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Abstract

Given a closed triangular mesh, we construct a smooth free—-form surface which is
described as a collection of rational tensor—product and triangular surface patches.
The surface is obtained by a special manifold surface construction, which proceeds
by blending together geometry functions for each vertex. The transition functions
between the charts, which are associated with the vertices of the mesh, are obtained
via subchart parameterization.

Keywords. Manifold surface, geometric continuity, smooth free-form rational sur-
face, arbitrary topological genus.

1 Introduction

Methods for representing closed surfaces of arbitrary topology by surfaces with
explicitly available parametric representations (i.e., no subdivision surfaces)
are a classical topic in Computer Aided Geometric Design. The existing tech-
niques can roughly be organized in two groups: patch—based methods and
manifold-type constructions.

The patch—based methods exploit the concept of geometric continuity in order
to build smooth surfaces by joining polynomial or rational surface patches
with various degrees of geometric continuity. A survey of this concept — with
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a particular focus on constructive realizations — has been given by Peters
(2002a). Here we list only a few representative references.

Reif (1998) introduced topologically unrestricted rational B-splines (TURBS)
which use singularly parameterized surfaces in order to deal with situations
where three or more than four quadrilateral surface patches meet in a com-
mon point. Prautzsch (1997) avoids the use of singular points by composing
the parameterization of the geometry at extraordinary points with piecewise
polynomial reparameterizations of the parameter domain. Peters (2002b) de-
scribes a construction of curvature continuous free-form surfaces of degree 2
which uses tensor-product patches of degree (3,5), which can be generalized
to a G® construction of degree (s+1,d+2s—2), where d controls the flexibility
at extraordinary points.

The patch—based constructions are able to generate smooth free-form surfaces
of relatively low degree. Typically they require a special treatment for “ex-
traordinary” points, i.e., points where other than four quadrangular or other
than six triangular patches meet.

The manifold—type constructions are based on a different paradigm, which
is taken from differential geometry. The surface is covered with overlapping
charts, and transition functions are defined between them within the over-
lapping regions. The transition functions have to possess the same order of
smoothness as the final surface. Also, the transition functions have to satisfy
the cocycle condition in regions where more than two charts overlap.

As a conceptual advantage, the blending approach provides a natural way for
splitting the modeling problem into smaller and simpler subproblems. The
manifold framework makes it particularly simple to define auxiliary linear
spaces of scalar and vector—valued fields on the surface, since the construction
works independently of the dimension of the embedding space. This is useful
for surface fitting and for applications involving partial differential equations
on surfaces.

If the charts and the transition functions are known, then two different tech-
niques can be used to define the manifold. The first one relies on the control
point paradigm, by defining locally supported blending functions on the mani-
fold. The second is a blending approach, which proceeds by defining geometry
functions for each chart and blending them together via influence functions.

Grimm and Hughes (1995) were the first who presented a constructive mani-
fold surface construction. The desired surface is specified using a sketch mesh
where all vertices have valence four. Charts are created for each element of
the mesh (vertices, edges, faces) and the transition functions are created by
blending projective mappings. The construction is based on the control point
paradigm.



An alternative manifold construction has been presented by Cotrina-Navau
and Pla-Garcia (2000). They first use subdivision to isolate the extraordi-
nary vertices. The charts are created via the characteristic map of the vertex.
Cotrina-Navau et al. (2002) present a theoretical approach and describe sev-
eral realizations of a generic scheme.

Ying and Zorin (2004) presented a novel construction for creating manifold
surfaces from quadrangular meshes. The charts, which are associated with the
vertices of the mesh, are special n-gons with curved boundaries. The tran-
sition functions are chosen from a particular class of holomorphic functions
(involving complex-valued roots) which have the property to contain both a
function and its inverse function. The manifold surface is then obtained via
blending, yielding a C* smooth surface with explicit non-singular param-
eterizations. Combined with displacement mappings, Yoon (2006) has used
manifold splines of this type for modeling complex free-form objects.

In an unpublished technical report, Wagner et al. (2003) describe a C? con-
struction with piecewise polynomial patches.

The manifold splines of Gu et al. (2005, 2007) are based on an affine atlas
which is computed from a given triangular mesh. It requires the introduction
of holes in this mesh (and the associated surface), in order to guarantee the
existence of the atlas. The holes are then dealt with by traditional holefilling
techniques.

Another variant of manifold surfaces uses a simple base manifold to parameter-
ize all closed smooth surfaces of a given genus. Any smooth surface with that
genus can then be obtained as an embedding of this base manifold. Wallner
and Pottmann (1997) construct such a base manifold by considering equiva-
lence classes of points in the hyperbolic, elliptic or Euclidean plane with re-
spect to certain discrete subgroups of the corresponding motion group. Grimm
(2002, 2004) describes a construction which is based on embedded manifolds.
Clearly, if this approach is adopted, then modifications of the topological genus
(“adding handles”) imply changes of the parameterization manifold.

This paper presents a construction of rational blending manifolds from a given
triangular mesh. The charts are chosen as circular disks, and they are associ-
ated with the vertices of the mesh. The edges and faces of the mesh correspond
to overlapping regions of two and three charts, respectively. The general layout
is shown in Fig. 1.

We define the transition functions between the charts by parameterizing the
subcharts over common parameter domains. In this way we are not restricted
to special classes of transition functions, such as special holomorphic functions
as used by Ying and Zorin (2004). The manifold surface is obtained following
the blending approach, where the influence functions can be obtained by taking



Fig. 1. A triangular mesh and the associated chart layout. The blue and
red regions correspond to overlapping regions of two and three charts, re-
spectively.
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Fig. 2. A triangular mesh with 136 vertices and 288 faces describing a hollow
cube (left) and the associated C? smooth blending manifold surface (right).
The surface was rendered using 18,144 triangles.

suitable powers of the equation of the unit circle. As a first example, Fig. 2
shows a C? manifold surface describing a hollow cube.

The remainder of this paper is organized as follows. Section 2 introduces the
notion of blending manifolds which are associated with triangular meshes.
Section 3 presents a particular construction for rational blending manifolds.
Section 4 presents several examples obtained from the presented construction
that illustrate the influence of the shape parameters and demonstrate the
smoothness of the surfaces. Finally we conclude this paper.



2 Blending manifolds associated with triangular meshes

Given a triangular mesh, we define the notion of an associated parameterized
atlas. We then use this manifold structure and additional geometry functions
and influence functions for each chart to define a blending manifold surface.
This surface can achieve an arbitrary order of smoothness.

2.1 Charts and subcharts

We consider a given triangular mesh M in R3, where my is the number of
vertices, mp is the number of faces and mpg is the number of edges. Let

V={i:i=1,....,my} (1)

be the set of vertex indices. The mesh is assumed to describe the boundary
of a compact set. The faces and vertices of the mesh are oriented by outward-
pointing normals. We use the mesh M to define the charts and the transition
functions of the manifold. More precisely, we define a chart for each vertexr of
the mesh.

For the i-th vertex of the mesh, we denote the surrounding vertices in counter-
clockwise order by n(i, 1),...,n(i,v(i)), where v(i) is the valence of the vertex.

The second index of n is counted modulo v(7), i.e. n(i, j) = n(i, j + v(7)). For
each vertex, let

N(@) = [n(i, 1), ...,n(0,0()], i€V (2)

be the ordered list of neighboring vertices. In addition to the set V' of vertex
indices, we define the set of edge indices

E={{in(,nr}:ieV,r=1,...,v(1)}. (3)

and the set of face indices

F={{in(,r)n(r+)}:i=1,....my, r=1,...,0(0)}. (4)

Remark 1 Any edge index e € E is a set containing two vertex indices, i.e.,
e = {i,j} = {J,i}. Similarly, any face index f € F' is a set containing three
vertex indices, f = {i,7,k} = {j,k,i} = ... ={k,j,i}.
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Fig. 3. A chart C* with edge subcharts C]’:, C,i, Cli, face subcharts C;ka C,il,
and innermost part CZ. The thick' curve is the union of the three boundary
arcs (C* NCy) U(C;NCL) U(CNC); it is assumed to be a C° smooth
curve.
We define a system of charts C* and subcharts C?,C%, C C* which can be
associated with the given triangular mesh. All charts and subcharts are closed
subsets of R%. The generic layout of subcharts is shown in Fig. 3.

Remark 2 Throughout this paper, C® refers to the order s of smoothness.
We say that a function is C* smooth if it is s-times continuously differentiable.
The symbols C* , Cf and C}, are used to denote the charts and subcharts of
the atlas. As usual, D indicates the closure of a set D C R2.

Definition 3 A set {C?: i € V} of compact, simply connected subsets C* of
R2 with C* smooth boundaries will be called a system of charts associated
with the triangular mesh M. For each chart C* we define v(i) edge sub-
charts C,; , and v(i) face subcharts C; ) .1y, wherer = 1,... v(i).
All edge and face subcharts are quadrangles and triangles with curved edges,
respectively. For any pair of subcharts, the intersection of the interior parts is

empty. Let

C' =0\ ( Cuin YV U Ol nirsn) ®)
) r:l,..,U(’i)

r=1,..,v(¢
be the remaining or innermost part of C"°.

For any r, let k = n(i,r) , Il = n(i,r — 1) and 7 = n(i,r + 1). The edge
subcharts and face subcharts satisfy the following conditions.

(i) The subchart Cy shares one boundary arc with C} and one with C}. The
remaining boundary arc is contained in 0C".
(it) The subchart Cj, shares one boundary arc with Cj,, one with Cy; and one
with C* . The remaining boundary arc is contained in C".
(iii) The union of the three boundary arcs (C' NCE)U (CiNCh)U(CiNCy)
1s a C® smooth curve.
(iv) The sequence of edge and face subcharts



Fig. 4. The boundary conditions for edge subchart parameterizations.
Cn(i,l)’ Cn(i,l),n(i,2)7 Cn(i,2)7 Cn(i,2),n(i,3)7 cr Cn(i,v(i))? n(i,v(2)),n(:,1) (6)

is arranged in counterclockwise order along OC".

The face subcharts are triangular regions that correspond to the overlap of
three charts. The edge subcharts, along with the two neighboring face sub-
charts, define biangular regions that correspond to the overlap of two charts.

2.2 Parameterization of subcharts

We introduce edge subchart parameterizations and face subchart parameter-
izations, which will then be combined in order to define the transition func-
tions. First we define edge subchart parameterizations. Their domain is the
unit square, which will be denoted by O = [0, 1}?. Let

F, = {O}X[O, 1], by = [0, 1]X{O}, b3 = {1}X[O, 1], E, = [0, ]_]X{l} (7)
be the left, lower, right and upper edge of [, respectively.

Definition 4 For each edge e = {i,j} € E of the given triangular mesh we
consider two mappings qbé- 0 — CJ’: and qb{ 0 — CZ] These mappings are
called edge subchart parameterization provided that they are C° smooth,
surjective, orientation preserving (hence also reqular) and satisfy

¢i(E) =CinCt $i(E3) = C: N aC,

, | | | o (8)
Gl (B) =CInaci  and ¢l(Es) = CInCY.

Remark 5 The two conditions (per edge subchart parameterization) imply
that Ey and E, are mapped to the lower and upper boundaries of C’]i» and CY,
as the mappings preserve the orientation.

See Fig. 4 for an illustration of this definition.
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Fig. 5. Boundary conditions for face subchart parameterizations.

Similarly we define face subchart parameterizations. Their domain is the stan-
dard triangle

A={(r,y,2): >0,y>0,2>0, z+y+2z=1}CR*. 9)

Let T1, T; and T3 be the edges of the triangle which are contained in the zx,
xy and yz plane, respectively. The points in the standard triangle correspond
to the barycentric parameters which are used for triangular Bézier patches.

Definition 6 For each face f = {i,j,k} € F of the triangular mesh we
consider three mappings
et N — Clh, ¢l A — C,and ¢F - A — CF. (10)

These mappings are called face subchart parameterizations provided that
they are C* smooth, surjective, orientation preserving (hence also reqular) and
satisfy

L (Ty) = Ci nact, 7(Ty) = CL.NACY, and ¢5(Ty) = CNAC. (11)

Remark 7 Similar to Remark 5, the three conditions imply that the remain-
ing edges are mapped as shown in Fig. 5.

This definition is illustrated by Fig. 5. The lower index of a face subchart
parameterization is considered to be a set—valued one (similar to the case of
edge indices), i.e.,

¢§k = Qﬁffj,k} = Q%k,j} = Qﬁq (12)

In order to keep the notation simple, we omit the brackets in the index.
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Fig. 6. Left: Vertex ¢ with neighbors. Right: The overlapping regions
between the charts C* and C7 and the transition functions ®%
and ®I¢,

2.3 Transition functions and atlas

For any edge e = {i,j} we consider the two neighboring triangular faces
{i,7,k} and {1, j,(} in F', where the vertex i has the ordered neighbors N(i) =
[...,k,7,0,...], see Fig. 6, left. We consider the subcharts C’;, Clij and C’;k of

C* and the subcharts C7, CJ. and €%, of C7 as shown in Fig. 6, right.

Definition 8 The two sets

Oi=CLuCiuCi, cC" and O/ =CluC/uUC) CC? (13)
are called the overlapping regions between the charts C* and C7 in the chart
C' and in the chart C7, respectively. The transition function between C"
and C7 is defined by

( gz o (Wg)_l)(l’) if z€ lij
OV 0; = O] : w d(x) =1 (¢l 0 (¢0))(x) if x€C! (14)
(Gbgk o ( ;k)il)(l‘) if Te€ C;k

The subchart parameterizations gb; and ng;k are said to be valid if all transition
functions ®9 are C* smooth.

Remark 9 By definition, the transition functions are bijective and continu-
ous. In addition, they satisfy the cocycle condition, i.e., ®/* o ®¥ = ¥ In
addition we need to ensure C*-smoothness, in order to make them valid. In
the second part of the paper we describe a way to achieve this. As a necessary
condition for C® smooth transition functions, the union of the three boundary
arcs in condition (iii) of Definition 3 has to be a C® smooth curve, as it is the
image of a circular arc under a C® smooth mapping.



By collecting charts and transition functions we obtain the atlas of the mani-
fold which is associated with the triangular mesh M.

Definition 10 The triplet A = (C, P, Pr), where C' is the set of all charts
C* and

Oy ={¢): {i,j} € E} and ®p = {¢}; : {i,j,k} € F} (15)

are the sets of all edge and all face subchart parameterizations, will be called the
C* smooth parameterized atlas of the manifold, provided that all subchart
parameterizations are valid.

The information about subcharts and transition functions is implicitly con-
tained in the edge and face subchart parameterizations. The charts are consid-
ered to be mutually disjoint sets and they will be thought of as my different
copies of the unit disk.

2.4 Manifold surface by blending

In order to define the spline manifold surface we define — for each chart —
an embedding function, which is called the geometry function. We can then
create blend surfaces that correspond to the overlapping subcharts.

Definition 11 For anyi € V, let g¢ : C* — R? be the associated geometry
function. In addition, consider a scalar—valued function 3¢ : R? — R which
satisfies the following three conditions:

(i) B° is C* smooth,
(ii) B'(x) >0 for x € int C* and
(iii) B'(x) =0 if v € R?\ C".

This function is called an influence function.

Now we are ready to define surface patches which are associated with ver-
tices, edges and faces of the mesh by blending the geometry functions. Their
collection forms the spline manifold surface.

Definition 12 We define patches for each vertex, each edge and each face of
the given mesh.

(1) For any vertex with index i € V', we call the mapping

e CP R 2z gi(a) (16)

10



which is obtained by restricting the geometry function to the innermost
part of the chart the vertex patch associated with the 1—th vertex.
(2) For any edge with indices e = {i,j} € E, let

Y. (B7od)(x) (¢ o d))(x)

€ 0oR: 71— (p,@)€{(5.4),(4:9)} . (17)
Yo (BPogh)(x)
(p,q)e{(l',j),(j,l')}

This parameterization defines the edge patch associated with the edge e.
(3) For any face with indices f = {i,j, k} € F, let

S (Fodh)(2)- (¢ o k) (x)
; ) sy
AN | _ e 18
! ! S (o) 18)

(p,a,r)€{(4,5,k),
(3:k,1),(K.i,5) }

This parameterization defines the face patch associated with the face f.

The collection of vertex, edge and face patches is said to be the blending
manifold surface which is associated with the C* smooth parameterized atlas
A and the geometry and influence functions.

Remark 13 If the subchart parameterizations gb; and gb; i, the influence func-
tions 3° and the geometry functions g* are chosen as rational functions, then
all patches of the blending manifold surfaces are rational, too.

Theorem 14 For any C* smooth parameterized atlas A = (C, ®p, ) with
associated geometry functions g' and influence functions 3¢, we consider the
collection of vertex patches, edge patches and face patches. Then any two neigh-
boring patches meet with geometric continuity of order s in common points,
provided that they are regular there.

For the proof of this theorem it suffices to observe that in a neighborhood of
common points we can parameterize the union of two (or three) patches as a
C’ smooth function over an open subset of one of the charts. Note that the
definition of the parameterized atlas assumes that the transition functions are
C® smooth, hence such a smooth reparameterization can be found.

If the conditions of the theorem are satisfied, then the collection of face, edge
and vertex patches is called a C* smooth blending manifold surface. Note
that — depending on the choice of the geometry functions — the edge, face and
vertex patches may have singular points. For a generic choice of the geometry
functions, these surface patches are all regular.

11



3 Construction of rational blending manifolds

This section describes a construction of a smooth blending manifold surface
from a given triangular mesh. We generate the face and edge subchart param-
eterizations and choose the blending and geometry functions.

3.1 Parameterization of face subcharts

We consider a given triangular mesh M consisting of my vertices and mpg
oriented triangles. In addition, we assume that a normal vector for each vertex
is given. In many cases it can be estimated by fitting a plane to the triangular
fan of the vertex. We assume that the orthogonal projection of the triangular
fan of the vertex into the tangent plane (i.e., the plane through the vertex and
perpendicular to the normal vector) is bijective ! .

All charts C* will be chosen as circular disks with radius 1, centered at the
origin. For each vertex i, we project the triangular fan of the vertex into the
tangent plane of the vertex. The unit circle in the tangent plane is identified
with the boundary C? of the chart, where the z-axis is (e.g.) aligned with
the projection of the edge (i,n(i,1)).

The intersection of the rays spanned by the projection of the edge {i,n(i,7)}
with the unit circle in the tangent plane defines the v(i) auxiliary points p§
on the unit circle, where the lower index is counted modulo v(7), see Fig. 7.
Next we compute the bisectors b’ of the arcs from p to p},,. Finally, a}; ,
is chosen as the point which divides the arc from b’ to bj_; by the ratio 1: 5,
and ajy; is chosen as the point which divides the arc from b’ to b%,; by the
ratio 1 : 5. See Remark 16 for a comment on the choice of this ratio.

L If this assumption is violated, then one can try to make the mesh smoother by
applying a local averaging operator, or one should manually specify the quantities
associated with the vertex.

n(i, j)

n(i,j+1)

Fig. 7. Left: Orthogonal projection of the triangular fan of a vertex into the
tangent plane. Right: The points pé and aé and the layout of the subcharts.

12



Fig. 8. The control points of a face subchart.

Summing up, we obtain 2v(i) points a, ..., aév(i) on the unit circle C*. The
construction ensures that the arc lengths of the boundary arcs of the face and
edge subcharts have approximately the ratio 1:2: 1.

We choose the face subchart parameterization ‘blﬁ(i, i—1)n(ij) B8 & planar rational
Bézier triangle of degree two. The control points are chosen as follows:

_ i i
® by = aj;, boao = ay;_4,

e by satisfies byig - bagg = bi1g - boog = 1, i.e., it is the intersection of the
circle tangents at bsggy and bgsyg,

e by is chosen such that the triangle bogg, bgog, boo2 is equilateral,

e by = %(bozo + booz), bio1 = %(bzoo + booz).

The associated weights are

Wapp = Wo20 = Wop2 = Wo11 = Wio1 = 1,

W110 = COS % z (b020, 0, b200)7
see Figure 8.

Any triangular patch of degree 2 can also be represented as a tensor-product
patch of degree (2,2), where one of the edges collapses into a singular point.
If (u,v,w) are the barycentric parameters of the triangular patch (satisfying
u+ v+ w = 1), then the reparameterization

p: O—=A:(r,s)— (r,(1—=7r)s, (1 =r)(1—y3)) (20)

produces a biquadratic rational tensor-product patch whose edge » = 1 col-
lapses into a singular point.

If the singular point is located at bgyy, then the 3 x 3 control points and
weights of this degenerate patch can be generated simply by applying two-fold
degree elevation to the control point bygg, one-fold degree elevation to the two

13



control points by, by1g with associated weights and zero-fold degree elevation
(i.e. just copying) to the three control points b2, bo11, bogo With associated
weights. Since the last three control points describe a degree—elevated curve of
degree 1 (a line), it is possible to reduce the degree with respect to s by one,
giving a rational tensor-product patch of degree (1,2) with the control points

Co2 = Ci2 = bago, Co1 = bi1g, Coo = bo20, €11 = bio1, €10 = booz, (21)

where the weights are all equal to one, except for wg; = wip.
3.2 Parameterization of edge subcharts

In order to construct the edge subchart parameterizations (25;» and ¢{ , We con-
sider the four neighboring face subchart parameterizations. They are repa-
rameterized as tensor-product patches with singular points at the vertices
that point away from the edge subcharts C’; and CY, see Figure 9, left.

Once the edge subchart parameterizations are known, we have two parameter-
izations of the overlapping regions O; and O/, whose domain is the union of
three (different copies of) unit squares. We choose the edge subchart parame-
terizations gb; and gbf such that these two parameterizations of the overlapping
regions are C® smooth.

More precisely, the edge subchart parameterization ng; (and analogously gbf )
has to satisfy the following two conditions:

e It has a C® smooth joint with the tensor-product patches gb;k o p and gb;] op
along its edges F, and Fs, respectively.
e Its boundary ¢)(Es) is contained in the boundary 9C".

This is achieved with the help of M6bius transformations.

Remark 15 A Mobius transformation is a special mapping of the plane into
itself, where the plane is identified with the complex plane C and closed by
adding a single point oo at infinity. The mapping has the form

az+b

p: CU{oo} - CU{oo}: Sl

(22)

where a,b,c,d € C, ad — bc # 0. Mobius transformations are quadratic bira-
tional transformations that map circles onto circles, where lines are seen as
circles with infinite radius. The inverse of a Mobius transformation is again a
Moébius transformation. A Mobius transformation is uniquely determined by
prescribing three different images for three different points.

14
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ZQ/

Zl\, -1

Fig. 9. Left: The construction of C° smooth transition functions ®¥ us-
ing parameterization of the face subcharts by degenerate tensor-product
patches. The singular points are indicated by circles. Right: The transfor-
mation p is determined by the values at three points. To ensure that p
maps the unit circle onto a straight line, we require that p(z3) = oc.

it be the Mobius transformation that maps the vertices z;, z, of the

subcharts Cf; and C, that point away from the edge subcharts C? into —1
and +1. In addition, a third point z3 on the unit circle is mapped to oo, see

Fig.

the

9, right. For instance, this point can be chosen as the intersection point of
bisector of z;, zo with the unit circle which is farther away than the other

intersection point. Due to p(z3) = 0o, the unit circle is mapped into the real
axis, and the interior of the disk is mapped to the upper half of the complex
plane.

The edge subchart parameterization ng; is now found by the following con-
struction (see Fig. 10):

(1)

(3)

The face subchart parameterizations gbij and gbék are represented as de-
generate tensor-product patches and they are composed with the Mobius
transformation p. This gives two rational tensor-product patches

Gj=modjop and (j=podyop (23)

of degree (2,4) that parameterize the images u(Cj;) and u(Cj;) of the
face subcharts under the Mobius transformation p.

We now create a tensor-product patch f; that has a C® smooth joint with
C]Zk and Qlj along its edges F; and F, and whose boundary curve 6;(E3) is
contained in the real axis. This rational patch can be chosen as a rational
tensor—product patch of degree (2,2s+ 1). On either side the first s rows
of control points can immediately be found with the help of the control
points of Cllj and gk The edge Ej is then automatically mapped into the
real axis.

We apply the inverse Mobius transformation in order to get the desired

15
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(c) (d)

Fig. 10. (a) The two face subcharts C’l’] and CJ’: ;. are parameterized as degen-
erated quadrangular patches; the singular point is marked. (b) The Mobius
transformation g maps C’l’j and C}k into the upper half plane; (c) & Ais pa-
rameterized satisfying the C* continuity conditions; (d) x~! maps §; back
into the unit ball.

edge subchart parameterization

¢ =n" o0& (24)

This gives a rational tensor product patch of degree (4, 4s + 2) that pos-
sesses the desired properties.

The edge subchart parameterization gbf can be constructed similarly. Fig. 11
shows an example of an edge subchart parameterization.

Remark 16 According to our experience, which is supported by various ex-
perimental results, the method described in sections 3.1 and 3.2 produces
regular parameterizations. It also ensures that the interiors of the subcharts
are pairwise disjoint, also for vertices of valence 3 and for highly non-uniform
distributions of the points p; Currently we do not have a theoretical guaran-
tee for this. However, in case of any problems, it would be possible to use a
lower ratio than 1 : 5 for computing the vertices a} of the subcharts. In the
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Fig. 11. The four steps for constructing an edge subchart parameterization,
where the chosen degree of continuity is s = 2. The parameter lines show

the singular points for the face subcharts after the reparameterization as
degenerated quadrangular patches.

Ci

Fig. 12. The innermost part for the chart C*. In this case v(i) = 5 Bézier
triangles are needed.

limit, the face subcharts shrink to points, and the innermost boundaries of the
edge tend to arcs of the circle boundary.

3.8 Innermost parts, geometry functions and influence functions

The remaining (or innermost) part C' of each chart can be parameterized
as a trimmed tensor-product patch of degree (1,1). Alternatively, it can be
parameterized by v(i) rational Bézier triangles of degree 4s + 2, simply by
choosing a vertex of the origin and connecting it with the innermost vertices
;k aled {i,j,k} C F, of the face subcharts. See Figure 12 for an example.

The geometry functions g; : C* — R3 can be chosen in various ways. In our
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implementation, they are automatically generated from the mesh, taking the
form

gi(u,v) =7 (1 =A) - ti(w,0) + A~ ¢i(u, v) - my) (25)

where t; is a linear parameterization of the tangent plane at the vertex ¢ of
the mesh, n; is the normal vector and ¢;(u, v) is a quadratic polynomial. This
quadratic polynomial is automatically computed by fitting the neighbors of
the vertex to the geometry function.

The parameter v is a shrinking factor, that controls the size of the embedding
of the chart. The parameter A is a flatness factor. It controls the flatness of
the chart embedding. The parameters v and A control the distance between
the manifold surface and the control mesh. For small values of v, the surface
is closer to the mesh.

Unless otherwise specified, we have used A = 0.5 in all our examples. The
factor v was chosen depending on the valence of the vertex, varying between
0.7 for valence 3 and 0.3 for valence 10.

We choose influence function 3' as

B'(u,v) = (1 - = v*) (26)

where (z)+ = 3(z + |z]) and s is the desired order of smoothness.

Remark 17 The choice of the geometry functions depends on the data which
is available. E.g., if the triangular mesh is obtained by discretizing an implic-
itly defined surface, then one should choose the geometry functions as approx-
imate parameterizations of the neighborhoods of the vertices (cf. Wurm et
al., 1997). On the other hand, for other applications it is useful to consider
geometry functions which add details and features (cf. Yoon, 2006). If the
geometry functions are chosen as polynomials of degree higher than two, then
the manifold surface becomes locally more flexible.

4 Examples

This section presents some examples.

Example 1. This surface (see Figure 13) is generated from a triangular
mesh describing a double torus. The mesh has 284 faces and 140 vertices. The
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Fig. 13. A triangular mesh describing a double torus (left) and the associ-
ated smooth blending manifold surface (center and right). The surface was
rendered using 17,890 triangles.

associated blending C? manifold surface is shown in the right picture. The
yellow, blue and red regions correspond to the vertex, edge and face patches,
respectively.

Example 2. Fig. 14 compares the adaptive approach (top row) and a non-
adaptive approach (bottom), where the subcharts depend only on the va-
lence of the vertices. In the left column, the model is rendered by patch type.
Although for some vertices the result is quite similar, at some vertices the
adaptive approach produces a more natural (less twisted) result. In the right
column, we zoomed into the part of the surface marked by the green rectangle.
It is clearly visible that the adaptive approach leads to a more desirable result
than the one obtained by the non-adaptive method.

Example 3. Fig. 15 shows several C2-smooth surfaces obtained by our con-
struction. The surface in Fig. 15 (a) describes a bunny generated from a tri-
angular mesh with 253 vertices and 502 faces: the manifold has been rendered
by patch type in order to show that the method is able to handle charts with
any valence. Moreover, it is also possible to choose different sizes / shape pa-
rameters for the geometry functions, in order to get sensible results for more
complicated parts of the mesh, such as the ears of the bunny. The model in
Fig. 15 (b) is a toroidal surface generated from a mesh with 48 vertices and 96
faces. The example in Fig. 15 (c) describes a surface associated with a mesh
consisting of 10 vertices and 16 faces.

Example 4. Fig. 16 shows the influence of the parameters A\ and v which
control the geometry functions, see (25). The control mesh of the star—shaped
polyhedron consists of 18 vertices and 32 faces. Depending on the choice of
the parameters, the relative size of the edge and face subcharts changes. The
models in the first row have a low flatness factor A. In the second row A has
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Fig. 14. Comparison between adaptive (top row) and non-adaptive method
(bottom row) for the double torus model of Fig. 13.

T ,A
ML XERIEN K

RS
K BINAIAN
K2 SAZNIN i

(b) ()

(a)
Fig. 15. Various C? smooth surfaces which demonstrate the possibilities of
the presented construction. The surfaces were rendered using 31,626, 6,048,

and 9,072 triangles, respectively.
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A=0.1,v=02 A=0.1,v=04 A=0.1,v=0.7

444

A=075,7=02 A=075,7=04  A=0.75~=0.7

Fig. 16. C? manifold surface obtained from a star-shaped polyhedron, for
different values of the shape parameters A and v controlling the geometry
functions. The surface was rendered using 14,336 triangles.

been increased and each geometry function gets closer to the tangent plane at
the vertex of the mesh.

Example 5. The final example demonstrates the effects of different smooth-
ness. We created a sphere-like manifold surface from an icosahedral mesh (12
vertices and 20 faces) for different values of the smoothness s. In the top row
of Fig. 4 the C? manifold is rendered in different types: by chart type, using a
single color with shading effects and showing the reflection of a checkerboard
pattern. The three remaining figures zoom in the blue rectangle. In the case of
surfaces which are only C' manifolds (left), the reflection of the checkerboard
pattern creates curves with tangent discontinuities. In the C? and C? case
(center and right), these curves are much smoother.
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C! C? c?

Fig. 17. Top row: C? smooth surface obtained from a icosahedron and the
reflection of a checkerboard pattern in it. Bottom row: Detail of the reflected
checkerboard pattern (see blue box in the top right picture) for different
degrees of smoothness. The surfaces were rendered using 3500 triangles.

Remark 18 The computation of the manifold surfaces presented in the paper
has been implemented using Maple10 and the figures have been generated with
the help of PovRay. The computational time depends linearly on the number
of vertices my of the original mesh. The chart generation and the computation
of the geometry function takes approximately 5 sec per vertex. The complete
algorithm (charts and geometry functions generation, embedding, blending
and triangulation of the surfaces) is evaluated in approximately 14 sec per
vertex. In the presented examples, we triangulate each quadrangular surface
and each triangular surface in 50 and 25 triangles, respectively.

5 Conclusions and future work

We presented a novel construction of a rational manifold surface with arbitrary
order s of smoothness from a given triangular mesh. The given triangular mesh
is used both to guide the geometry functions and to define the connectivity of
the charts. The transition functions are obtained via subchart parameteriza-
tions. The manifold surface can be described as a collection of quadrangular
and triangular (untrimmed) rational surface patches.

As an advantage with respect to subdivision surfaces, the use of manifold
surfaces provides an explicit parameterization of the surface. Moreover, it is
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possible to get any order of smoothness and there are no difficulties associ-
ated with “extraordinary” vertices. Our construction can generate surfaces
from triangular meshes, while other constructions need quadrilateral meshes
(Ying and Zorin, 2004) or 4-valent meshes (Grimm and Hughes, 1995). For
our construction, the point-wise evaluation requires only rational operations,
while (Ying and Zorin, 2004) need more complicated functions.

In our construction, the subcharts and transition functions can be adapted
to the geometry of the given triangular mesh. This is an important difference
to the method of Ying and Zorin (2004), where the transition functions and
charts depend solely on the connectivity, but not on the geometry of the given
quadrilateral mesh.

The construction provides many possibilities for additional investigations, e.g.,
concerning the optimal choice of charts (which do not need to be circular)
and geometry functions. In particular, techniques for optimizing the surfaces
with respect to fairness measures should be of some interest. In addition,
future work will concentrate on two issues. First, we plan to address boundary
conditions and sharp features (edges) that may be present in a given object.
Second, we plan to investigate other manifold constructions which are based
on subchart parameterization. In particular we will investigate construction
methods for surfaces of relatively low degree.
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