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Abstract. We consider surfaces whose support function is obtaineddtyicting a quadratic poly-
nomial to the unit sphere. If such a surface is subject toid bigdy motion, then the Gauss image
of the characteristic curves is shown to be a spherical iguenitve, making them accessible to
exact geometric computation. In particular we analyze gse ©f moving surfaces of revolution.
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1 Introduction

Envelopes of moving surfaces are needed for computing teptsvolume which is
traced out by a moving solid. They can be obtained by cofigdtie characteristic
curves, where the moving surface touches its envelope &ea gime. In Robotics,
these computations are related to the problem of colliseteation. Other applica-
tions include the numerical simulation of milling processehere the tool can be
modeled as a surface of revolution.

[Abdel-Malek et al., 2006], give a detailed survey about giwelume compu-
tation with many related references. [Peternell et al. 5206bmpute the boundary
of the swept volume generated by a general moving objectwisiassumed to be
given as a triangular mesh. Special attention is paid to ltioéce of the time—step
for computing the characteristic curves.

Envelopes of certain specific classes of surfaces have lbedyrad in more de-
tail. [Flaquer et al., 1992], studied envelopes of movingdyic surfaces, in particu-
lar moving planes, spheres, cylinders and cones. In aletbases, the characteristic
curves are algebraic space curves of degree 4. [Xia and G&],a2tbnsider cylin-
ders as an example for milling tools and generate an exaotgeptation of the
boundary surface.

We discuss the case of surfaces which are specified by thgposufunctions.
These surfaces can explicitly be parameterized by its gg&/&auss maps and we
use this observation to characterize the characteristicesuThe case of surfaces
with quadratic support functions is discussed in detailcsithey allow the exact
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computation of the characteristic curves. General sugpodtions can be approx-
imated by surfaces with piecewise quadratic ones, whictdafi@ed over a given
spherical triangulation. This should make it possible tteesl the results of this
paper to more general objects.

2 Support Functions

We recall the support function representation of surfases €.g.$ir et al., 2008]).
Consider a given functioh € C*(S?,R), whereS? denotes the unit sphere RP.
We use this function to associate with each pairg S the plane with the unit
normaln and oriented distand&n) to the origin.

The envelope of the two—parameter family of planes obtamedaryingn in
S? describes a surface. The given functiois called thesupport functiorof this
surface. For any € C*(S?,R), a parameterizatiox, € C*(S?,R) of the surface is
given by its inverse Gauss map,

xn(n) = h(n)n+ (Dgzh)(n), 1)

where(Og2h) is the intrinsic gradient of the support functibrwith respect to the
unit spheres?. If the support functiom is obtained by restricting a suitable function
h? € C*(R3,R) to the unit spher&?, then

(Bseh)(n) = (OR°)(n) — [(Oh%)(n) - n]n. @)

This parameterization, whose domain is the unit spherenoarbe composed with
any parameterization 6, e.g., by spherical coordinates.

In this paper we are particularly interested in the case @itrer support function
is the restriction of a trivariate quadratic polynomia$to We call the corresponding
envelopesjuadratically supported surfaces (QS$Ehe class of QSS is closed under
translations, offsetting and rotations, as these geoamgtegrations correspond to the
addition of constants and homogeneous linear polynonaatsto the composition
with rotations, respectively.

Example 1Letn = (x,y,z) " and consider the two support functions
h(n):x2+y2+gzz and h(n)=x2+y*— 7. (3)
The associated QSS have the parametric representagons=

—x3—xy2—§x22+2x —x3 —xy? + X2+ 2x
—y—y - 3yZ+2y | and | —y@—yi+yZ+2y |, (4)
28 -2y - 32 +32 —z2% — 2+ -2z
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Fig. 1 Quadratically supported surfaces (QSS).

respectively. Both support functions describe surfacegwdlution, shown in Fig.
1, and the profile curve of the second one is a special trochoid

3 Motions, velocities, characteristics

As usual, we describe a rigid body motion by a time—depenti@nsformation
X' =t(a)+U(a)x (5)

between world coordinates and moving coordinates, where the parameter
represents the time, the vectdo ) represents the translation of the origin, and the
special orthogonal matrid (o) specifies the rotation. For an arbitrary but constant
value ofa, we compute the velocity vectet of a fixed pointx in the moving system

vV =t+Ux, (6)

where the dot indicates differentiation with respecot@nd the argument has
been omitted. This velocity is transformed into the movipgtem

v=U"V=UTt+UTUx=U"t+wxx, (7)

wherew denotes the angular velocity.

We consider a surface in the moving space, which is assumieel goven by its
support function representation. The surface touchesthe@pe along theharac-
teristic curve Let

Vh(n) =U Tt 4 w x xp(n) (8)

be the velocity of the point,(n), then the characteristic curve consists of all points
where the inner product of the velocity and the surface nbmvanishes,
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Vh(n)-n=0. 9

In the case of a moving QSS, the Gauss image of the chardicterisve (i.e., the
spherical curve obtained by collecting the surface norralmlsg it) is particularly
simple:

Theorem 1. The Gauss image of the non—degenerate characteristic ofwenov-
ing QSS is a spherical quartic.

Proof. After substituting Eqns. 1, 2 and 8 into Eg. 9 one gets aftdroatsomputa-
tion

(uTt ta % (Dh)(n)) -n+ (h(n) — (Oh)(n)-n)(@xn)-n=0.  (10)

N——
=0

If his a trivariate polynomial of degree 2, then this equatioofislegree 2. The
Gauss image of the characteristic curve consists of alasarhormals that satisfy
Eqg. 10 andh - n = 1. Consequently, it is either the intersection of two quadtir-
faces, or it degenerates into the entire unit sphere. d

Summing up, the Gauss image of the characteristic curveeizeho set of the
two quadratic polynomials

f(n) = (UT\'/+ w' x (Dh)(n)) nandg(n)=n’.-n-1. (11)

The envelope surface can be generated by collecting alhcteistic curves ob-
tained for different values af and transforming them into world coordinates.

4 Characteristic curvesfor QSS of revolution

In this section we compute a parameterization of the chariatt curve for a fixed
time a. Its Gauss image is the intersection curve of the two quadiédined by the
quadratic polynomials in Eq. 11.

[Dupont et al., 2008], describe a sophisticated algoritbritie computation of
a near-optimal parameterizations of the intersectionewoftwo quadric surfaces.
This algorithm assumes that the coefficients of the two catadequations belong
to the field@Q of rational numbers. The intersection curve is paramesdrizith
the help of square-root functions of certain polynomidiat belong to the ring of
polynomials over a special field extension®f In the most general case, the com-
putation of the exact parameterization requires the solubf a quartic equation,
and the corresponding field extension.

In the remainder of this paper we restrict ourselves to QSiSwdre surfaces of
revolution with respect to the-axis. The support function then takes the form

hr(n) = a(X® +y?) + bZ + cx+ dy+ez+ f. (12)
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We assume that the coefficiertd, c,d,e, f are in the fieldQ of rational numbers,
and that the components of the angular veloaitand the translational velocity
are also from this field.

Lemma 1. There exists a poinP on the Gauss image of the characteristic curve
with coordinates in the field extensi@{+/r ), where r is an integer.

Proof. We consider an arbitrary but fixed rational numbgeif we substitutez = 7z
in Eq. 11, then this equation becomes linear in the remainar@blesx andy.
Indeed, quadratic terms in Eq. 11 may be present onlyinx (Ohg)(n)]-n =
[(Ohg)(n) x n]- &/, and a short computation confirms that

2(a—b)yzn—ey+dz
(Ohg)(n) xn=| 2(b—a)xz+ex—cz | .
cy—dx

(13)

Consequently, the points on the Gauss image of the chasdteurve withz = z
can be found by solving a single quadratic equation. Sineg3huss image of the
characteristic is always non—empty, it is possible to ceagsuch that real solutions
exist. O

Based on this result we compute a parameterization of thessGawage of the
characteristic curve by the Enhanced Levin’s method (ELMy\¥ang et al., 2003],
which is summarized below:

1. Find a real poinP on the intersection curvi(n) = g(n) = 0. This point serves
as the center of the stereographic projection intoxtrg@lane (another plane may
be used).

2. LetQ = (&,n,0)". The image of the spherical quartic under the stereographic
projection is the planar cubic curve defined by the cubic poiyial

c(é&,n)= Resultan(tt} f(tQ+ (1—-t)P), %g(tQ +(1-t)P;t). (14)
3. Find a squareroot—parameterizatiorctf, n) = 0 and project it back onto the

unit sphere.

The first part of the last step will be explained in more detailst we find a point
R on the cubic curve. For instance, it can be chosen as thesédiion point of the
curve tangent @ with thexy-plane. In this case, the coordinate$bére again in
Q(+/1). We then consider the pencil of lines

()@ rmmen oo

and substitute into the cubic polynom&E , ) = 0. After factoring out the trivial
solutiont = 0, we solve the resulting equation, which is quadratig fiort and get

a solution of the form
(g = I, (16)
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Fig. 2 Characteristic curves on a moving non—convex QSS of reeolut

where the three polynomialgs), ¢(s) andm(s), which possess the degrees 2, 4 and
3, respectively, belong to the ring of polynomials over tieédfiextensiorQ(1/r).

The projection of the cubic back onto the sphere, and the atatipn of the
characteristic curve by substituting the result into Eqvbives only rational oper-
ations. We summarize the results of this section.

Theorem 2. The characteristic curve of a QSS of revolution, where theffmients
of the support functions and the components of velocity argilar velocity are
rational numbers, possesses a parameterization

(ra(s V). r2(8 VI 15(5 V) an

The rational functionsir. R — R, i = 1,2, 3, and the quartic polynomial(s) have
coefficients in the field extensi@(/r), where r is an integer.

5 Examples

Example 2We consider a motion with(ar) = (1,1,0)" and

1 5cosa +4 2—2cosa —6sina 4—4cosa + 3sina
U= 9 2—2coso +6sina 8cosa +1 2—2cosa —6sina (18)
4—4cosx — 3sina 2—2cosa + 6sina 5cosa +4

and apply it to the non—convex QSS of revolution from the sdcgection. Fig. 2
shows several positions of the moving non—convex surfadetiza corresponding
characteristic curves.

In order to obtain expressions with rational coefficient® swbstitute both

sina = 13;32 and cosr = 1—//;2 inUT, whileUTU is a constant matrix, dd de-
scribes a uniform rotation with axis directi¢®, 1,2) ". As an example, we consider
B=2,ie.,a~0.927, where the two quadratic equations, which define the £3aus

image, are

f =15x— 20xz— 9y +40yz+ 12z and g=x>+y?+7—1. (19)
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Fig. 3 Several characteristic curves of
a moving convex QSS of revolution,
forming the envelope surface.

A possible center of projection is found after choosing- 1,
P=(-§+7vE -5 56 17 @0

After projecting the spherical quartic into a planar cubi ebtain a parameteriza-
tion of the formc(s) = (ci1(s), c2(s),0), where

Ai(8) +Bi(s)V/C(9)
)

(8= —13m(s

(21)

with certain polynomialgy, B;, C andD with coefficients in@(\/é). For instance,

D(s) = 5032323918 4 (7828867486 -+ 7806587880

+(4537170456/6 + 4626036855¥+ 10293044618 6 + 24121304410 (22)

Finally, the coordinates of the characteristic curve inftihmv/ing system are given
by expressions of the form

(Pr(9 VS +pa(9)) (Prs(9)/C(8) + Prs(s))
(pa(9v/CS) + po(9)) " (ps(8))°

, (23)

wherep; represents a polynomial of degriesith coefficients inQ(1/6).

Example 3We performed a similar computation for a screw motion of thevex
surface. The resulting characteristic curves are showigin3-

Example 4We modeled a robot-like structure by composing three sjgteard two
non-convex QSS. This structure performs a motion which meggted by two uni-
form rotations of the arms. Fig. 4 shows some characteigstices which are cre-
ated during this motion. A collision detection can now beelby checking intersec-
tions between the characteristic curves and the envirohmbis type of robot-like
structures could be used as bounding volumes for real maciaevices.
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Fig. 4 Characteristic curves of
several positions of a moving
robot-like structure, forming the
envelope surface.
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