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Robust Fitting of Parametric Curves
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We consider the problem of fitting a parametric curve to amigeint cloud (e.g., measurement data). Least-squares ap-
proximation, i.e., minimization of thé, norm of residuals (the Euclidean distances to the data$)oistthe most common
approach. This is due to its computational simplicity [1]owever, in the case of data that is affected by noise or amtai
outliers, this is not always the best choice, and other duarations, such as generg norms have been considered [2]. We
describe an extension of the least-squares approach wdads to Gauss-Newton-type methods for minimizing otheremo
general functions of the residuals, without increasingcttraputational costs significantly.
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1 Introduction

Fitting a parametric curve or surface to a given data setimddmental problem in many fields in research and engirgerin
Most approaches are based on least-squares approximakimi minimizes the squares of (possibly orthogonal) dists
from the data points to the curve resp. surface [1, 3, 4, 5]s Tchnique is particularly well suited for parametric\es
and surface that depend linearly on their shape parametang¢l points), as it is the case for polynomial spline @srand
surfaces. In order to deal with orthogonal distance regrasseveral variants of Gauss-Newton-type techniques baen
proposed in order to address the non-linearity of the proth&.

However, the family of least-squares methods requires danental assumption on the data: The errors in the data shall
follow a Gaussian distribution. In many applications, tagsumption cannot be guaranteed. For instance, in thenoeese
of outliers, the use of least-squares approximation isusdifijed, and the minimization of other functions of the desils is
preferable. In robust statistics, this is often achievedt@ratively re-weighted least-squares (IRLS) [7]. Irsthariant of the
ordinary least-squares method, each summand is weighteawesidual-dependent coefficient.

2 A Gauss-Newton-type approach to curve fitting

Assume that a sequence of poifil3; } -1y with associated parameter valugge.qg., equidistant or chordal parameteriza-
tion, see [1]) is given. We want to fit a cureg(t) to the data. The parametee I = [a,b] C R shall be the curve parameter
and the vectos shall be the union of all shape parameters that describautive.cln the case of spline curves [1], this vector
contains all control points and possibly even the inner &mt#scribing the curve. We consider the followigeneralized
fitting problem:
M
F(S):ZN(HCs(fj)—Pj||)—>msiH- (1)
j=1
This generalizes the least-squares fit, wh€(e) = 2. The class of admissible functiongis described in the following
Definition. A C? function N (z) : R — R is said to benorm-likeif there exists € R* such that the derivative satisfies
N'(z) =zw(x) for z € (0,€ (2)
where the associatedeight functionw(z) is positive. If the weight functionv(z) can smoothly be extended such that
w: [0,e] = [¢, C] with ¢, C € RT, then we will call itpositiveandbounded

Due to the non-linear nature of (1), iterative techniqueshsas Newton’s method have to be used. We propose a Gauss-
Newton-type approach where the exact Hesgfanof Eq. (1) is replaced by an approximatiéf}.. This leads to the system

HpAs = VF ®3)
which is solved to compute the update of the shape paramseters + As. The gradient and the Hessian of (1) are
< T - wj T T T T
VE =3 wlR DRI VR, = 30 p L VRIRR VR, + 0, VR VR, + 0,V (VR]) o Ry, (4
j=1 =1

o (i) (i47)

* Corresponding author: e-maihartin.aigner@jku.at, Phone: +43 732 2468 9159, Fax: +43 732 2468 29162
** e-mail: bert.juettler@jku.at.

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 2

Fig. 1 A ‘3’-shaped point cloud was sam-
pled from a parametric curve. After in-
troducing an artificial error at one point,
we approximated the points using three dif-
ferent norm-like functions (shown below).
The first and the last norm-like function
serve as an approximafe and/ fit. The
second one is the exaés fit. The ini-
tial curve (leftmost plot) was chosen as a
1] . 1] 1] | straight line. The first approximation ig-

1 ° 1 1 il nores the outlier, while the third approxima-
tion yields the smallest maximum distance
error.
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N(z) =1—exp(z2) N(z) =22 N(z) = exp(z?) — 1

whereR; denotes the residual at the current positi6rand where we use the abbreviatians = w(||R;||) andw) =
w'(||R;]). The second order derivati\)@(VRjT) is a tensor, and is to be interpreted in the following way:

d
VR oR = LR R ©

i=1

In order to define? ., we omit the first(i) and last(iii) partin (4).

3 Discussion and examples

The system (3) of equations, which is obtained via (4) andig5yentical to the linear system obtained from the weidghte
version of least-squares approximation. Each summandIifptied with a suitable weighty; = w(||R;||). This weight can
directly be computed from the norm-like functidf(z) via (2), which is evaluated at the solution of the previoesdtion.

In the field of statistics, the latter approach is calledaitieely re-weighted least-squares (IRLS), see [7]. Theneotion
between IRLS and Newton’s method was already establishezkftain special cases of fitting problems. Watson [8] inves
tigated the use of, norms for approximation. In [9] it is shown that a Gauss-Newtype method for a general norm-like
function of non-linear, scalar residuals leads to an IRL&bfEm. We extend these earlier results to the case of veatoed
residuals, which occur naturally in the case of parametriee and surface fitting.

In the limit of zero-residual problems, the exdé and the approximate Hessid;, can be shown to coincide [10].
Hence we obtain quadratic convergence rates in this paticase, as for the usual Gauss-Newton method for leastras|u
approximation. In the general case, it can still be shown tthe new method produces a direction of descent. Hence, by
incorporating a suitable stepsize control, the convergémeards a local minimum can be guaranteed.

An example is shown in Figure 1.

4 Conclusion

The majority of the existing curve and surface fitting methoaly on the least-squares approach which is, howeverjtabtai
for data contaminated by non—Gaussian noise. We genes #izdechnique by replacing the uséahorm by a general norm-
like function. Using a Gauss-Newton-type approach, thaltieg method can be interpreted as an iteratively re-wteigh
version of the usual least-squares approximation, whiehvigll-known technique from robust statistics. Though enésd
solely for the case of curves, the ideas described in thisipean be applied to parametric surfaces, too.
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