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Robust Fitting of Parametric Curves
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1 Johannes Kepler University Linz, Austria

We consider the problem of fitting a parametric curve to a given point cloud (e.g., measurement data). Least-squares ap-
proximation, i.e., minimization of theℓ2 norm of residuals (the Euclidean distances to the data points), is the most common
approach. This is due to its computational simplicity [1]. However, in the case of data that is affected by noise or contains
outliers, this is not always the best choice, and other errorfunctions, such as generalℓp norms have been considered [2]. We
describe an extension of the least-squares approach which leads to Gauss-Newton-type methods for minimizing other, more
general functions of the residuals, without increasing thecomputational costs significantly.
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1 Introduction

Fitting a parametric curve or surface to a given data set is a fundamental problem in many fields in research and engineering.
Most approaches are based on least-squares approximation,which minimizes the squares of (possibly orthogonal) distances
from the data points to the curve resp. surface [1, 3, 4, 5]. This technique is particularly well suited for parametric curves
and surface that depend linearly on their shape parameters (control points), as it is the case for polynomial spline curves and
surfaces. In order to deal with orthogonal distance regression, several variants of Gauss-Newton-type techniques have been
proposed in order to address the non-linearity of the problem [6].

However, the family of least-squares methods requires a fundamental assumption on the data: The errors in the data shall
follow a Gaussian distribution. In many applications, thisassumption cannot be guaranteed. For instance, in the presence
of outliers, the use of least-squares approximation is not justified, and the minimization of other functions of the residuals is
preferable. In robust statistics, this is often achieved via iteratively re-weighted least-squares (IRLS) [7]. In this variant of the
ordinary least-squares method, each summand is weighted with a residual-dependent coefficient.

2 A Gauss-Newton-type approach to curve fitting

Assume that a sequence of points{Pj}j=1..N with associated parameter valuestj (e.g., equidistant or chordal parameteriza-
tion, see [1]) is given. We want to fit a curvecs(t) to the data. The parametert ∈ I = [a, b] ⊂ R shall be the curve parameter
and the vectors shall be the union of all shape parameters that describe the curve. In the case of spline curves [1], this vector
contains all control points and possibly even the inner knots describing the curve. We consider the followinggeneralized
fitting problem:

F (s) =

M∑

j=1

N(‖cs(tj) − Pj‖) → min
s

. (1)

This generalizes the least-squares fit, whereN(x) = x2. The class of admissible functionsN is described in the following

Definition. A C2 functionN(x) : R
+ → R

+ is said to benorm-likeif there existsǫ ∈ R
+ such that the derivative satisfies

N ′(x) = xw(x) for x ∈ (0, ǫ] (2)

where the associatedweight functionw(x) is positive. If the weight functionw(x) can smoothly be extended such that
w : [0, ε] → [c, C] with c, C ∈ R

+, then we will call itpositiveandbounded.

Due to the non-linear nature of (1), iterative techniques such as Newton’s method have to be used. We propose a Gauss-
Newton-type approach where the exact HessianHF of Eq. (1) is replaced by an approximationH∗

F . This leads to the system

H∗

F ∆s = ∇F (3)

which is solved to compute the update of the shape parameterss → s + ∆s. The gradient and the Hessian of (1) are

∇F =

M∑

j=1

w(‖Rj‖)R
⊤

j ∇Rj HF =

M∑

j=1

w′

j

‖Rj‖
∇R

⊤

j RjR
⊤

j ∇Rj

︸ ︷︷ ︸

(i)

+ wj∇R
⊤

j ∇Rj
︸ ︷︷ ︸

(ii)

+ wj∇(∇R
⊤

j ) ◦ Rj
︸ ︷︷ ︸

(iii)

, (4)
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Fig. 1 A ‘3’-shaped point cloud was sam-
pled from a parametric curve. After in-
troducing an artificial error at one point,
we approximated the points using three dif-
ferent norm-like functions (shown below).
The first and the last norm-like function
serve as an approximateℓ1 andℓ∞ fit. The
second one is the exactℓ2 fit. The ini-
tial curve (leftmost plot) was chosen as a
straight line. The first approximation ig-
nores the outlier, while the third approxima-
tion yields the smallest maximum distance
error.

N(x) = 1 − exp(x−2) N(x) = x
2

N(x) = exp(x2) − 1

whereRj denotes the residual at the current positions
c and where we use the abbreviationswj = w(‖Rj‖) andw′

j =

w′(‖Rj‖). The second order derivative∇(∇R
⊤

j ) is a tensor, and is to be interpreted in the following way:

[
∇(∇R

⊤

j ) ◦ Rj

]

l,k
=

d∑

i=1

[
∂

∂sl

∂

∂sk

[Rj ]i

]

[Rj ]i. (5)

In order to defineH∗

F , we omit the first(i) and last(iii) part in (4).

3 Discussion and examples

The system (3) of equations, which is obtained via (4) and (5), is identical to the linear system obtained from the weighted
version of least-squares approximation. Each summand is multiplied with a suitable weightwj = w(‖Rj‖). This weight can
directly be computed from the norm-like functionN(x) via (2), which is evaluated at the solution of the previous iteration.

In the field of statistics, the latter approach is called iteratively re-weighted least-squares (IRLS), see [7]. The connection
between IRLS and Newton’s method was already established for certain special cases of fitting problems. Watson [8] inves-
tigated the use ofℓp norms for approximation. In [9] it is shown that a Gauss-Newton-type method for a general norm–like
function of non-linear, scalar residuals leads to an IRLS problem. We extend these earlier results to the case of vector-valued
residuals, which occur naturally in the case of parametric curve and surface fitting.

In the limit of zero-residual problems, the exactHF and the approximate HessianH∗

F can be shown to coincide [10].
Hence we obtain quadratic convergence rates in this particular case, as for the usual Gauss-Newton method for least-squares
approximation. In the general case, it can still be shown that the new method produces a direction of descent. Hence, by
incorporating a suitable stepsize control, the convergence towards a local minimum can be guaranteed.

An example is shown in Figure 1.

4 Conclusion

The majority of the existing curve and surface fitting methods rely on the least-squares approach which is, however, unsuitable
for data contaminated by non–Gaussian noise. We generalizes this technique by replacing the usualℓ2 norm by a general norm-
like function. Using a Gauss-Newton-type approach, the resulting method can be interpreted as an iteratively re-weighted
version of the usual least-squares approximation, which isa well-known technique from robust statistics. Though presented
solely for the case of curves, the ideas described in this paper can be applied to parametric surfaces, too.
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