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Abstract

This paper studies shapes (curves and surfaces) which can be described by (piece-
wise) polynomial support functions. The class of these shapes is closed under con-
volutions, offsetting, rotations and translations. We give a geometric discussion of
these shapes and present methods for the approximation of general curves and sur-
faces by them. Based on the rich theory of spherical spline functions, this leads
to computational techniques for rational curves and surfaces with rational offsets,
which can deal with shapes without inflections/parabolic points.

Key words: polynomial support function, approximation by spherical splines,
offset surfaces, convolutions.

1 Introduction

Due to their importance for various applications, offset curves and surfaces have
been subject of intensive research in Computer Aided Design (CAD). Offsetting
is closely related to the notion of the convolution of two surfaces, which contains
offsetting as a special case (convolution with a sphere).

The class of (piecewise) rational curves and surfaces (i.e., NURBS), which is fre-
quently used in CAD, is not closed under offsetting and convolutions. For this rea-
son, several approximate techniques have been developed [4,5,15]. These techniques
require a careful control of the approximation error. In particular, each offset curve
or surface has to be approximated separately.



On the other hand, it is possible to identify subsets of the space of rational curves
and surfaces which are closed under offsetting, or even under the (more general)
convolution operator. In the curve case, this led first to the interesting class of
polynomial Pythagorean–hodograph (PH) curves, see [6] and the references cited
therein. This class of curves is now fairly well understood, and various computational
techniques for generating them are available.

This approach has later been extended to the surface case, by introducing the class of
rational PH curves and Pythagorean–normal vector (PN) surfaces [17,16]. This class
has been defined by using a very elegant construction, which provides a dual control
structure: Starting from a dual parametric representation of the unit circle/sphere,
the dual control structure of a rational PH curve/PN surface is obtained simply by
applying parallel displacements to the control lines/planes.

In practice, however, it turned out that it is very difficult to use this dual control
structure for curve and surface design [20]. This motivated the investigation of al-
ternative representations, which may even deal with the more general operation of
convolution [13,19].

In order to deal with offsets and convolutions, the present paper studies the support
function representation of curves and surfaces. Roughly speaking, a curve/surface
is described by the distance of its tangent planes to the origin of the coordinate
system, which is the used to define a function on the unit circle/unit sphere. This
representation is one of the classical tools in the field of convex geometry, see e.g.
[3,11,12]. Its application to problems in Computer Aided Design can be traced back
to a classical paper of Sabin [18].

In order to use this representation for geometric design, we are particularly interested
in the case of (piecewise) polynomial support functions. By using functions of this
type, it is possible to apply the well–developed theory of spline functions on the
sphere to this case [1].

The remainder of the paper is organized as follows. After recalling some notions from
differential geometry in Section 2, the third sections shows how to describe shapes
by their support function. We introduce the linear space of quasi–convex shapes
and discuss smoothness of the surfaces and norms of associated operators. Section 5
discusses the case of polynomial support functions. It is shown that any shape with
a polynomial support function can be obtained as the convolution of finitely many
elementary shapes, which can be derived from certain hypocycloids 1 . Section 6 is
devoted to computational techniques for approximating general support functions
by (piecewise) polynomial ones. Finally, we conclude this paper.

1 In the curve case, related results were already noted in [8].
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2 Some notions from differential geometry

In this section we recall some fundamental notions from differential geometry: tan-
gent spaces, intrinsic gradients and Hessians of functions defined on manifolds, co-
variant derivatives, and differentials of mappings. We will present all these notions in
the case of manifolds which are embedded hypersurfaces, where they can be obtained
via projection into the tangent space.

We consider a smooth oriented d–dimensional manifold M (d = 1: a curve, d = 2: a
surface) which is embedded into the d+1–dimensional space R

d+1. The latter space
is equipped with the usual inner product (denoted by ‘·’). In particular, we are
interested in the case of the unit sphere (d = 1: circle) Sd. In order to avoid double
indices, we will omit the dimension d, writing S instead of Sd.

2.1 Tangent spaces and gradients

For any point p ∈ M we have an associated unit normal vector np which defines
the tangent space

TpM = {v | v · np = 0} ⊂ R
d+1, (1)

along with the orthogonal projection

πp : R
d+1 → TpM : x 7→ x − (x · np)np. (2)

Let h ∈ C1(Rd+1,R) be a real–valued function. The restriction of h to M defines a
C1 function on the manifold M .

For any vector v ∈ TpM we define the directional derivative

Dp(v)h = (v · ∇)h
∣
∣
∣
p
, (3)

where ∇ is the usual nabla operator in R
d+1, which is used like a column vector.

Moreover, the vector
∇Mh

∣
∣
∣
p

= πp(∇h
∣
∣
∣
p
), (4)

is called the gradient of h with respect to the manifold M . Observe that if v ∈ TpM

then Dp(v)h = (v · ∇M)h
∣
∣
∣
p
. The directional derivatives and the gradient of a

function h with respect to a manifold M are fully determined by the restriction of
h to M .

2.2 Covariant derivatives and Hessians

The restriction of a vector–valued function w ∈ C1(Rd+1,Rd+1) to M defines a
vector field on M , provided that w(p) ∈ TpM holds for all points p ∈ M . For any
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point p ∈M and tangent vector v ∈ TpM , the vector

Dp(v)w = πp( (v · ∇)w
∣
∣
∣
p
) (5)

is called the covariant directional derivative of the vector field w with respect to the
direction v at p. Again, Dp(v)w is fully determined by the restriction of w to M .

Let h ∈ C2(Rd+1,R) be again a real–valued function. The linear mapping

HessM
∣
∣
∣
p

: TpM → TpM : v 7→ Dp(v)(∇Mh) (6)

is called the Hessian of the function h with respect to the manifold M at the point
p. Once more, the Hessian of a function h with respect to a manifold M is fully
determined by the restriction of h to M .

2.3 The differential of a mapping between manifolds

We consider a function x ∈ C1(Rd+1,Rd+1), which is now seen as a mapping of R
d+1

to itself, with the Jacobian

J(x)
∣
∣
∣
p

: R
d+1 → R

d+1 : v 7→ (v · ∇)x
∣
∣
∣
p

(7)

We assume that the image of the manifold M is contained in another smooth ma-
nifold N . Then, for any point p ∈M , the restriction of the Jacobian to TpM maps
the tangent space of M into the tangent space of N at x(p). This linear mapping

dx
∣
∣
∣
p

: TpM → TNx(p) : v 7→ (v · ∇)x
∣
∣
∣
p

(8)

is called the differential of the mapping x : M → N at p. The differential depends
solely on the restriction of x to M .

2.4 The Gauss map and the Weingarten map

Recall that the Gauss map G of an embedded hypersurface assigns to a point the
associated unit normal,

G : M → S : p 7→ np. (9)

All properties concerning the curvature of M at a point p can be derived from
the Weingarten map W = −dG. Since the tangent spaces of M at p and of S at
np are identical, the map W is a linear map of TpM into itself. The eigenvectors
and eigenvalues of the Weingarten map are the principal directions and principal
curvatures, respectively, and the determinant of W is the Gaussian curvature of M
at p. The case of curves, along with an application to mechanical design, has been
studied in [9,10].
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3 Spherical harmonics

The first two sections summarize several results about spherical harmonics and
Fourier analysis. The third section defines a special basis of spherical polynomi-
als of bounded degree, which will be needed later to discuss shapes with polynomial
support functions. See [11] for more information on harmonic analysis and its appli-
cation in geometry.

3.1 The Laplace-Beltrami operator on S

Let h ∈ C2(Rd+1,R) be a real–valued function. The Laplace-Beltrami operator on S
is defined by

∆Sh
∣
∣
∣
p

=

(

∆h− ∂2h

∂np
2
− d

∂h

∂np

)
∣
∣
∣
p
, (10)

where ∆ is the usual Laplace operator in R
d+1 and ∂i/∂nip, i = 1, 2, denotes the

first and is the second derivative along the normal line of S at p, respectively. The
value of the Laplace-Beltrami operator depends solely on the restriction of h to S.

A homogeneous polynomial p(x) = p(x0, . . . , xd) of degree k is called harmonic
if ∆p = 0, where ∆ is the Laplace operator in R

d+1. We denote the spaces of
homogeneous and harmonic polynomials of degree k by Pk and Hk, respectively.
The Laplace operator maps Pk onto Pk−2. As Hk is the kernel,

dimPk = dimHk + dimPk−2 = · · · = dimHk + dimHk−2 + · · ·+ dimHσ, (11)

where σ = 0 if k is even and σ = 1 if k is odd. Since dimPk =
(
d+k
k

)

we obtain

dimHk =

(

d+ k

k

)

−
(

d+ k − 2

k − 2

)

=
2k + d− 1

k + d− 1

(

k + d− 1

d− 1

)

. (12)

The restriction of a harmonic polynomial of degree k to the unit sphere S is called
a spherical harmonic of degree k. A homogeneous polynomial p of degree k is de-
termined by its value on the unit sphere S. For p ∈ Pk, r ∈ R+ and n ∈ S one
obtains

p(rn) = rkp(n),
∂p

∂r

∣
∣
∣
n

= kp(n) and
∂2p

∂r2

∣
∣
∣
n

= k(k − 1)p(n). (13)

If p ∈ Hk is a spherical harmonic of degree k, then it is also an eigenfunction of ∆S

with the eigenvalue −k(k + d− 1)p,

∆S p = −k(k − 1)p− dkp = −k(k + d− 1)p. (14)

see (10). These spherical harmonics are the only eigenfunctions.
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3.2 Fourier analysis on S

From now on we consider the elements of the spaces Pk and Hk as functions on S.
Note that the degree of p ∈ Pk is not unique, as p(n) = ‖n‖2p(n) for n ∈ S.

On the other hand, for any two polynomials p ∈ Pk and q ∈ Pℓ which agree on S,
we get q(x) = ‖x‖ℓ−kp(x), hence ℓ − k has to be even. Furthermore, if p ∈ Hk,
then ∆‖x‖2ℓp(x) = ℓ‖x‖2ℓ−2p(x) 6= 0 unless ℓ = 0, so the extension of a spherical
harmonic to a harmonic polynomial is unique. Consequently, Hk∩Hℓ = {0} if k 6= ℓ
and we obtain from (11)

Pk = Hk ⊕Hk−2 ⊕ · · · ⊕ Hσ, (15)

where σ = 0 or 1. (Recall the the polynomials are considered as functions on S.)

Let P≤k and P denote the space of polynomials of degree ≤ k and the space of
all polynomials, respectively. They can be expressed as direct sums of spaces of
spherical harmonics,

P≤k = Pk ⊕ Pk−1 =
k⊕

ℓ=0

Hℓ and P =
∞⊕

k=0

Hk. (16)

As ∆S is a self-adjoint operator, the spaces of harmonic functions satisfy Hk ⊥ Hℓ

with respect to the inner product 〈·, ·〉 of L2(S). In harmonic analysis, one now
chooses an orthonormal basis for each of the spaces Hk. By collecting these bases
one obtains an orthonormal basis ψ1, ψ2, . . . of P. The inner products ck = 〈f, ψk〉
are then called the Fourier coefficients of a given function f ∈ L2(S), and

∑∞
k=1 ckψk

is called the Fourier series of f , both with respect to the given orthonormal basis.

3.3 A basis of polynomials of bounded degree

Instead of choosing a particular orthonormal basis of the spaces Hk, we now consider
expansions of the form

p =
k∑

j=0

pj, pj ∈ P≤j. (17)

where p ∈ P≤k. Clearly, a Fourier series is a particularly simple way to obtain an
expansion of this form. We define the polynomials

Pj(x) =

⌊ j

2
⌋

∑

ℓ=0

(−1)ℓ
(

j

2ℓ

)

xj−2ℓ(1 − x2)ℓ, (18)

which are obtained by expressing cos(jθ) in x = cos θ. Later, it will be shown that
these polynomials correspond to particularly simple geometric objects.
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Lemma 1 There exists a basis of P≤k which consists of polynomials of the form

pa,ℓ(x) = Pℓ(a · x) = Pℓ(a0x0 + · · ·+ adxd), ℓ = 0, · · · , k, a ∈ S, (19)

where dimHℓ = 2ℓ+d−1
ℓ+d−1

(
ℓ+d−1
d−1

)

different polynomials of degree ℓ (defined by different

points a ∈ S) are present.

Proof. First we show that the polynomials (19) span the space P≤k. As the degree
of the polynomial Pk is k we have that the monomial xk can be written as a linear
combination of the polynomials P0, · · · , Pk. That means that we for a ∈ S can write
(a ·x)k as a linear combination of the polynomials pa,0, · · · , pa,k. As (ca ·x)k = ck(a ·
x)k we can write (ca · x)k as a linear combination of the polynomials pa,0, · · · , pa,k.
Finally,

xk =
1

|k|!
∑

l≤k

(

k

l

)

(l · x)|k|,

where k and l are multi indices, |k| = k0 + · · ·+ kd, l ≤ k if l0 ≤ k0 ∧ · · · ∧ ld ≤ kd,(
k

l

)

=
(
k0
l0

)

· · ·
(
kd

ld

)

, and xk = xk00 · · ·xkd

d . So any polynomial
∑

|k|≤k ckx
k can be

written as a linear combination of the polynomials (19).

The Lemma is now shown by induction on k. If k = 0 then the it is obviously true.
So assume we have a basis forP≤k−1 of the required type. We can supplement this
basis to a basis for P≤k with polynomials of the type (19), as the new members of
the basis are in P≤k \P≤k−1 we have ℓ = k and by (16) the number of new elements
is dimHk. 2

4 Defining shapes by their support function

In this section we introduce the support function representation of hypersurfaces
and study its basic properties.

4.1 The envelope operator

From now on we often consider the unit sphere S as a d–dimensional manifold. Its
points will simply be denoted by n, since they coincide with the normals.

Definition 2 Let U ⊆ S be an open subset of the n dimensional unit sphere 2 and
h ∈ C1(U,R) be the support function. Let xh ∈ C0(U,Rd+1) be defined as

xh : n 7→ xh(n) = h(n)n + ∇Sh
∣
∣
∣
n
. (20)

2 A set U ⊆ S is said to be open in S if there exists an open subset Ũ ⊂ R
d+1 such that

U = S ∩ Ũ .
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The linear operator

E : C1(U,R) → C0(U,Rd+1) : h 7→ xh (21)

is called the envelope operator.

Recall that we consider the unit sphere S as an embedded manifold in R
d+1. Hence,

the gradient ∇Sh at n is contained in TnS ⊂ R
d+1, and n ∈ S ⊂ R

d+1.

The geometrical meaning of the formula (20) is as follows.

Proposition 3 The vector–valued function xh parameterizes the envelope of the
family of the hyperplanes

Tn = {x : x · n = h(n)}, n ∈ U ⊆ S, (22)

with normal vector n and distance h(n) to the origin.

Proof. For any point x ∈ R
d+1 we consider the function fx : S → R

fx : n 7→ n · x − h(n). (23)

If a point x belongs to the envelope and corresponds to a certain point n0 ∈ S, then
it satisfies

fx(n0) = n0 · x − h(n0) = 0 and ∀v ∈ Tn0
S : Dn0

(v)fx = 0. (24)

A short computation leads to

Dn0
(v)fx = ((v · ∇)n) · x − (v · ∇)h

∣
∣
∣
n0

= v · x − (v · ∇)h
∣
∣
∣
n0

, (25)

since (v · ∇)n = v. Consequently, after choosing a basis of Tn0
S, we obtain from

(24) a regular system of linear equations for x, which has a unique solution. On the
other hand, the point xh(n0) fulfills the equations (24). 2

Proposition 4 Let h ∈ C2(U,R), where U ⊆ S is an open subset of the unit sphere.
A point n ∈ U is called a regular point for the vector–valued function xh if

det(HessSh+ hI)
∣
∣
∣
n
6= 0, (26)

where I is the identity on TnS. The vector–valued function xh is a regular parame-
terization, if and only if all points n ∈ U are regular. If this assumption is satisfied,
then the tangent spaces of S at n ∈ U and of M = xh(U) at xh(n) are identical, the
differential of xh satisfies

dxh = HessSh + hI, (27)

and −(dxh)
−1 is the Weingarten map of M .
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Proof. A short computation confirms that for any v ∈ TnS

(dxh − hI − HessSh)
∣
∣
∣
n

(v)

= (v · ∇)(hn) + (v · ∇)(∇Sh) − hv − (v · ∇)(∇Sh) + {[(v · ∇)(∇Sh)] · n}n
∣
∣
∣
n

= (v · ∇h)n + h[

=v
︷ ︸︸ ︷

(v · ∇)n] − hv + ({(v · ∇)[

=∇Sh
︷ ︸︸ ︷

∇h− (n · ∇h)n]} · n)n
∣
∣
∣
n

= (v · ∇h)n + {[(v · ∇)(∇h)] · n}n − {[
=v

︷ ︸︸ ︷

(v · ∇)n] · ∇h}(
=1
︷ ︸︸ ︷
n · n)n

−{n · [(v · ∇)∇h]}(
=1
︷ ︸︸ ︷
n · n)n− (n · ∇h){[

=v
︷ ︸︸ ︷

(v · ∇)n] · n
︸ ︷︷ ︸

=0

}n
∣
∣
∣
n

= 0

where corresponding terms (that cancel each other) have been underlined. Conse-
quently, if (26) is satisfied, then dxh maps the tangent space of S onto itself. Since
the normal of S at n equals n, the inverse of the differential is minus the Weingarten
map. 2

In particular, the principal directions of M are the eigenvectors of HessSh and if λ is
an eigenvalue of HessSh, then −(λ+ h) is a principal radius of curvature. Since the
Weingarten map of the image of xh is invertible at all points, none of the principal
curvatures in any point can be zero. Thus, in the regular case, only curves without
inflection points and hypersurfaces without parabolic points can be obtained from
support functions.

The previously presented results are independent of a particular parameterization
of S. In order to analyze and to visualize the surfaces for d = 1, 2, the following
parameterizations may be useful.

Example 5 (d = 1) Consider the parameterization

n = n(θ) = (sin θ, cos θ)⊤, θ ∈ [−π, π) (28)

of S ⊂ R
2, which gives the outward normal. If h = h(θ) is a C1 support function 3

then

xh = h(θ)n(θ) + h′(θ)n′(θ) (29)

If h = h(θ) is C2, then

dxh : n′(θ) 7→ (h′′(θ) + h(θ))n′(θ). (30)

In particular, it is easy to see that the curvature of the curve xh(θ) equals κ(θ) =
−(h′′(θ) + h(θ))−1.

3 Here we simply write h(θ) instead of h(n(θ)).
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Example 6 (d = 2) Consider the parameterization

n = n(φ, ψ) = (sin φ sinψ, cosφ sinψ, cosψ), φ ∈ [−π, π)⊤, ψ ∈ [0, π) (31)

of S ⊂ R
3. If h = h(φ, ψ) is a C1 support function, then

xh(φ, ψ) = h(φ, ψ)n +
hφ(φ, ψ)

sin2(ψ)
nφ + hψ(φ, ψ)nψ, (32)

where the subscripts indicate the partial derivatives. If h(φ, ψ) is C2, then the dif-
ferential dxh is defined by its values on the basis nφ,nψ of TnS,

dxh
∣
∣
∣
n

(nφ) = (h+
hφφ

sin2 ψ
+
hψ cosψ

sinψ
)nφ + (−hφ cosψ

sinψ
+ hψφ)nψ

dxh
∣
∣
∣
n

(nψ) = (
hφψ

sin2 ψ
− hφ cosψ

sin3 ψ
)nφ + (h+ hψψ)nψ.

(33)

4.2 The linear space of quasi–convex shapes

It will be convenient to interpret x ∈ C0(S,Rd+1) as an oriented shape, i.e. as a
set Im(x) ⊂ R

d+1 together with normal vectors n attached at x(n) for all n. If the
mapping x is not injective, then more than one normal can be attached to some
points of the shape. Also, for a general function x, the surface normal at x(n) may
be different from n. However, they are identical at regular points of x = xh.

Definition 7 The oriented shapes obtained as Im(xh) from C1 support functions
h ∈ C1(S,R) will be called oriented quasi-convex shapes (curves, surfaces). The
space of all oriented quasi-convex shapes will be denoted Qd.

Qd possess the structure of a real linear space with respect to convolution (addition
of the support functions) and homotheties with center 0 (multiplication by scalar).

Remark 8 The convolution of two oriented surfaces A, B with associated unit
normal fields n = n(b), m = m(b) for a ∈ A, b ∈ B is the surface

A ⋆ B = {a + b |n(a) = m(b)}. (34)

This notion is closely related to Minkowski sums. In the general case, the boundary
of the Minkowski sum of two sets A,B is contained in the convolution of the two
boundary surfaces δA, δB. In the case of convex sets, the boundary of the Minkowski
sum and the convolution surface are identical. If one of the surfaces is a sphere, then
the convolution is a one–sided offset surface. See [19,21] for more information and
related references.

Example 9 We analyze the oriented shapes which are associated with the simplest
possible support functions.
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Table 1
Geometric operations and corresponding changes of the support function.

Geometric operation Modified support

Translation by vector v hv(n) = h(n) + n · v
Rotation by matrix µ ∈ SO(d + 1) hµ(n) = h(µ−1(n))

Scaling by factor c ∈ R hc(n) = c h(n)

Offsetting with distance d hd(n) = h(n) + d

Change of orientation (reversion of all normals) h−(n) = −h(−n)

• If h(n) = c is a constant function, then xh(n) = cn. The corresponding shape
is the sphere with the radius |c| oriented by outer (if c > 0) or inner (if c < 0)
normals.

• If h(n) = n · v, where 0 6= v ∈ R
d+1 is a constant vector, then

∇S(h)
∣
∣
∣
n

= πn(v) = v − (v · n)n, (35)

hence xh(n) = v. The corresponding shape is the single point v with attached
unit normals in all directions.

Proposition 10 The set of quasi-convex shapes Qd is closed under the geometric
operations of translation, rotation, scaling, offsetting, convolution and change of
orientation (reversion all normals).

Proof. Table 1 summarizes how these geometrical operation affect the corresponding
support function. 2

In particular, the envelope operator commutes with any special orthogonal transfor-
mation µ ∈ SO(d+ 1),

µ ◦ E = E ◦ µ. (36)

4.3 Smoothness

If h is Ck, then xh = E(h) is Ck−1. However if it defines a regular hypersurface
M = xh(U), then M is even Ck. More precisely, there exists a Ck parameterization
of the hypersurface. We discuss this in the following proposition.

Proposition 11 Let h : U → R, where U is an open subset of S, be a Ck function.
Recall that πn is the orthogonal projection from R

d+1 to TnU = Txh(n)M and that

πn

∣
∣
∣M is a local homeomorphism. If k ≥ 2 and (26) holds at all points n ∈ U , then

the inverse projection (πn

∣
∣
∣M)−1 is a local Ck parameterization.

Proof. The regularity condition immediately shows that (πn

∣
∣
∣M)−1 is a local Ck−1

parameterization. As the normal n is a Ck−1 vector valued function too, an inspection
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of the proof of [7, Theorem 10.1] reveals that (πn

∣
∣
∣M)−1 is of class Ck. 2

In the case k = 1 the regularity condition (26) does not make sense and instead it is
essentially necessary to assume the existence of a tangent plane to show that M is
of class C1. However, in applications, the support function h will often be given as a
piecewise C∞ function. In this situation, it is possible to derive a simpler condition.

Proposition 12 Let h : U → R, where U is an open subset of S, be a C1 function.
We assume that h is C2 for all n ∈ U0 ⊆ U , where U \ U0 is a collection of finitely
many smooth sub–manifolds of dimension d− 1 intersecting transversally in S, and
we let πn be as in the previous proposition. If there exists an ǫ > 0 such that the
function det(HessS(h) + hI) satisfies either

∀n ∈ U0 : det(HessS(h) + hI)
∣
∣
∣
n
> ǫ or ∀n ∈ U0 : det(HessS(h) + hI)

∣
∣
∣
n
< −ǫ,

then (πn|M)−1 is a local C1 parameterization around xh(n) for all n ∈ U .

Proof. From the previous proposition M = x(U) is a collection of C2 patches. If two
of these patches meets along a common C2 boundary, then they meet with matching
tangent spaces, so either they do form a C1 hypersurface or they meet in a cuspidal
‘edge’ (of dimension d − 1). Let x(n) be a point on the common boundary and
choose a basis v1, . . . ,vd for the tangent space TnS

n such that dnxv1, . . . , dnxvd−1

is tangent to the common boundary. If the two values of dnxvd is on the same
side of span{dnxv1, . . . , dnxvd−1} then the hypersurface is C1 at x(n). Thus, the
hypersurface is C1 if the two orientations of the tangent space Tx(n)x(U) agrees,
and as the orientation is determined by the sign of det(HessS(h) + h), the result
follows. 2

4.4 Norms

Next we discuss the relation between various norms of h ∈ C1(U,R) and xh =
E(h) ∈ C0(U,Rd+1), where U ⊆ S.

Proposition 13 The point–wise equation

∀n ∈ U : ‖xh(n)‖2 = |h(n)|2 + ‖∇Sh
∣
∣
∣
n
‖2 (37)

implies

‖xh‖2
2 = ‖h‖2

2 + ‖∇Sh‖2
2, (38)

where ‖ · ‖2 is the L2 norm in C1(U,R) and C0(U,Rd+1), respectively, and

‖xh‖2
∞ ≤ ‖h‖2

∞ + ‖∇Sh‖2
∞, (39)

where ‖ · ‖∞ is the L∞ norm in C1(U,R) and C0(U,Rd+1), respectively.
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Proof. The first equation (37) follows from n · ∇Sh
∣
∣
∣
n

= 0. 2

Proposition 14 If h ∈ C2(S,R) satisfies (26) for all n ∈ S, then

‖xh‖∞ = ‖h‖∞. (40)

Proof. The maximum of ‖xh‖2 = |h|2 + ‖∇Sh‖2 is attained at a point where the
gradient vanishes. Since

∇S(h
2 + ∇Sh · ∇Sh) = 2h∇Sh+ 2HessSh∇Sh = 2(HessSh+ h)∇Sh

this occurs at a point where ∇Sh
∣
∣
∣
n

= 0. At this point, (37) becomes ‖xh(n)‖ =

|h(n)| which is bounded by ‖h‖∞, hence ‖xh‖∞ ≤ ‖h‖∞. On the other hand, the
point–wise equation (37) gives ‖h‖∞ ≤ ‖xh‖∞. 2

This result is closely related a classical bound on the Hausdorff distance of convex
shapes. If h1, h2 are the support functions of two closed convex hypersurfaces C1, C2

with outward pointing normals, then

distHausdorff(C1, C2) = ‖h1 − h2‖∞, (41)

see [11].

In the case of a constant support function h, the inequality (39) is an equality.

Corollary 15 The norm of the envelope operator E is 1 when considering the L2

(resp. L∞) norm of the domain space and the corresponding Sobolev norm of the
image space.

Remark 16 The regularity condition (26) is indeed necessary for (40), as shown
by the following example. Let d = 1 and consider the parameterization (28) of S.
Then h(θ) = cos(2θ) defines a C2 function on S. The envelope xh can be evaluated
using (29),

xh(θ) = (−3 sin(θ) + 2 sin3(θ), 3 cos(θ) − 2 cos3(θ))⊤,

see the first picture of Fig. 2. We obtain ‖xh‖∞ = |xh(π/4)| = 2 and ‖h‖∞ = 1.

5 Polynomial support functions

In this section we study the shapes corresponding to support functions obtained by
restricting polynomials defined on R

d+1 to S.

Definition 17 A quasi-convex shape with a support function which is a restriction
of a polynomial of degree k on R

d+1 to S will be called quasi-convex shape of

degree k.

13



The set of all quasi-convex shapes of degree k forms a linear subspace of Qd closed
under all geometric operation listed in the Table 1. In particular, this set is (for
k > 0) independent of the choice of the coordinate system, as the space of support
functions contains linear polynomials (which correspond to translations) and this
space is also invariant under rotations, see Proposition 10 and Eq. (36).

Proposition 18 Any quasi–convex shape of degree k admits a rational parameter-
ization of degree 2k + 2.

Proof. If the support function h is a polynomial of degree k, then both hn and
∇Sh = ∇h− (∇h · n)n are restrictions of polynomials of degree k + 1 to S. Conse-
quently, xh = E(h) is the restriction of a polynomial of degree k + 1. By composing
it with a quadratic rational parameterization of S (which can be obtained via stere-
ographic projection) we obtain a rational parameterization of degree 2k + 2. 2

5.1 Curves (d = 1)

Even simple polynomial support functions on the circle correspond to rather com-
plicated and non-symmetric shapes. On the other hand, using the parameterization
(28) of the circle, any such function can be expressed as a trigonometric polynomial
in θ. The basis functions cos(kθ) and sin(kθ) lead to simple quasi-convex oriented
shapes.

Lemma 19 The hypocycloid generated by rolling a circle of radius r within a circle
of radius R has the support function

h(θ) = (R − 2r) cos
(

R

R − 2r
θ
)

(42)

with respect to the parameterization (28).

Proof. We choose the coordinates such that the fixed circle is centered at the origin,
while for θ = 0 the center of the rolling circle is located at (0, R−r)⊤, and the tracing
point at (0, R−2r)⊤, see Figure 1, grey circle. The associated normal is the “outer”
normal (0, 1)⊤. Suppose that the small circle rotates through angle α arriving at the
position represented by the small black circle. By the definition of the hypocycloid
we have ∡LSP = α and ∡Y OT = (r/R)α. Moreover, the normal of the hypocycloid
at the point P passes through the point T of contact of both circles. The tangent
KP is therefore perpendicular to the segment TP and passes through L. Due to the
similarity of triangles △KOL ∼ △PTL,

∡KOT = ∡LTP =
∡LSP

2
=
α

2
(43)
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Fig. 1. A hypocycloid and its tangent.

and the angle θ of the normal KO at P equals

θ = ∡KOY = ∡Y OT − ∡KOT = −R − 2r

2R
α. (44)

Finally we obtain the distance of the tangent KP from the origin

h(θ) = |KO| =
R− 2r

2r
|TP | =

R− 2r

2r
2r cos

α

2
. (45)

which implies (42). 2

By choosing r = k−1
2

and R = k in (42) we obtain the support functions

h(θ) = cos(kθ), k ∈ N

defined over the entire circle S. The corresponding shapes are closed hypocycloids
with ratio of circle radii k : k−1

2
. They will be called hypocycloid of degree k, see Fig.

2. If k is odd, the hypocycloid is traced twice, but with opposite normals.

Proposition 20 The hypocycloid of degree k is a quasi-convex curve of degree k.
Any quasi-convex curve of degree k can be obtained as the convolution of a circle, a
point and at most k−1 hypocycloids (suitably rotated and scaled). Only hypocycloids
of degree less or equal to k occur, each at most once.

Proof. Using (28), the support function cos(kθ) on S can be expressed a polynomial
of degree k in cos(θ) = y,

cos(kθ) =

⌊k
2
⌋

∑

ℓ=0

(−1)ℓ
(

k

2ℓ

)

yk−2ℓ(1 − y2)ℓ. (46)

The hypocycloid of degree k is therefore a quasi-convex curve of degree k. For any
quasi–convex curve of degree k, the support function has a finite Fourier expansion

p(x, y) = p0 +
k∑

i=1

(ci cos(iθ) + si sin(iθ)). (47)
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Fig. 2. Hypocycloids of degree 2 to 7 with attached normals. Note the
different scaling.

For each i, we can find an angle θi such that ci = mi cos(iθi) and si = mi sin(iθi),

where mi =
√

c2i + s2
i , hence

p(x, y) = p0 +
k∑

i=1

mi cos(i(θ − θi)). (48)

Consequently, the curve is obtained as the convolution of a oriented circle with radius
p0, the point (m1 sin(θ1), m1 cos(θ1))

⊤ and of k − 2 rotated hypocycloids obtained
for i = 2, . . . , k. 2

Example 21 Consider the polynomial

p(x, y) = 32
5
y4 + 7

3
x3 + 4 x2y − 17

4
xy2 − 7

5
y3 − 3

4
x2 + 2 xy − 86

15
y2 + 3 x− 14

5
y + 154

5
.

The corresponding quasi–convex curve is shown in Figure 3, left. By computing the
Fourier coefficients, one finds that it is equal to

h(θ) = 719
24

+
[

57
20

cos (θ) + 59
16

sin (θ)
]

+
[

17
24

cos (2 θ) + sin (2 θ)
]

+

+
[

−27
20

cos (3 θ) − 79
48

sin (3 θ)
]

+ 4
5

cos (4 θ) .
(49)

with respect to the parameterization (28). The original curve is therefore obtained
as a convolution of the circle with radius 719

24
, of the point [57

20
, 59

16
] and of the three
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= circle
⋆ point ⋆ ⋆ ⋆

Fig. 3. A curve (left) and its three hypocycloidical components.

Fig. 4. HCR-surfaces of degrees 2 to 6.

hypocycloids shown in Fig. 3, right.

5.2 Hypersurfaces (d ≥ 2)

In order to extend the previous results to an arbitrary dimension, we define what
we call an HCR-shape of degree k. It is the shape with the support function defined
as the restriction of

⌊k
2
⌋

∑

ℓ=0

(−1)ℓ
(

k

2ℓ

)

xk−2ℓ
1 (1 − x2

1)
ℓ (50)

considered as a polynomial in x1, x2, ..., xd+1 (though only x1 appears). In particular,
if d = 2, then this HCR shape is simply the surface of Revolution obtained by ro-
tating the HypoCycloid (42) of degree k around the x2–axis. Similar interpretations
exist for higher dimensions. See Fig. 4 for examples of HCR-surfaces (i.e. d = 2).
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Proposition 22 The HCR-shape of degree k is a quasi-convex shape of degree k.
Moreover, any quasi-convex shape of degree k can be obtained as a convolution of a
sphere, a point and at most

2k + n

k

(

n + k − 1

n

)

− (d+ 1)

HCR-shapes. Only HCR-shapes of degree i ≤ k occur, each at most

2k + n− 1

k + n− 1

(

k + n− 1

n− 1

)

times.

Proof. The HCR-shape of degree k has the support function given by restriction
of the polynomial (50) and therefore it is a quasi-convex shape of degree k. The
support function for a HCR-shape is of the type (19), so the proposition is obtained
by applying Lemma 1. 2

6 Approximation of support functions

Based on the previous results, we show how to approximate any quasi–convex curve
or surface by rational curves or surfaces with rational offsets.

6.1 Harmonic expansion

The support function of a given quasi–convex shape can be approximated by its
harmonic (d = 1: Fourier) expansion up to certain degree. The corresponding shape
approximates the original one with an accuracy which can be determined from the
support function, due to Proposition 13. These approximations preserve all original
symmetries.

This approach is particularly well suited for “smooth” shapes. Due to Proposition 18,
we obtain approximations of the original shape by rational curves (and surfaces) with
rational offsets.

We illustrate this observation by two examples.

Example 23 In order to demonstrate the approximation power of the Fourier ex-
pansion, we approximate the planar shape with the support function

h(θ) = sin(sin(θ)) + cos(cos(θ)) +
1

2

(see the grey curve in Fig. 5) by shapes of finite degree (black curves).
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Fig. 5. Approximations of a given quasi–convex curve (grey) by (rational) shapes
of finite degree k. The Hausdorff distance ǫ between the target and the approx-
imation shapes (printed below each figure) is invisible for k > 3. In order to
show the mutual position of the curves, we magnified the gap between them by
coefficient mag.

Example 24 We approximate an ellipsoid with axes of lengths 1,
√

2 and 2. The
support function is the restriction of h0 =

√
x2 + 2y2 + 4z2 to S. Figure 6 shows the

approximation of the ellipsoid and of its offsets based on the harmonic expansion
up to degree 6, which corresponds to a rational parametric representation of degree
14. The error of the shape approximation is 0.00187, or about 0.05% of the biggest
diameter of the ellipsoid.

Fig. 6. Parametric rational approximation of degree 14 of the ellipsoid
(outer shape) and of its two interior offsets at distances 0.45 and 0.9.
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Table 2
Approximation error of a biquadratic tensor product patch.

Degree Error Degree Error Degree Error Degree Error

2 3.86 10−1 4 2.80 10−2 6 1.38 10−3 8 6.32 10−5

3 1.09 10−1 5 6.50 10−3 7 2.66 10−4 9 1.37 10−5

6.2 Localized approximation

In many cases, only a surface patch may be given, and the use of a more local
technique than global harmonic expansion may be more appropriate. We suppose
that points Xi and associated unit normals ni sampled from a surface patch are
given. Consequently, Xi · ni are the values and Xi −Xi · ni are the gradients of the
support function of the patch at the point ni of S.

In order to approximate the given surface by a surface with rational offsets, we
are looking, within a given space H, for the support function h approximating these
values and gradients in the least-squares sense. More precisely, we solve the quadratic
minimization problem

min
h∈H

(
N∑

i=1

(h(ni) −Xi · ni)2 +
N∑

i=1

∣
∣
∣
∣

∣
∣
∣
∣∇Sh

∣
∣
∣
ni

− Xi + Xi · ni
∣
∣
∣
∣

∣
∣
∣
∣

2
)

, (51)

where H is a suitable linear space of support functions 4 . The unique minimum can
be computed by solving a linear system of equations where unknowns are coefficients
of h with respect to some basis of H.

In our example (see below) we considered H to be (restrictions of) polynomials up
to degree k. As a basis of this space one may choose the monomials of total degree k
and k−1, i.e. the basis {xpyqzr : (k−1) ≤ p+ q+ r ≤ k}. Clearly, it is also possible
to use other spaces of functions, such as piecewise polynomials (i.e., spherical spline
functions, see [1]).

Example 25 We consider a biquadratic polynomial tensor-product patch, see Fig-
ure 7. We sample N points [Xi]

N
i=1 and we compute the unit normals [ni]

N
i=1 at these

points. In our example we considered N = 256 points sampled at a regular grid in
the parameter domain. As a result we obtain an approximation of the original patch
by a piece of quasi-convex surface of degree k. Simultaneously we obtain approxi-
mations of all offsets within the same error. Table 2 and Figure 7 show and visualize
the approximation error and its improvement for increasing degree of the support
function.

4 The summation in (51) can be seen as simple numerical integration, and the objective
function could be defined using an integral.
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Fig. 7. Approximations of the biquadratic patch and its offsets.

6.3 Piecewise linear approximation

As the simplest instance of spherical splines, we consider piecewise linear support
functions which are defined on a triangulation of the Gaussian sphere. The segments
of this function are restrictions of linear polynomials of the form ax + by + cz to
the sphere. They can be pieced together along great circular arcs, so as to form
a globally continuous function. This simple class of spline functions can be used
to interpolate the values of the support function at the vertices of the underlying
spherical triangulation.

The associated surface cannot be obtained directly from the envelope operator, since
the support function is not differentiable. Still one may associate a piecewise linear
surface with it, which is the envelope of the family of planes (22). Its facets and
vertices correspond to the vertices and triangles of the piecewise linear function on
the Gaussian sphere, respectively. See [2] for a more detailed discussion, which also
addresses the problem of regularity of the facets.
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Fig. 8. Support function based approximations of elliptic and hyperbolic surfaces
with piecewise linear surfaces.

Example 26 We consider the support functions which have been obtained by piece-
wise linear interpolation of the support functions of two quadric surfaces, see Fig.
8. Consequently, each facet of the piecewise linear surface is the tangent plane of
the original surface at the point with the same normal. In the case of an ellipsoid,
which contains only elliptic points, we obtain a mesh which consists mostly if convex
hexagons (see Figure 8, top row). In the case of a hyperboloid of one sheet, which
contains only hyperbolic points, we get a mesh which consists mostly of bow–tie–
shaped non–convex hexagons (see Figure 8, bottom row).

7 Conclusion

In this paper we explored several aspects of the representation of curves and surfaces
by (piecewise) polynomial support functions. The corresponding shapes are very well
suited to define a set of curves and surfaces which is closed under convolutions and
offsetting. Similar results can be obtained for other linear spaces of support functions
(which should – of course – contain linear polynomials).

As a matter of future research, we aim at extending these results to curves and
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surfaces with inflections resp. with parabolic points. For instance, one might consider
support–like functions defined on other surfaces than spheres. As another interesting
questions one may try to identify conditions on the Bézier control points and weights
of rational curves and surfaces which guarantee that the curve / surface belongs to
a class of quasi–convex shapes of a certain degree. Finally, it should be interesting
to investigate curves and surfaces defined by rational support functions.
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[19] Sampoli, M.L., Peternell, M., and Jüttler, B., Rational surfaces with linear normals
and their convolutions with rational surfaces, Comput. Aided Geom. Design 23

(2006), 179–192.

[20] Schickentanz, R., Interpolation und Approximation durch B–Spline–Flächen mit
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