

[24] presents a general optimization—based approach faiBes
curve and surface fitting. The optimization of the paranieter
tion has been studied in [26]. A simple alternating methoklictv
switches between fitting and optimization of the parameétion
(parameter correction) is described in [12]. [29] presenB&auss—
Newton methods for simultaneous optimization of an appnati
ing spline curve and of its parameterization. Methods frbefield
of optimal control have been used in [7].
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The method of squared distance minimization, which uses a
modified quadratic approximation of the signed distancetion
of curves and surfaces, was presented in [21]. It has laten be
extended to scattered data approximation [20, 32] and itcoas
pared with the Gauss—newton type technique of normal (getat)
distance minimization of [9].

The choice of a good initial solution is of outmost importanc
for the success of the optimization. Geometrically mogdabpti-
mization strategies [20, 32] replace the initial solutignan initial
curve or surface. It is tempting to view the intermediateittssof
an iterative (Gauss—Newton—type) optimization method thime—
dependent curve or surface which adapts itself to the unarga
point data [20, 32]. This is related to the concept of actweves
and surfaces, which are used for image and video segmentatio
Computer Vision [9].

In our previous work [5, 4] we considered geometric evolutio
processes driving a curve (and similarly a surface) towgidsn
point cloud data, where the evolution is governed by a diffiéal
equation. [2] discusses this processes in a more abstttingsand
shows that the result is independent of the choice of thecpéat
geometric representation.

1.2 Fitting of implicitly defined curves and surfaces

Implicit representations of curves and surfaces [31] offeiious
advantages for curve and surface fitting. The most imporiaas
are the non-existence of the parameterization problenginiag
capabilities of incomplete data and simple operations apstedit-
ing.

Different representations of implicitly defined curves andface
have been used. Besides polynomials, these represestatabnde
discretized level sets [19, 40], scalar spline functiorg [6] and
scalar fields defined by radial basis functions [10, 18].

Several computational techniques for approximating ustorg
nized point cloud data by implicitly defined curves and stefa
exist. The fitting of conic sections to scattered data isudised in
[25]. [22] uses a simple linear normalization in order toidvie
trivial solution (the null scalar field). In [30], a data—a@eplent nor-
malization is introduced, which gives results that are peselent of
the choice of the coordinate system. The fitting is formulas a
non-linear least—squares problem that leads to a gerextaigen-
value problem.

Discretized Level set evolution for surface reconstructiopre-
sented in [40, 39]. In [28] the reconstruction from implisitrfaces
from given polygonal models is considered.

Different techniques for the case of orientable point cldath,
where each point can be equipped with a normal vector, are de-
scribed in [15, 10, 16]. These techniques use off-surfagggpor
the simultaneous approximation of points and normals ireotd
avoid the trivial solution.



[38] have used active implicit B-spline curves for fittingauga-
nized point clouds, by extending the geometric distancémiia-
tion in the case of implicitly defined curves using a trugjioa
algorithm.

The evolution of T-spline level sets is proposed in [35, 3@je
use of T-splines, which were presented on [27], makes itipless
to adapt the distribution of the degrees of freedom to thergiye-
ometric data. The first paper proposes to use a distance 6fald c
straint that completely avoids the use of frequent redt#ation
steps. A technique that is capable of dealing with various- co
straints such as convexity, area/volume and range contsrare
described in the forthcoming publication [11].

1.3 Robust fitting — other norms

Most fitting techniques for curves and surfaces are basedon v
ants of least—squares approximation, i.e., they considghtnorm
of the vector of residuals (which may be defined in differeaysy
depending in the representation). However, this may ndidepti-
mal approach in many situations, as one tacitly assumes sstaau
distribution of the error that may be present in the data.

Often, this implicit assumption concerning the error is justi-
fied. In the presence of outliers (data with large error)s¢hmay
destroy the quality of the approximation, since their inficegrows
quadratically with the distance to the curve or surface héf data
are very precise, then it is more appropriate to minimizentiae-
imum deviation between the model and the data. Obviously, it
important to adjust the norm carefully to the problem.

As an alternative, one may use other norms, such,asorms
of the vector of residuals or approximations thereof. So tfas

interpretation as evolution process allows to deal withiskaes of
regularization and with additional constraints.

The remainder of the paper is organized as follows. In thersic
section we recall some basics about least-squares fittirignfibicit
curves. We mention exemplarily three existing methods tove
fitting that base on a least-squares approximation. In fing sec-
tion we generalize the least-squares technique and predde
theoretical results. Section 4 is dedicated to the disonssi the
method and presents several examples. Finally, in Sectiove5
conclude this paper.

2 FITTING BY IMPLICITLY DEFINED CURVES AND SURFACES

First we recall the description of implicitly defined cunasd sur-
faces. Then we formulate two approaches to the fitting proble
the direct distance minimizatioand thealgebraic distance mini-

mization Finally we summarize the evolution—based approach to

fitting, where the result is obtained via an evolution preces

2.1

Consider the problem of fitting an implicitly defined planamne
or surface to a given point s@pj}jzluM c RY, where the dimen-
siond satisfiesd = 2 in the curve case armdl= 3 in the curve of
surfaces. More precisely, we consider hypersurfaces irison
two or three. For the sake of brevity, we will almost alwaykere
simply to surfaces.

The curve/surface is described as the zero-set 6 amooth
bivariate or trivariate functioris : RY — R, i.e.

F ={xeQcRIfs(x) = 0}. 1)

Implicitly defined curves and surfaces

has been done mostly for curves and surfaces that are defined b We assume that the scalar fieiidis described by a vector

parametric representations. [33] describes two methodtigorete
{p approximation. [14] uses linear programming for approxana
¢1 and approximaté,, fitting of parametric curves.

The Gauss—Newton method fér orthogonal distance regres-
sion is studied in [34]. [6] use thé; and ¢ for fitting para-
metric curves and surfaces. The case of gengyalorms is de-
scribed in [8]. In a recent manuscript [3], we study the ielat
between Gauss—Newton-type methods for approximation neith
spect to general norm-like functions and the techniquestdiively
re—weighted least squares, which is a classical tool in ¢he dif ro-
bust statistics [13], by extending the observations in fdZhe case
of vector—valued residuals.

1.4 Contributions and outline

In the present paper we describe Gauss-Newton type metbods f

fitting implicitly defined curves and surfaces to given uraniged
data points.
curves and surfaces to the implicit case. As another newrieont
bution, the methods can deal with general error functionsh s
approximations to thé; or £, norm of the vector of residuals.

We consider two different possible definitions of the realdu
This leads to two classes of methods, which will be catedct
methodsanddata—based methogdsespectively.

Both methods can be seen as (discrete) iterative metho@ésewh

Here we extend the results concerning parametr

s=(s1,...,5m) )

of m shape parametersvheres € R™. We assume thaf is twice
differentiable with respect to the shape parameieie gradients
with respect toc ands will be denoted by

7] 7}
Dxi(d_xl""’ﬂ) ®3)
and P P
DS:(EV":EL (4)
respectively.

Example 1 For instance, the functiofy(x) can be chosen as a bi-
variate polynomial of a given degree In the casel = 2, one may
e.g. choose the bivariate Bernstein-Bézier basis witheetsio a
suitable domain trianglAABC C R?,

n!

fs(x) = i+j;<:nbijk WUIVJV"k7 (%)

where(u,v,w) are the barycentric coordinates of the poirg R2
with respect to the domain triangle. In this case, the veattshape
parameters is simply the collection of all coefficiebig.

Example 2 More generally, one may consider implicitly defined

an update of the unknown shape parameters is computed in eacr%urfaces where

step. Alternatively they can be identified with continuowsle-
tion processes which generate a time—dependent familyreésu
or surfaces. We show that both viewpoints are equivalent.

The data—based methods are less costly, as they work witreut
need of computing the closest points. They can efficientdy} dith
error functions that are adapted to noisy and uncertain dete

N
0 = 3 S0, (6)

where the basis functiong can be chosen, e.g., as radial basis
functions [10], tensor—product splines or subsets thefegifor T-
splines [37].



2.2 Direct distance minimization

When fitting a surface to a given set of data, one minimizetairer
distances from the data points to the surface. These destazan
be measured in different ways.

The geometric distance from a data pomtto the surface is
given by its (minimal) Euclidean distance to the surface,

@)
(8)

The minimization of the squares of the geometric distartes
IRjll, where

dj = min||pj —pf]|
subject tofs(p§) = O.

Rj=pj—pS, 9
leads to the least-squares problem
M M
Rf= Y df —min (10)
=1 =1

Due to the non-linearity, an iterative approach is used heesthis
problem. Starting with an initial surface, one computes refach
data point — the associated closest points. Substitutieggetpoints
in (10) one obtains a least-squares problem for the shapeesers
sthat can be solved using Newton or Newton-like techniques.

Note that the solution of (10) is not unique since all funetio
Af(xy) with A € R\{0} possess the same zero contour (1). In
order to avoid this ambiguity, suitable regularizationmsrhave to
be incorporated.

For instance, if additional normal vector information iséable
(that is, if the given data are orientable in the sense thztt paint
can be equipped with a normal vector), then one may use ffois in
mation to define additional terms in the objective functioatimea-
sure the deviation between the given normals and the rea| esae
[16]. Otherwise one may use data-dependent regulariz&tioc:
tionals as in [30], or one may simply constrain the valuesoofies
coefficients, such as the constant term [22]. In additiomriter
to avoid unwanted oscillations, one may add regularizatéoms
which are based on the thin plate energy, see [16].

2.3 Algebraic distance minimization

A point x lies on an implicitly defined surface if its algebraic dis-
tance to the surface is zero, i.&(x) = 0. For points in the vicinity
of the surface the function value is also expected to be ¢tozero.
This gives raise to the idea of using

<

|fs(pj)[? — min,
1 S

(11

J

which minimizes the squared algebraic distances to all plaitas.

Clearly, this problem has the trivial solutidig(x) = 0 which is
not useful. Again, additional constraints have to be intici in
order to exclude this unwanted solution, see the discussidine
previous section and Section 4.1.

2.4 Surface fitting via an evolution process

In the case of curves, [5] proposed a geometrically motil/aie-
proach to the fitting problem, which can be extended to sasfac
The approximation process is interpreted as a continucnlsitéan
process that drives an initial surface towards the targhtchwvis
specified by the data points. In particular, the closesttpaifthe
data points on the curve are attracted by the associategdiats.

Assuming that the shape parametedepend on a time—like pa-
rametett, the normal velocity of a point on the surface is

v = DXfST fs=

e

_ Okfd
[[Ox fs

OsfsS, (12)
wheresis the time derivative of. The velocity of the closest points
in normal direction shall be equal to their distance to tha gaint.
As this requirement cannot be fulfilled for all points sinauleously,
we formulate this as the least squares problem

(R} —vMnj)? — min.

13)

M=

J

The shape parametes’s = s(t + h) for the updated surface can now
be found via an explicit Euler stegf = s+hSwhere O<h< 1is
a given step size.

Again, in order to avoid a convergence to the trivial solutig=
0, suitable regularization terms have to be added. SeedBettl
for a detailed discussion.

2.5 Computation of closest points

Note that for both, the direct distance minimization andetelu-
tion approach, the closest point of each data point has toire c
puted. See [1] for a robust method for closest point comymrtat
Although the computation of a single closest point requoely
the solution of a non-linear system of two or three unknovths,
overall effort may be quite substantial.

First, the systems are in general non-linear and can notlbedso
directly. Second, the number of data points can be quite, lzigt
the closest points need to be computed in each step of tlagiveer
method and in each time-step of the evolution process.

Consequently, it is desirable to avoid te computation ofetd
points, and this will be achieved by the use of point—baseuicap
imation techniques.

3 EXTENSION TO GENERALIZATION NORM -LIKE FUNCTIONS

We generalize the direct and the algebraic distance miaitioiz
from the last section to the case of general norm-like fonstiof
the residuals. These general functions include approximstof
the ¢, and thels, norm of the vector of residuals. They are particu-
larly well suited for data containing outliers, and for Highccurate
date data, respectively.

3.1 Generalized direct distance minimization
3.1.1 The generalized fitting problem and norm-like func-
tions

We extend the exact geometric distance minimization byidens
ing the objective function

M

F =3 N(Ip; —pS]) — min
=1

subject tofs(p§) = 0.

(14)

(15)

The functionN(x) replaces the usuap norm. It is assumed to
satisfy the following definition of a norm-like function (di3]):

Definition 3 A %2 functionN(x) : Rt — R* is said to benorm-
like if there existss € R such that the derivative satisfies

N'(x) =xw(x) for xe& (0,¢] (16)



where the associateekight function w(x) is positive. If the weight
functionw(x) can smoothly be extended such thdk)) : [0,€] —
[c,C] with c,C € RT, then we will call itpositive andbounded

The norm-like functions

N(x) = xP 17
are associated with the weight functions
w(x) = pxP—2. (18)

For 1< p < 2, the weight functions are positive, but not bounded.
In the casep > 2 the weight functions are bounded but not positive.

For p = 2 the weight function is both, positive and bounded.
The norm-like function

N(x) = 1—exp(—x?) (19)
has the weight function
w(x) = 2exg—x?) (20)

and can be used as an alternative todhaorm. The weight func-
tion is positive and bounded.

3.1.2 A Gauss—Newton—-type method

In order to cope with the non-linearity of (14), we apply arat
tive technique, more precisely a Gauss-Newton-type metGod-
sequently, we need the gradient and the Hessian of the nigiect
function. First we consider the gradient

M T

(IR} ) 0,
= 2 N UR Dy sk
M T

R C

The gradientl:ls(—p]@) can be computed from the condition

fs(p]@) = 0, which implies
Osfs(p§) + Ox fs(p§) Osp§ = (21)
and hence
Osfs() | Dis(p)) OepS = 0 22)
1Oxfs(P)I - 1Oxfs(p (J:)H !

Note that for a regular surface point, i€y fs(p C) # 0, the residual
Rj is parallel to the gradierifl fs(p ). Consequently, we have that

T
HS%HSIQH(DMS(D,) j) = |F;—jj|. (23)
Combining (22) and (23) yields
T (o
HR Ril Os(— p?) %S|gdmxfs( §IR})- (24)
Summing up, the gradient of the objective function is
M Osfs(pf)
DFfZWH iDIRj I r=—7err sign(Dx fs(PHR;j)  (25)

Bx (P

Note that the functiorfs and its gradient are evaluated at the point
p]@. We keep this fact in mind and suppress the arguments from now
on. In particular, we use the abbreviation

=W([[Rj])- (26)
In this sense the Hessian is
HE = O(0OF ") (27)
N
Osf
_ V\/ ) S slis
2 IR G, Tkl
Osfy  Osfs
TWjT=—Tr
[EANESA]
OsOsfs  Osfg Ox fsOsOx fs
+Wj||R; -
RIGE e ™ e )

The computation of the exact Hessian (27) might be very gastl
even impossible, if no second order derivatives are aveilalbor
this reason — adopting the paradigm of Gauss—Newton methods
we consider a simplified Hessian, where the first and the &b
the expansion (27) are omitted,

Dsfs
AR

Mo Osfg

HE=S w
=3

The following result justifies the choice of this simplifitat.

(28)

Proposition 4 Let s be a minimizer of (14) such thefg(pj) =0
and||Oxfs(p;)|| > O for all data pointp;. Assume thafs(x) € %2
is bounded for alk € Q ¢ R? and thatw is a positive and bounded
weight function. Then

Iim,H,: = Hé.
S-S

Proof: First we note that the boundednessfgfx) implies that
the derivatives offs(x) of all orders are bounded as well. Now we
consider the three terms in (27) separately. For the firgh tee
obtain

Osfy  Osfs
([0 fs| 11 Ex sl

\ iRy 10l
- ! [| Ox fs|?

T < W R} H

ConsequentlyT; vanishes in the limit a§R;|| — O for s— ssince
w is bounded and|Cx fs(p;)| > 0. The third part can be bounded
by

[[0sDsfs| T, | Ex sl
T3 < |wj||IRj|| (== + || Osf OsOx fs||)-
3 < Wil IR (T 2 + 115881l 1 % 73 1Sl
Again, this part vanishes due to the boundedness of allvedol
derivatives and| Oy fs|| > 0. O

Summing up, the simplified and the exact Hessian coincide in
the limit of a zero-residual case.
Now we use the simplified Hessian in order to build the system
HiAs+OF " =0 (29)
which leads to

M Osfd Osfs

Wj—— ———— 30
2" TEicts] Tl 30

+ZWJH IHHD fHSIQn(Dxfs ):0



3.1.3 Relation to surface evolution

As all functions and gradients are evaluated at points ofstire
face, we will refer to (30) as theurface—based Gauss-Newton-type
methodor minimizing general functions of the residuals in theecas
of implicitly defined surfaces.

Proposition 5 The surface—based Gauss-Newton-type method in
the sense of (30) gives exactly the same system of equatias a
weighted version of the surface evolution (13).

Proof. The system (30) can be interpreted as the minimum con-

dition of
M T T )2
Dxfs Dsfs DXfS .
Wi R As — min.
gl ) (( ! [l Ox fsl| | Tx fs|l [|0x fs|| As
With the setting
n_ Oxfd Osfs 5
([Ox fsl| 1| Ex fsl
and
i Oxfg
S
we get
M
S wi((Rj—v") 'nj)? — min, (31)
=1

which is the weighted version of equation (13) that govehnessur-
face evolution. O

Note that the weights in (31) depend on the residuals. He31de (
cannot be minimized directly. Most often, such problemssaieed
via re-weighting, i.e. during the iteration process theghts are
computed from the residuals of the previous step. Thusaceyd
the usuall, norm by a general norm like functiad(x) increases
the computational costs only marginally. The additionédrefies
solely in the computation of the additional weights thatéht be
incorporated.

In the statistics community, this weighting technique i®\Wkn
as Iteratively-Reweighted Least-Squares (IRLS), seel[1B,Also
[30] has used this (iterative) re-weighting procedure iteorto re-
fine the result obtained from the (direct) eigenvector fitligpto
the algebraic distances.

3.2 Minimizing an approximate distance

3.2.1 The generalized fitting problem for Sampson dis-
tances

As pointed out in Section 2.5, the closest point computaf@n
methods relying on the exact distance can be quite costlis i$h
particularly true as it may be needed many times during tloéuev
tion / iteration process.

For this reason we consider an approximation instead ofithe e
act geometric distance. In the following we discuss the tithe
Sampson distance [25], which is also known as Taubin distanc
[30]. Itis the gradient—weighted algebraic error,

[fs(pj)l
1Oxf(pII

With this, the objective function for exact distance mirgation
transforms into

ds= (32)

F_EN ‘fspJ)| )

— min.
= I\Dxfs pj)ll

(33)

In contrast to the direct distance minimization, the grattieand
functions are now evaluated at the data points.

3.2.2 A Gauss—Newton—-type method
Again we skip the arguments in the following discussion. §ree
dient of (33) is

M

0OF = Z |f5‘
=

[[Bxfs

| fS| |:|>( fSDSDX fS
[[Ox fs]3

sign(fs)UOsfs B

N/
( =

XN ) (34

The second term vanishes for zero-residual problems. Oit
yields an approximate gradient,

M ‘fS| fSDSfS
OF =S w : 35
PR IR AN RN 39
The Hessian of (33) is
He = O(OF* ") =
% fsOsfs (sigr‘(fS)DSfS_\fS|DXfSDSDXfS)
v [[0x fsl|2 ([Ox fsll [|Ox fsl2
T
W] Dsfs Dsfs
(IO fs| 115x |
D5D5f5 2D5f5D5D)(fS
+wi f — .
R EN AT TR A

Again, we consider a simplified version of the exact Hessian:

M

=Sw
2

Proposition 6 Lets be a minimizer of(33) such that §(p;) =0
and||Ox fs(pj)|| > 0. Assume thatsfx) is bounded for alk € Q C
R? and that w is a positive and bounded weight function. Then

Osfd  Osfs

HE i
F AR A

Iim_H,: = Hé.
5SS

The proof is similar to the one of Proposition 4.
Now we can formulate the system for the update ve&isor

HEAs+OF*T =0
which leads to
M T M T
DSfS Dsfs fSDst
Wi + ) Wi =0 36
PR R A NN A LAY TR AT (36)

Note that equation (36) has the same shape as (30). Newe=shel
the difference is significant. No closest point computatsomeeded
since all functions and derivatives are evaluated at the paints.
Therefore we call (36)lata—based Gauss-Newton-type method

Figure 1 shows a first example of a data—based Gauss—Newton—
type method forl, approximation. We will see shortly that it is
equivalent to an evolution process.

3.2.3 Relation to surface evolution

Now we can proceed similar to Proposition 5 and obtain thevol
ing result.

Proposition 7 The data—based Gauss-Newton-type method (36) is
equivalent to a weighted evolution, where the error distarare
measured with the Sampson distance and the velocities plieép

at the data points.
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Figure 1: Initial value (left), an intermediate step (center) and the final result (right) of a data—based Gauss—Newton—-type method (or equivalently:

of an evolution process) for {,—approximation.

Proof. Formulating a weighted evolution according to (13),
where the residuals are computed via the Sampson distaetds y

DX fs fs

M
wi | ( +
2 i\ T2

J

DX fSDS fs .

9 Ox fg
(IO fsl2

[[Ox fs

2
) —min.  (37)

The necessary condition for a stationary point of this mination
problem is now given by (36) where we renarkeinto s. |

4 DISCUSSION AND EXAMPLES

We compare direct methods and iterative (evolution-basseth-
ods and describe the use of regularization by the distaridecfia-
straint. Next we analyze the differences between surfasedand
data—based methods. Finally we address the use of genena-no
like functions.

4.1 Direct methods vs. iterative methods and evolution,
regularization by distance field constraint

Many direct techniques, such as Taubin’s method [30], pietihe
result after a single step (though an iterative method mayeleeed
in order to solve the generalized eigenvalue problem). @rotie
hand this seems to be an advantage, since no iterationsenedcth
no convergence analysis is needed. On the other hand, ance-th
sult is computed it can no longer be influenced. Iterativehoes
provide the flexibility to adjust certain parameters — sushegu-
larization parameters — during the approximation.

An example — which compares Taubin’s method and-aap-
proximation by evolution —is shown in Figure 2. It can be st
the latter technique gives the correct result, while Tagtinhas
some problems.

The interpretation of an iteration as discrete steps of sirmoous
evolution offers even more flexibility. This is especialtye for the
choice of the regularization parameters.

We use the technique dfstance field constraintvhich was pro-
posed in [37]. As the underlying idea, in each step, the leeel
function is to be pushed towards a signed distance funcfidnis
can be achieved by adding the term

[ (G0l + 00|~ D20 —min - (38)
to the objective function.

The interpretation of this regularization term is as followif
the norm of the gradient in a point equals 1 then its time déxig
is zero, hence it shall remain unchanged. Otherwise the @brm
the gradient is modified such that it gets closer to 1. Cletnity
condition avoids the zero solution for the level set functio

Since the integration over the domain of interest might ba-co
plicated, we adopt the following approach. We discretiZ®) (3y
applying it to a number of pointg in the domain of interest. This
leads to

3 (S0 00+ I fo)| ~1)% = i, (39)
I
Theoretically, the distance field constraint can be impdsedvery
dense grid of points in the domain of interest. However, & uni
gradient field exists only in some neighborhood of the zeraaar,
bounded by the evolute of the curve or by the focal surfacekenf
surface.

Since this neighborhood is unknown we use the followingtstra
egy. We sample a number of points on a regular grid and choose
those points that are close to the curve or surface. In oodavdid
the time consuming distance computation we allow all poiné
have a small Sampson distance or alternatively, a smalllabso
function value.

4.2 Surface—based evolution vs. data—based iteration
or evolution

As shown earlier, the Gauss-Newton approach to exact distan
minimization led to the surface—based evolution process.th@
other hand, the approximate distance minimization (basethe
Sampson distance) can be interpreted as a data—based@vphat
cess. Figure 3 shows a comparison of the two evolution method

In the first (surface—based) approach, the velocities édodt-
rows) are directly prescribed at the closest points whietoh the
surface. Thus the closest points — and consequently the ¢sou-
face f = 0 — is pushed towards the data points. The magnitude of
the movement is derived from the Euclidean distance fromta da
point to its associated closest point.

Using the data—based approach, the velocities are applitzt t
data points. The geometric interpretation is now slightffedent.
We do not move the surface directly, but instead the forcesps
plied to a certain level set surfade= c that passes through the
data point. The magnitude of the velocity is given by the Samp
son distance from the data point to the surface. In the skbtde
velocities are represented by the dashed arrows.

As an obvious difference between the data—based and the
surface—based evolution, no closest points are needetiddirst
technique. When considering the computational costs, ishis
powerful argument to favor the approximate distance mipami
tion. Moreover, this method can handle a specific class afltogy
changes more easily as demonstrated in the next examplé vghic
shown in Figure 4.



0 1 2 3 4 5
@ (b)

Pc

Figure 2: The figures show 50 points which where sampled from a parametric curve and per-

turbed with randomly generated error. The left picture (a) shows an /3 fit obtained with the Figure 3: Comparison of data—based and
data—based evolution technique combined with the regularization technique of distance field surface—based evolution. Velocities at data
constraint, see text for details. In the second picture (b), the same point cloud is approximated points are shown as dashed arrows. Velocity
with Taubin’s method. at surface points are shown as dotted arrows.

3 2 1 0 1 2
@ (b) © (d

Figure 4: We consider a point cloud that consists of two nested loops. As an initial value we choose a closed curve that contains all data points.
During the evolution process for ¢» approximation of the Sampson distances, the curve shrinks until it matches the outer part of the points (b).
Simultaneously, a second branch of the curve emerges inside the outer loop, which fits itself to the second part of the point cloud (c).

On the other hand, the surface—based technique act dittly approximated using th& norm.
the true geometric distance errors, and not on an approximat
Consequently, one may expect that the results are morélelia 4.3 Robust fitting via general norm-like functions
The choice of the most appropriate method depends on thizappl Finally we demonstrate the advantages of using general-Hiken
tion background. functions.

Following our experiences, the data—based method is able to Figure 5 compares the results of data—bagednd ¢, approxi-
cope with such situations as in Figure 4 better than the s&#fa  mation, where one of the data has been moved away, theredtty cre
based approach. Using the latter method, the initial sartam- ing an outlier.
verges in the beginning towards the outer loop as expected. B The approximate/; approximation (which uses the norm like
then it does not stop at the boundary but is pulled inside thetp function (19)) simply ignores the outlier, while the resofltthe ¢,
cloud as it is attracted be the inner points too. approximation has additional near—singular points. Thisfiems

The data—based method seems to be more appropriate to deajhe theoretically expected higher robustnesgofipproximation
with this kind of topology changes. However, this flexilyiltauses with respect to outliers.

also problems, since unwanted branches may appear dueileyoh Finally we present a comparison of an approxinfat@n/y, and

lution. an approximaté. fit, see Figure 7. While the first one uses again
Summing up, for simple shapes one may choose the surface—the weight function which is obtained from (19), the last aises

based evolution since it is not so vulnerable to unwantedltgy {p approximation for a relatively large value pf

changes. If one needs more flexibility in order to fit compkch Starting from the initial position shown in the top left cernwe

shapes, the data—based evolution is more appropriate. riéuas obtain three different approximations. The figure also shte

to use more rigorous regularization techniques in ordeutrantee residual vectors.

a stable evolution. The norm of the residuals is shown in the three plots on the-+ig
The application of the data—based technique to spatial idata hand side. One may clearly see that the approximatapproxi-

shown in Figure 6. A point cloud sampled from two spheres was mation produces the smallest maximum distance error (0.8.82
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Figure 5: Approximation of a data set with an outlier, via data—based ¢, evolution (a) and via data—based approximate ¢ evolution (b).

initial position after 4 steps

after 8 steps after 25 steps

-2 1 -2 1
2 2

Figure 6: Step wise ¢, approximation of 280 points sampled from two
spheres with additional random error of 0.1.

and 0.62 for the» and the approximaté approximation).

On the other hand, one of the data points can again be seen as an

outlier, and the approximatg ignores this point. More precisely,
if the sum of the residuals can be decreased at the expense of o
of them, then thé; approximation will do it.

Figure 8 shows the same effect for spatial data, sampled &rom
sphere. Again one can see the approximations obtained iffith-d
ent norm like functions along with the different residuaiste 141
data points.

Summing up by using the various approximation methods, dif-
ferent assumptions or experiences concerning the erribdison
can be taken into account.

5 CONCLUSION

We investigated several methods for fitting implicit curgesfaces

to a given data set. More precisely, we generalized the @aass-
Newton technique for a least-squares approximation byaoamud
the ¢> norm of the vector of residuals vector by a norm-like func-
tion N(x). In particular, this norm like function can be chosen as
an approximation of1 or ¢». Each choice provides certain advan-
tages, depending on the error distribution.

All methods can be equipped with two equivalent interpretet
One may either see them as discrete iterative methods, oohs e
tion processes, where the evolution of a shape is governadify
ferential equation. We prefer the latter framework, addves to in-
troduce additional constraints, such as the distance faidtraint
(see Section 4.1 and [35]) as well as range, volume and ciipvex
constraints, see [11].

If the residuals are chosen to be the geometric distances fro
the data point to the curve, then one obtains a weightedoredi
the evolution method introduced by [5], but now for the caée o
implicitly defined curves and surfaces. In this setting thaltion
is obtained by assigning to certain curve points a givenoislo
The curve points are simply the closest points on the curdetlzn
velocities are obtained from the distances from these pairtheir
associated data points. This technique has been calledirdwt
approach.

Alternatively, one can replace the exact geometric digtarny
some approximate distance. When choosing the Sampsonaista
the obtained Gauss-Newton-type technique yields againthade
that can be interpreted as an evolution. But in contrastéagtie-
vious method the velocities are assigned at the data paintsthe
method has been called tbata—basedne.
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in the error plots are different.
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Clearly, the latter method does not need closest point ctanpu
tions, which is an advantage. On the other hand, one may fere m
comfortable with the the direct method, as it works with tkalr
distances, and not with approximations.

The aim of this paper was to analyze the different methods fro
a theoretical point of view, and to illustrate the theory byea
simple but representative examples. Future work will beotil to
the practical exploitation of these observations in a fraor& for
3D object reconstruction, similar to the results in [36].
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