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Abstract

Given a closed triangular mesh, we construct a smooth freeffrm surface which is
described as a collection of rational tensor{product and tiangular surface patches.
The surface is obtained by a special manifold surface consiction, which proceeds
by blending together geometry functions for each vertex. Tke transition functions
between the charts, which are associated with the verticesfahe mesh, are obtained
via subchart parameterization.

Keywords. Manifold surface, geometric continuity, smooth free-formrational sur-
face, arbitrary topological genus.

1 Introduction

Methods for representing closed surfaces of arbitrary tojogy by surfaces with
explicitly available parametric representations (i.e., a subdivision surfaces)
are a classical topic in Computer Aided Geometric Design. Ehexisting tech-
niques can roughly be organized in two groups: patch{basedethods and
manifold-type constructions.

The patch{based methods exploit the concept of geometric stinuity in order
to build smooth surfaces by joining polynomial or rational srface patches
with various degrees of geometric continuity. A survey of iB concept { with
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a particular focus on constructive realizations { has beenivggn by Peters
(2002a). Here we list only a few representative references.

Reif (1998) introduced topologically unrestricted ratioal B-splines (TURBS)
which use singularly parameterized surfaces in order to deaith situations
where three or more than four quadrilateral surface patcheseet in a com-
mon point. Prautzsch (1997) avoids the use of singular pomtby composing
the parameterization of the geometry at extraordinary poits with piecewise
polynomial reparameterizations of the parameter domain.d®ers (2002b) de-
scribes a construction of curvature continuous free-fornudaces of degree 2
which uses tensor-product patches of degree; 8, which can be generalized
to a G® construction of degreeg+1;d+2s 2), whered controls the exibility
at extraordinary points.

The patch{based constructions are able to generate smootteé-form surfaces
of relatively low degree. Typically they require a specialréatment for \ex-
traordinary" points, i.e., points where other than four quarangular or other
than six triangular patches meet.

The manifold{type constructions are based on a di erent paadigm, which

is taken from di erential geometry. The surface is covered i overlapping

charts, and transition functions are de ned between them whin the over-

lapping regions. The transition functions have to possesfié same order of
smoothness as the nal surface. Also, the transition funains have to satisfy
the cocycle condition in regions where more than two chartserlap.

As a conceptual advantage, the blending approach provideshatural way for
splitting the modeling problem into smaller and simpler suproblems. The
manifold framework makes it particularly simple to de ne awiliary linear
spaces of scalar and vector{valued elds on the surface, senthe construction
works independently of the dimension of the embedding spackhis is useful
for surface tting and for applications involving partial di erential equations
on surfaces.

If the charts and the transition functions are known, then tw di erent tech-
niques can be used to de ne the manifold. The rst one reliesnothe control
point paradigm, by de ning locally supported blending funtions on the mani-
fold. The second is a blending approach, which proceeds byrdeg geometry
functions for each chart and blending them together via in @nce functions.

Grimm and Hughes (1995) were the rst who presented a constrtive mani-
fold surface construction. The desired surface is speci esing a sketch mesh
where all vertices have valence four. Charts are created feach element of
the mesh (vertices, edges, faces) and the transition funatis are created by
blending projective mappings. The construction is based dahe control point
paradigm.



An alternative manifold construction has been presented bZotrina-Navau

and Pla-Garcia (2000). They rst use subdivision to isolatehe extraordi-

nary vertices. The charts are created via the characteristimap of the vertex.

Cotrina-Navau et al. (2002) present a theoretical approacand describe sev-
eral realizations of a generic scheme.

Ying and Zorin (2004) presented a novel construction for cating manifold

surfaces from quadrangular meshes. The charts, which aresasiated with the

vertices of the mesh, are special-gons with curved boundaries. The tran-
sition functions are chosen from a particular class of holarphic functions

(involving complex-valued roots) which have the property @ contain both a
function and its inverse function. The manifold surface ishten obtained via
blending, yielding aC' smooth surface with explicit non{singular param-
eterizations. Combined with displacement mappings, Yoor2006) has used
manifold splines of this type for modeling complex free-for objects.

In an unpublished technical report, Wagner et al. (2003) desbe a C?> con-
struction with piecewise polynomial patches.

The manifold splines of Gu et al. (2005, 2007) are based on ame atlas
which is computed from a given triangular mesh. It requireshie introduction
of holes in this mesh (and the associated surface), in order guarantee the
existence of the atlas. The holes are then dealt with by trational hole{ lling
techniques.

Another variant of manifold surfaces uses a simple base m#nid to parameter-
ize all closed smooth surfaces of a given genus. Any smoothface with that
genus can then be obtained as an embedding of this base mddif&Vallner
and Pottmann (1997) construct such a base manifold by congidng equiva-
lence classes of points in the hyperbolic, elliptic or Eudian plane with re-
spect to certain discrete subgroups of the corresponding timm group. Grimm
(2002, 2004) describes a construction which is based on entdbed manifolds.
Clearly, if this approach is adopted, then modi cations of he topological genus
(\adding handles") imply changes of the parameterization rmanifold.

This paper presents a construction of rational blending maiolds from a given
triangular mesh. The charts are chosen as circular disks, dthey are associ-
ated with the vertices of the mesh. The edges and faces of thesh correspond
to overlapping regions of two and three charts, respectiyelThe general layout
is shown in Fig. 1.

We de ne the transition functions between the charts by parmeterizing the
subcharts over common parameter domains. In this way we aretrrestricted
to special classes of transition functions, such as spedialomorphic functions
as used by Ying and Zorin (2004). The manifold surface is ohiteed following
the blending approach, where the in uence functions can bddtained by taking



Fig. 1. A triangular mesh and the associated chart layout. The blue and

red regions correspond to overlapping regions of two and thee charts, re-
spectively.
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Fig. 2. A triangular mesh with 136 vertices and 288 faces desibing a hollow
cube (left) and the associatedC? smooth blending manifold surface (right).
The surface was rendered using 18,144 triangles.

suitable powers of the equation of the unit circle. As a rst gample, Fig. 2
shows aC?> manifold surface describing a hollow cube.

The remainder of this paper is organized as follows. Secti@nintroduces the
notion of blending manifolds which are associated with trizgular meshes.
Section 3 presents a particular construction for rational lending manifolds.
Section 4 presents several examples obtained from the pragse construction
that illustrate the in uence of the shape parameters and deonstrate the
smoothness of the surfaces. Finally we conclude this paper.



2 Blending manifolds associated with triangular meshes

Given a triangular mesh, we de ne the notion of an associatquarameterized
atlas. We then use this manifold structure and additional gametry functions
and in uence functions for each chart to de ne a blending maifold surface.
This surface can achieve an arbitrary order of smoothness.

2.1 Charts and subcharts

We consider a given triangular mestM in R3, where my is the number of
vertices, mg is the number of faces anang is the number of edges. Let
V=Ffi:i=1;:::;myg ()

be theset of vertex indices . The mesh is assumed to describe the boundary
of a compact set. The faces and vertices of the mesh are orashby outward-
pointing normals. We use the mesiM to de ne the charts and the transition
functions of the manifold. More precisely, we de ne ahart for eachvertex of
the mesh.

For the i-th vertex of the mesh, we denote the surrounding vertices counter-

The second index oh is counted modulov(i), i.e. n(i;j ) = n(i;j + v(i)). For
each vertex, let

N()=[n(; 1);::5n0v()];, 12V (2)

be the ordered list of neighboring vertices. In addition totie setV of vertex
indices, we de ne theset of edge indices

E=fin@;r)g: i2V;r=1;:::;v(i)g: (3)

F=ffin(@;r);n(;r+1)g: i=1;:::;my; r=1;:::;v()g: (4)

Remark 1 Any edge indexe 2 E is a set containing two vertex indices, i.e.,
e= fi;j g= fj;ig. Similarly, any face indexf 2 F is a set containing three
vertex indices,f = fi;j;kg=fj;k;ig=:::=fk;j;ig.



Ci
Fig. 3. A chart C' with edge subchartsC!; C/; C/, face subchartst‘k, Cl;,

and innermost part C' The thick curve is the union of the three boundary
arcs €'\ COL (G Cu)I (C\ Cy);itis assumed to be aC® smooth
curve.

We de ne a system of chartsC' and subchartsC/;C), ~ C' which can be
associated with the given triangular mesh. All charts and sicharts are closed
subsets ofR?. The generic layout of subcharts is shown in Fig. 3.

Remark 2 Throughout this paper, C refers to the orders of smoothness.
We say that a function isC smooth if it is s-times continuously di erentiable.
The symbolsC' , C/ and Cj, are used to denote the charts and subcharts of
the atlas. As usual,D indicates the closure of a seb  RZ.

De nition 3 A setfC': i 2 Vg of compact, simply connected subse® of
R? with C smooth boundaries will be called system of charts associated
with the triangular meshM . For each chart C' we de ne v(i) edge sub-

All edge and face subcharts are quadrangles and trianglethvaurved edges,
respectively. For any pair of subcharts, the intersectionf éhe interior parts is
empty. Let

r
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Cr|1(i;r) [ Cr|1(i;r);n(i;r +1)) (5)

r=1;:v(i) r=1;:v(i)
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be the remaining orinnermost part of C'.

Foranyr, letk = n(i;r) , 1 = n(i;r 1)andj = n(i;r +1). The edge
subcharts and face subcharts satisfy the following conalits.

(i) The subchartC/, shares one boundary arc witl€| and one withC,. The
remaining boundary arc is contained in@C.
(i) The subchart C; shares one boundary arc witlZ), , one with C}; and one
with €' . The remaining boundary arc is contained in@C.
(iii) The union of the three boundary arcs(C' \ C)[ (C!\ Ci)[ (C/\ C})
is a C smooth curve.
(iv) The sequence of edge and face subcharts



Fig. 4. The boundary conditions for edge subchart parameteizations.
Cr|1(i;1); Cr|1(i;l);n(i;2); Cr|1(i;2); Cr|1(i;2);n(i;3); R Cr|1(i;v(i)) ; Cr|1(i;v(i));n(i;1) (6)
is arranged in counterclockwise order alon@ C.

The face subcharts are triangular regions that correspona tthe overlap of
three charts. The edge subcharts, along with the two neighbing face sub-
charts, de ne biangular regions that correspond to the ovép of two charts.

2.2 Parameterization of subcharts

We introduce edge subchart parameterizations and face siiact parameter-
izations, which will then be combined in order to de ne the tansition func-
tions. First we de ne edge subchart parameterizationsrheir domain is the
unit square, which will be denoted by =[0;1]: Let

E,=f0g [0;1] E;=[0;1]f Og; Ez= flg [0;1], E4 =[0;1]f 1g (7)
be the left, lower, right and upper edge of , respectively.

De nition 4  For each edgee = fi;j g 2 E of the given triangular mesh we
consider two mappings| : ! C/and |: ! Cl. These mappings are
called edge subchart parameterization provided that they areC: smooth,
surjective, orientation preserving (hence also regular)ral satisfy

j(En) = Cj\ €', |(Es) = C/\ @C

8
EY)=C\ @€ and I(Es)=Cl\ & ®

Remark 5 The two conditions (per edge subchart parameterization) iply
that E, and E4 are mapped to thelower and upper boundaries ofC; and cl,
as the mappings preserve the orientation.

See Fig. 4 for an illustration of this de nition.



Fig. 5. Boundary conditions for face subchart parameterizéions.

Similarly we de ne face subchart parameterizationsTheir domain is the stan-
dard triangle

4 =f(xy;z): x Oy 0z 0 x+y+z=1g R% (9)

Let T1, T, and Tz be the edges of the triangle which are contained in thex,
Xy and yz plane, respectively. The points in the standard triangle coespond
to the barycentric parameters which are used for triangulaBezier patches.

De nition 6  For each facef = fi;j;kg 2 F of the triangular mesh we
consider three mappings

14l Cly o lit4l Clrand K41 clo (10)
These mappings are callethce subchart parameterizations provided that

they are C smooth, surjective, orientation preserving (hence alsogelar) and
satisfy

(T = Ch\ @€ 1(Ty) = C,\ @C; and £(T) = Ci\ @¢: (11)

Remark 7 Similar to Remark 5, the three conditions imply that the reman-
ing edges are mapped as shown in Fig. 5.

This de nition is illustrated by Fig. 5. The lower index of a face subchart
parameterization is considered to be a set{valued one (siini to the case of
edge indices), i.e.,

k= fikg™ fkig™ K- (12)

In order to keep the notation simple, we omit the brackets inhe index.



Fig. 6. Left: Vertex i with neighbors. Right: The overlapping regions
between the charts C' and C! and the transition functions !
and i,

2.3 Transition functions and atlas

For any edgee = fi;j g we consider the two neighboring triangular faces
fi;j;k gandfi;j;1 gin F, where the vertexi has the ordered neighborsl (i) =
[:::;k;j;1;:::], see Fig. 6, left. We consider the subchart§], C{ and C/, of
C' and the subchartsC/, Cl. and C}. of Ci as shown in Fig. 6, right.

De nition 8 The two sets

o=ci[c[c, C and O=cl[cCl[cC), (13)

are called theoverlapping regions  between the chart€' and C! in the chart
C' and in the chartC!, respectively. Thetransition function betweenC'
and C! is de ned by

(L O Y if x2¢f
(L (HhH if x2c (14)
(L (L) HXif x2Cy

oot o x7t T(x)=

VW AW O

The subchart parameterizationsji and }k are said to bevalid if all transition
functions ! are C smooth.

Remark 9 By de nition, the transition functions are bijective and continu-
ous. In addition, they satisfy the cocycle condition, i.e., k¥ 1 = ' |n
addition we need to ensureC-smoothness, in order to make them valid. In
the second part of the paper we describe a way to achieve this a necessary
condition for C smooth transition functions, the union of the three boundar
arcs in condition (iii) of De nition 3 has to be a C smooth curve, as it is the
image of a circular arc under & smooth mapping.



By collecting charts and transition functions we obtain theatlas of the mani-
fold which is associated with the triangular mesiM .

De nition 10 The triplet A =(C; g; ), whereC is the set of all charts
C' and

e=f |:fijjg2Egand =1 ) : fijjkg2Fg (15)

are the sets of all edge and all face subchart parameteriaas, will be called the
C smooth parameterized atlas  of the manifold, provided that all subchart
parameterizations are valid.

The information about subcharts and transition functions $ implicitly con-
tained in the edge and face subchart parameterizations. Tlobarts are consid-
ered to be mutually disjoint sets and they will be thought of a my di erent
copies of the unit disk.

2.4 Manifold surface by blending

In order to de ne the spline manifold surface we de ne { for eeh chart {
an embedding function, which is called the geometry functio We can then
create blend surfaces that correspond to the overlappingstharts.

De nition 11  Foranyi 2 V, letg : C'! R?2 be the associategeometry
function . In addition, consider a scalar{valued function ' : R>! R which
satis es the following three conditions:

(i) ' is C smooth,
(i) '(x)>O0for x 2 int C' and
(i) (x)=0if x2R2nCl.

This function is called anin uence function

Now we are ready to de ne surface patches which are assocthteith ver-
tices, edges and faces of the mesh by blending the geometrgdiions. Their
collection forms the spline manifold surface.

De nition 12  We de ne patches for each vertex, each edge and each face of
the given mesh.

(1) For any vertex with indexi 2 V, we call the mapping

8 RY: x 7! gi(x) (16)

10



which is obtained by restricting the geometry function to ¢hinnermost
part of the chart thevertex patch associated with the{th vertex.
(2) For any edge with indicese= fi;jg 2 E, let

(" DX (@ PX)
e. I R3: x 7! (psa)2f (i3j ) (s ),‘% : 17)
(" X

(psa)2f (i5j ): (i )g

This parameterization de nes theedge patch associated with the edge
(3) For any face with indicesf = fi;j;k g2 F, let

(P ) (@ 5

(p:.?(:_r)Z_f k(.i_;.j_;k )i
fog41 R3: x 7 kDkiey —— (18)
( ar) (X)
(psair)2f (isjik );
(5k;i ) (ksisj g

This parameterization de nes theface patch associated with the facé.

The collection of vertex, edge and face patches is said to he blending
manifold surface  which is associated with th€ smooth parameterized atlas
A and the geometry and in uence functions.

Remark 13 If the subchart parameterizations J' and }k , the in uence func-
tions ' and the geometry functionsg' are chosen as rational functions, then
all patches of the blending manifold surfaces are rationaho.

Theorem 14 For any C smooth parameterized atla®\ = (C; g; g) with

associated geometry functiong' and in uence functions ', we consider the
collection of vertex patches, edge patches and face patcliben any two neigh-
boring patches meet with geometric continuity of ordes in common points,
provided that they are regular there.

For the proof of this theorem it su ces to observe that in a neghborhood of
common points we can parameterize the union of two (or threg@atches as a
C smooth function over an open subset of one of the charts. Naotieat the
de nition of the parameterized atlas assumes that the trangon functions are
C smooth, hence such a smooth reparameterization can be found

If the conditions of the theorem are satis ed, then the collgion of face, edge
and vertex patches is called & smooth blending manifold surface . Note
that { depending on the choice of the geometry functions { thedge, face and
vertex patches may have singular points. For a generic cheiof the geometry
functions, these surface patches are all regular.

11



3 Construction of rational blending manifolds

This section describes a construction of a smooth blendingamifold surface
from a given triangular mesh. We generate the face and edgdshart param-
eterizations and choose the blending and geometry functign

3.1 Parameterization of face subcharts

We consider a given triangular mestM consisting ofm,, vertices and mg

oriented triangles. In addition, we assume that a normal véar for each vertex
Is given. In many cases it can be estimated by tting a plane tthe triangular
fan of the vertex. We assume that the orthogonal projectionfdhe triangular
fan of the vertex into the tangent plane (i.e., the plane thragh the vertex and
perpendicular to the normal vector) is bijective .

All charts C' will be chosen as circular disks with radius 1, centered at ¢h
origin. For each vertexi, we project the triangular fan of the vertex into the
tangent plane of the vertex. The unit circle in the tangent phne is identi ed

with the boundary @C of the chart, where thex-axis is (e.g.) aligned with
the projection of the edge i n (i; 1)).

The intersection of the rays spanned by the projection of thedgefi;n(i;j )g
with the unit circle in the tangent plane de nes thev(i) auxiliary points p}

on the unit circle, where the lower index is counted modulwg(i), see Fig. 7.
Next we compute the bisectors] of the arcs fromp] to pj,; . Finally, a; ;
is chosen as the point which divides the arc fror; to b; , by the ratio 1 : 5,
and ay; is chosen as the point which divides the arc frorh; to b;,; by the
ratio 1 : 5. See Remark 16 for a comment on the choice of this i@t

L If this assumption is violated, then one can try to make the mesh smoother by
applying a local averaging operator, or one should manuallyspecify the quantities
associated with the vertex.

n(i;j) n(i;j 1)

n(ij +1) nij +2)

Fig. 7. Left: Orthogonal projection of the triangular fan of a vertex into the
tangent plane. Right: The points pJ! and aJ! and the layout of the subcharts.

12



construction ensures that the arc lengths of the boundary es of the face and
edge subcharts have approximately the ratio 1: 2 : 1.

We choose the face subchart parameterizatiorfn,(i;j 1):n(ij ) @S @ planar rational
Bezier triangle of degree two. The control points are choseas follows:

D200 = @y, bo2o = Ay 1,

b110 Satises by1g bogg = b110 boo = 1, i.e., it is the intersection of the
circle tangents atb,go and bgyo,

boo2 is chosen such that the triangldd,q0; bo2o; boo2 iS equilateral,

-1 -1
Po11 = 5(Po20 + boo2), 101 = 5(D200+ Doo2)-
The associated weights are
W00 = Wo20 = Woo2 = Wo11 = Wio1 = 1;

(19)
W10 = COS%\ (bo20; 0; b2go);

see Figure 8.

Any triangular patch of degree 2 can also be represented asems$or-product
patch of degree (22), where one of the edges collapses into a singular point.
If (u;v;w) are the barycentric parameters of the triangular patch (si#sfying
u+ v+ w = 1), then the reparameterization

14 (ns)7'(r; (L nr)s;( r)(1 9) (20)

produces a biquadratic rational tensor-product patch wha@sedger = 1 col-
lapses into a singular point.

If the singular point is located at b,go, then the 3 3 control points and
weights of this degenerate patch can be generated simply bypdying two-fold
degree elevation to the control poinb,gg, One-fold degree elevation to the two

13



control points b1, b119 With associated weights and zero-fold degree elevation
(i.e. just copying) to the three control pointsbggy, bo11, bo2o With associated
weights. Since the last three control points describe a deg{elevated curve of
degree 1 (a line), it is possible to reduce the degree with pext to s by one,
giving a rational tensor-product patch of degree (R) with the control points

Co2 = C12 = D200; Co1 = D110; Coo = Do2o; C11 = D1o1; C10 = booz; (21)

where the weights are all equal to one, except fovg; = Wi1p.
3.2 Parameterization of edge subcharts

In order to construct the edge subchart parameterizationsji and ‘, , We con-
sider the four neighboring face subchart parameterizatisn They are repa-
rameterized as tensor-product patches with singular poistat the vertices
that point away from the edge subchartsti and C!, see Figure 9, left.

Once the edge subchart parameterizations are known, we haw® parameter-
izations of the overlapping regioni)ji and O, whose domain is the union of
three (di erent copies of) unit squares. We choose the edgelxhart parame-
terizations | and ! such that these two parameterizations of the overlapping

j
regions areC smooth.

More precisely, the edge subchart parameterizationji (and analogously %)
has to satisfy the following two conditions:

It has a C smooth joint with the tensor-product patches }k and }j 0
along its edge£4 and E,, respectively. _
Its boundary | (Es) is contained in the boundary@C.

This is achieved with the help of Mebius transformations.

Remark 15 A Mebius transformation is a special mapping of the plane o
itself, where the plane is identi ed with the complex planeC and closed by
adding a single pointl at in nity. The mapping has the form

az+ b
cz+ d

: C[flg! C[fig :zT7 (22)
wherea;b;c;d2 C, ad bc6 0. Mebius transformations are quadratic bira-
tional transformations that map circles onto circles, whex lines are seen as
circles with in nite radius. The inverse of a Mebius transbrmation is again a
Mebius transformation. A Mebius transformation is uniquely determined by
prescribing three di erent images for three di erent poins.

14



71 1

Fig. 9. Left: The construction of C smooth transition functions ' us-
ing parameterization of the face subcharts by degenerate tesor-product
patches. The singular points are indicated by circles. Righ The transfor-
mation is determined by the values at three points. To ensure that
maps the unit circle onto a straight line, we require that (z3)= 1 .

Let be the Mebius transformation that maps the verticesz;, z, of the
subcharts Cj and Cj, that point away from the edge subchartsC/ into 1
and +1. In addition, a third point zz on the unit circle is mapped tol , see
Fig. 9, right. For instance, this point can be chosen as thet@rsection point of
the bisector ofz,, z, with the unit circle which is farther away than the other
intersection point. Due to (z3) = 1 , the unit circle is mapped into the real
axis, and the interior of the disk is mapped to the upper halffathe complex
plane.

The edge subchart parameterizationji is now found by the following con-
struction (see Fig. 10):

(1) The face subchart parameterizations }j and }k are represented as de-
generate tensor-product patches and they are composed witie Mebius
transformation . This gives two rational tensor-product patches

Iij = :j ° and jik = j!k (23)

of degree (24) that parameterize the images (ij) and (Cjik) of the
face subcharts under the Mebius transformation .

(2) We now create a tensor-product patchji that has a C smooth joint with
ik and | along its edgess, and E; and whose boundary curve| (Es) is
contained in the real axis. This rational patch can be choseas a rational
tensor{product patch of degree (22s+ 1). On either side the rst srows
of control points can immediately be found with the help of te control
points of |ij and j‘k. The edgeE; is then automatically mapped into the
real axis.

(3) We apply the inverse Mebius transformation in order to @t the desired

15
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(€) (d)

Fig. 10. (a) The two face subchartsCIij and Cj‘k are parameterized as degen-
erated quadrangular patches; the singular point is marked(b) The Mebius

transformation  mapsCj; and Cj into the upper half plane; (c) | is pa-

rameterized satisfying the C continuity conditions; (d) 1 maps J' back
into the unit ball.
edge subchart parameterization

=t (24)

This gives a rational tensor product patch of degree (4s + 2) that pos-
sesses the desired properties.

The edge subchart parameterization{ can be constructed similarly. Fig. 11
shows an example of an edge subchart parameterization.

Remark 16 According to our experience, which is supported by variousce
perimental results, the method described in sections 3.1 @rB.2 produces
regular parameterizations. It also ensures that the inteors of the subcharts
are pairwise disjoint, also for vertices of valence 3 and farghly non-uniform

distributions of the points p} . Currently we do not have a theoretical guaran-
tee for this. However, in case of any problems, it would be psBle to use a
lower ratio than 1 : 5 for computing the verticesa, of the subcharts. In the

16



(a) (b)

() (d)

Fig. 11. The four steps for constructing an edge subchart paameterization,
where the chosen degree of continuity is = 2. The parameter lines show
the singular points for the face subcharts after the reparaneterization as
degenerated quadrangular patches.

Ci

Fig. 12. The innermost part for the chart C'. In this case v(i) = 5 Bezier
triangles are needed.

limit, the face subcharts shrink to points, and the innermasboundaries of the
edge tend to arcs of the circle boundary.

3.3 Innermost parts, geometry functions and in uence funans

The remaining (or innermost) part &' of each chart can be parameterized
as a trimmed tensor-product patch of degree (1,1). Alternately, it can be
parameterized byv(i) rational Bezier triangles of degree 4 + 2, simply by
choosing a vertex of the origin and connecting it with the inearmost vertices
Ci\ €, fi;jkg F,of the face subcharts. See Figure 12 for an example.

The geometry functionsg, : C' ! R3 can be chosen in various ways. In our
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implementation, they are automatically generated from thenesh, taking the
form

g(uv)y= (@ ) tiuv)+  guv) ny) (25)

wheret; is a linear parameterization of the tangent plane at the veex i of
the mesh,n; is the normal vector andg (u; v) is a quadratic polynomial. This
quadratic polynomial is automatically computed by tting the neighbors of
the vertex to the geometry function.

The parameter is ashrinking factor, that controls the size of the embedding
of the chart. The parameter is a atness factor. It controls the atness of

the chart embedding. The parameters and control the distance between
the manifold surface and the control mesh. For small values o, the surface
is closer to the mesh.

Unless otherwise speci ed, we have used = 0:5 in all our examples. The
factor was chosen depending on the valence of the vertex, varyingileen
0.7 for valence 3 and 0.3 for valence 10.

We choosen uence function ' as

(v =@ v VAT (26)

where k), = 1

= 3(Xx + jxj) and s is the desired order of smoothness.

Remark 17 The choice of the geometry functions depends on the data whic
is available. E.g., if the triangular mesh is obtained by digetizing an implic-
itly de ned surface, then one should choose the geometry fotions as approx-
imate parameterizations of the neighborhoods of the vergs (cf. Wurm et
al., 1997). On the other hand, for other applications it is usful to consider
geometry functions which add details and features (cf. Yoor2006). If the
geometry functions are chosen as polynomials of degree lagthan two, then
the manifold surface becomes locally more exible.

4 Examples

This section presents some examples.

Example 1. This surface (see Figure 13) is generated from a triangular
mesh describing a double torus. The mesh has 284 faces and\etices. The

18



\ ‘ ‘\‘V N — \
WA NG
LV

. 3

W
N AN
A\E‘S\!};“")

7 NTAN

Fig. 13. A triangular mesh describing a double torus (left) and the associ-
ated smooth blending manifold surface (center and right). The surface was
rendered using 17,890 triangles.

associated blendingC? manifold surface is shown in the right picture. The
yellow, blue and red regions correspond to the vertex, edgadaface patches,
respectively.

Example 2. Fig. 14 compares the adaptive approach (top row) and a non-
adaptive approach (bottom), where the subcharts depend ognlon the va-
lence of the vertices. In the left column, the model is rended by patch type.
Although for some vertices the result is quite similar, at soe vertices the
adaptive approach produces a more natural (less twisted)swt. In the right
column, we zoomed into the part of the surface marked by thegn rectangle.
It is clearly visible that the adaptive approach leads to a me desirable result
than the one obtained by the non-adaptive method.

Example 3.  Fig. 15 shows several?-smooth surfaces obtained by our con-
struction. The surface in Fig. 15 (a) describes a bunny gerated from a tri-
angular mesh with 253 vertices and 502 faces: the manifoldshiaeen rendered
by patch type in order to show that the method is able to handleharts with
any valence. Moreover, it is also possible to choose di etesizes / shape pa-
rameters for the geometry functions, in order to get sensilresults for more
complicated parts of the mesh, such as the ears of the bunnyh& model in
Fig. 15 (b) is a toroidal surface generated from a mesh with 4@rtices and 96
faces. The example in Fig. 15 (c) describes a surface assedavith a mesh
consisting of 10 vertices and 16 faces.

Example 4. Fig. 16 shows the in uence of the parameters and which
control the geometry functions, see (25). The control mesH the star{shaped
polyhedron consists of 18 vertices and 32 faces. Dependingtbe choice of
the parameters, the relative size of the edge and face subdbachanges. The
models in the rst row have a low atness factor . In the second row has
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Fig. 14. Comparison between adaptive (top row) and non-adafive method
(bottom row) for the double torus model of Fig. 13.

(@) (b) (€)

Fig. 15. Various C? smooth surfaces which demonstrate the possibilities of
the presented construction. The surfaces were rendered ugj 31,626, 6,048,
and 9,072 triangles, respectively.
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Fig. 16. C manifold surface obtained from a star{shaped polyhedron, dr
di erent values of the shape parameters and controlling the geometry
functions. The surface was rendered using 14,336 triangles

been increased and each geometry function gets closer to taegent plane at
the vertex of the mesh.

Example 5. The nal example demonstrates the e ects of di erent smooth

ness. We created a sphere-like manifold surface from an @lsdral mesh (12
vertices and 20 faces) for di erent values of the smoothnessin the top row

of Fig. 4 the C? manifold is rendered in di erent types: by chart type, usinga

single color with shading e ects and showing the re ection foa checkerboard
pattern. The three remaining gures zoom in the blue rectang. In the case of
surfaces which are onl\C! manifolds (left), the re ection of the checkerboard
pattern creates curves with tangent discontinuities. In tie C2 and C3 case
(center and right), these curves are much smoother.
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Fig. 17. Top row: C?> smooth surface obtained from a icosahedron and the
re ection of a checkerboard pattern in it. Bottom row: Detai | of the re ected
checkerboard pattern (see blue box in the top right picture) for di erent
degrees of smoothness. The surfaces were rendered using B&@ngles.

Remark 18 The computation of the manifold surfaces presented in the par

has been implemented using Maple10 and the gures have beangrated with

the help of PovRay. The computational time depends linearlpn the number
of verticesm,, of the original mesh. The chart generation and the computatn

of the geometry function takes approximately 5 sec per verte The complete
algorithm (charts and geometry functions generation, emieing, blending

and triangulation of the surfaces) is evaluated in approxiately 14 sec per
vertex. In the presented examples, we triangulate each quathgular surface
and each triangular surface in 50 and 25 triangles, respaaly.

5 Conclusions and future work

We presented a novel construction of a rational manifold stace with arbitrary
order s of smoothness from a given triangular mesh. The given trianfar mesh
is used both to guide the geometry functions and to de ne theoninectivity of
the charts. The transition functions are obtained via subdwt parameteriza-
tions. The manifold surface can be described as a collectiohquadrangular
and triangular (untrimmed) rational surface patches.

As an advantage with respect to subdivision surfaces, the aiof manifold
surfaces provides an explicit parameterization of the sae. Moreover, it is
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possible to get any order of smoothness and there are no di tties associ-
ated with \extraordinary" vertices. Our construction can generate surfaces
from triangular meshes, while other constructions need gdalateral meshes
(Ying and Zorin, 2004) or 4-valent meshes (Grimm and Hughe4995). For

our construction, the point-wise evaluation requires onlyational operations,

while (Ying and Zorin, 2004) need more complicated functian

In our construction, the subcharts and transition functiors can be adapted
to the geometry of the given triangular mesh. This is an impdoant di erence
to the method of Ying and Zorin (2004), where the transition dnctions and
charts depend solely on the connectivity, but not on the geoatry of the given
quadrilateral mesh.

The construction provides many possibilities for additioal investigations, e.g.,
concerning the optimal choice of charts (which do not need tbe circular)
and geometry functions. In particular, techniques for optnizing the surfaces
with respect to fairness measures should be of some interelst addition,
future work will concentrate on two issues. First, we plan t@address boundary
conditions and sharp features (edges) that may be present ingiven object.
Second, we plan to investigate other manifold constructienwhich are based
on subchart parameterization. In particular we will invesigate construction
methods for surfaces of relatively low degree.

Acknowledgment. This research has been supported by the Austrian Sci-
ence Fund (FWF) in the frame of the FSP S092 \Industrial geontey", sub-
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