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Abstract. We consider surfaces whose support function is obtained by restricting a quadratic poly-
nomial to the unit sphere. If such a surface is subject to a rigid body motion, then the Gauss image
of the characteristic curves is shown to be a spherical quartic curve, making them accessible to
exact geometric computation. In particular we analyze the case of moving surfaces of revolution.
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1 Introduction

Envelopes of moving surfaces are needed for computing the swept volume which is
traced out by a moving solid. They can be obtained by collecting the characteristic
curves, where the moving surface touches its envelope at a given time. In Robotics,
these computations are related to the problem of collision detection. Other applica-
tions include the numerical simulation of milling processes, where the tool can be
modeled as a surface of revolution.

[Abdel-Malek et al., 2006], give a detailed survey about swept volume compu-
tation with many related references. [Peternell et al., 2005], compute the boundary
of the swept volume generated by a general moving object, which is assumed to be
given as a triangular mesh. Special attention is paid to the choice of the time–step
for computing the characteristic curves.

Envelopes of certain specific classes of surfaces have been analyzed in more de-
tail. [Flaquer et al., 1992], studied envelopes of moving quadric surfaces, in particu-
lar moving planes, spheres, cylinders and cones. In all these cases, the characteristic
curves are algebraic space curves of degree 4. [Xia and Ge, 2001], consider cylin-
ders as an example for milling tools and generate an exact representation of the
boundary surface.

We discuss the case of surfaces which are specified by their support functions.
These surfaces can explicitly be parameterized by its inverse Gauss maps and we
use this observation to characterize the characteristic curves. The case of surfaces
with quadratic support functions is discussed in detail, since they allow the exact
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computation of the characteristic curves. General supportfunctions can be approx-
imated by surfaces with piecewise quadratic ones, which aredefined over a given
spherical triangulation. This should make it possible to extend the results of this
paper to more general objects.

2 Support Functions

We recall the support function representation of surfaces (see e.g. [̌Sı́r et al., 2008]).
Consider a given functionh∈ C∞(S2,R), whereS2 denotes the unit sphere inR3.
We use this function to associate with each pointn ∈ S2 the plane with the unit
normaln and oriented distanceh(n) to the origin.

The envelope of the two–parameter family of planes obtainedby varyingn in
S2 describes a surface. The given functionh is called thesupport functionof this
surface. For anyh∈C∞(S2,R), a parameterizationxh ∈C∞(S2,R) of the surface is
given by its inverse Gauss map,

xh(n) = h(n)n+(∇S2h)(n), (1)

where(∇S2h) is the intrinsic gradient of the support functionh with respect to the
unit sphereS2. If the support functionh is obtained by restricting a suitable function
h0 ∈C∞(R3,R) to the unit sphereS2, then

(∇S2h)(n) = (∇h0)(n)− [(∇h0)(n) ·n]n. (2)

This parameterization, whose domain is the unit sphere, cannow be composed with
any parameterization ofS2, e.g., by spherical coordinates.

In this paper we are particularly interested in the case where the support function
is the restriction of a trivariate quadratic polynomial toS2. We call the corresponding
envelopesquadratically supported surfaces (QSS). The class of QSS is closed under
translations, offsetting and rotations, as these geometric operations correspond to the
addition of constants and homogeneous linear polynomials,and to the composition
with rotations, respectively.

Example 1.Let n = (x,y,z)⊤ and consider the two support functions

h(n) = x2 +y2 +
3
2

z2 and h(n) = x2 +y2−z2. (3)

The associated QSS have the parametric representationsxh(n) =





−x3−xy2− 3
2xz2 +2x

−yx2−y3− 3
2yz2 +2y

−zx2−zy2− 3
2z3 +3z



 and





−x3−xy2 +xz2+2x
−yx2−y3 +yz2+2y
−zx2−zy2+z3−2z



 , (4)
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Fig. 1 Quadratically supported surfaces (QSS).

respectively. Both support functions describe surfaces ofrevolution, shown in Fig.
1, and the profile curve of the second one is a special trochoid.

3 Motions, velocities, characteristics

As usual, we describe a rigid body motion by a time–dependenttransformation

x′ = t(α)+U(α)x (5)

between world coordinatesx′ and moving coordinatesx, where the parameterα
represents the time, the vectort(α) represents the translation of the origin, and the
special orthogonal matrixU(α) specifies the rotation. For an arbitrary but constant
value ofα, we compute the velocity vectorv′ of a fixed pointx in the moving system

v′ = ṫ+U̇x, (6)

where the dot indicates differentiation with respect toα and the argumentα has
been omitted. This velocity is transformed into the moving system

v = U⊤v′ = U⊤ṫ+U⊤U̇x = U⊤ṫ + ω ×x, (7)

whereω denotes the angular velocity.
We consider a surface in the moving space, which is assumed tobe given by its

support function representation. The surface touches the envelope along thecharac-
teristic curve. Let

vh(n) = U⊤ṫ+ ω ×xh(n) (8)

be the velocity of the pointxh(n), then the characteristic curve consists of all points
where the inner product of the velocity and the surface normal n vanishes,
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vh(n) ·n = 0. (9)

In the case of a moving QSS, the Gauss image of the characteristic curve (i.e., the
spherical curve obtained by collecting the surface normalsalong it) is particularly
simple:

Theorem 1. The Gauss image of the non–degenerate characteristic curveof a mov-
ing QSS is a spherical quartic.

Proof. After substituting Eqns. 1, 2 and 8 into Eq. 9 one gets after a short computa-
tion (

U⊤ṫ + ω ′× (∇h)(n)
)

·n+(h(n)− (∇h)(n) ·n)(ω ×n) ·n
︸ ︷︷ ︸

=0

= 0. (10)

If h is a trivariate polynomial of degree 2, then this equation isof degree 2. The
Gauss image of the characteristic curve consists of all surface normals that satisfy
Eq. 10 andn ·n = 1. Consequently, it is either the intersection of two quadric sur-
faces, or it degenerates into the entire unit sphere. �

Summing up, the Gauss image of the characteristic curve is the zero set of the
two quadratic polynomials

f (n) =
(

U⊤v̇+ ω ′× (∇h)(n)
)

·n and g(n) = n⊤ ·n−1. (11)

The envelope surface can be generated by collecting all characteristic curves ob-
tained for different values ofα and transforming them into world coordinates.

4 Characteristic curves for QSS of revolution

In this section we compute a parameterization of the characteristic curve for a fixed
time α. Its Gauss image is the intersection curve of the two quadrics defined by the
quadratic polynomials in Eq. 11.

[Dupont et al., 2008], describe a sophisticated algorithm for the computation of
a near-optimal parameterizations of the intersection curve of two quadric surfaces.
This algorithm assumes that the coefficients of the two quadratic equations belong
to the fieldQ of rational numbers. The intersection curve is parameterized with
the help of square–root functions of certain polynomials, that belong to the ring of
polynomials over a special field extension ofQ. In the most general case, the com-
putation of the exact parameterization requires the solution of a quartic equation,
and the corresponding field extension.

In the remainder of this paper we restrict ourselves to QSS which are surfaces of
revolution with respect to thez–axis. The support function then takes the form

hR(n) = a(x2 +y2)+bz2+cx+dy+ez+ f . (12)
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We assume that the coefficientsa,b,c,d,e, f are in the fieldQ of rational numbers,
and that the components of the angular velocityω and the translational velocitẏt
are also from this field.

Lemma 1. There exists a pointP on the Gauss image of the characteristic curve
with coordinates in the field extensionQ(

√
r), where r is an integer.

Proof. We consider an arbitrary but fixed rational numberz0. If we substitutez= z0

in Eq. 11, then this equation becomes linear in the remainingvariablesx and y.
Indeed, quadratic terms in Eq. 11 may be present only in[ω ′ × (∇hR)(n)] · n =
[(∇hR)(n)×n] ·ω ′, and a short computation confirms that

(∇hR)(n)×n =





2(a−b)yz0−ey+dz0

2(b−a)xz0+ex−cz0

cy−dx



 . (13)

Consequently, the points on the Gauss image of the characteristic curve withz= z0

can be found by solving a single quadratic equation. Since the Gauss image of the
characteristic is always non–empty, it is possible to choosez0 such that real solutions
exist. �

Based on this result we compute a parameterization of the Gauss image of the
characteristic curve by the Enhanced Levin’s method (ELM) of [Wang et al., 2003],
which is summarized below:

1. Find a real pointP on the intersection curvef (n) = g(n) = 0. This point serves
as the center of the stereographic projection into thexy–plane (another plane may
be used).

2. Let Q = (ξ ,η ,0)⊤. The image of the spherical quartic under the stereographic
projection is the planar cubic curve defined by the cubic polynomial

c(ξ ,η) = Resultant(
1
t

f (tQ +(1− t)P),
1
t
g(tQ +(1− t)P; t). (14)

3. Find a squareroot–parameterization ofc(ξ ,η) = 0 and project it back onto the
unit sphere.

The first part of the last step will be explained in more detail. First we find a point
R on the cubic curve. For instance, it can be chosen as the intersection point of the
curve tangent atP with thexy–plane. In this case, the coordinates ofR are again in
Q(

√
r). We then consider the pencil of lines

(
ξ (s, t)
η(s, t)

)

= t

(
1
s

)

+(1− t)R,(s,t)∈ R, (15)

and substitute into the cubic polynomialc(ξ ,η) = 0. After factoring out the trivial
solutiont = 0, we solve the resulting equation, which is quadratic int, for t and get
a solution of the form

t(s) =
k(s)±

√

ℓ(s)

m(s)
, (16)
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Fig. 2 Characteristic curves on a moving non–convex QSS of revolution.

where the three polynomialsk(s), ℓ(s) andm(s), which possess the degrees 2, 4 and
3, respectively, belong to the ring of polynomials over the field extensionQ(

√
r).

The projection of the cubic back onto the sphere, and the computation of the
characteristic curve by substituting the result into Eq. 1 involves only rational oper-
ations. We summarize the results of this section.

Theorem 2. The characteristic curve of a QSS of revolution, where the coefficients
of the support functions and the components of velocity and angular velocity are
rational numbers, possesses a parameterization

(

r1(s,
√

ℓ(s)), r2(s,
√

ℓ(s)), r3(s,
√

ℓ(s))
)⊤

. (17)

The rational functions ri : R2 → R, i = 1,2,3, and the quartic polynomialℓ(s) have
coefficients in the field extensionQ(

√
r), where r is an integer.

5 Examples

Example 2.We consider a motion witḣt(α) = (1,1,0)⊤ and

U =
1
9





5cosα +4 2−2cosα −6sinα 4−4cosα +3sinα
2−2cosα +6sinα 8cosα +1 2−2cosα −6sinα
4−4cosα −3sinα 2−2cosα +6sinα 5cosα +4



 (18)

and apply it to the non–convex QSS of revolution from the second section. Fig. 2
shows several positions of the moving non–convex surface and the corresponding
characteristic curves.

In order to obtain expressions with rational coefficients, we substitute both

sinα = 2β
1+β 2 and cosα = 1−β 2

1+β 2 in U⊤, while U⊤U̇ is a constant matrix, asU de-

scribes a uniform rotation with axis direction(2,1,2)⊤. As an example, we consider
β = 2, i.e.,α ≈ 0.927, where the two quadratic equations, which define the Gauss
image, are

f = 15x−20xz−9y+40yz+12z and g = x2 +y2+z2−1. (19)
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Fig. 3 Several characteristic curves of
a moving convex QSS of revolution,
forming the envelope surface.

A possible center of projection is found after choosingz0 = 1
2,

P = (− 15
73 + 77

292

√
6, − 33

73− 35
292

√
6, 1

2)⊤ (20)

After projecting the spherical quartic into a planar cubic we obtain a parameteriza-
tion of the formc(s) = (c1(s),c2(s),0), where

ci(s) =
Ai(s)+Bi(s)

√

C(s)

438D(s)
(21)

with certain polynomialsAi , Bi , C andD with coefficients inQ(
√

6). For instance,

D(s) = 5032323912s3 +(7828867480
√

6+7806587880)s2

+(4537170456
√

6+46260368554)s+10293044615
√

6+24121304410
(22)

Finally, the coordinates of the characteristic curve in themoving system are given
by expressions of the form

(

p7(s)
√

C(s)+ p9(s)
)(

p16(s)
√

C(s)+ p18(s)
)

(

p4(s)
√

C(s)+ p6(s)
)3

(p3(s))
3

, (23)

wherepi represents a polynomial of degreei with coefficients inQ(
√

6).

Example 3.We performed a similar computation for a screw motion of the convex
surface. The resulting characteristic curves are shown in Fig. 3.

Example 4.We modeled a robot-like structure by composing three spheres and two
non-convex QSS. This structure performs a motion which is generated by two uni-
form rotations of the arms. Fig. 4 shows some characteristiccurves which are cre-
ated during this motion. A collision detection can now be done by checking intersec-
tions between the characteristic curves and the environment. This type of robot-like
structures could be used as bounding volumes for real mechanical devices.
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Fig. 4 Characteristic curves of
several positions of a moving
robot-like structure, forming the
envelope surface.
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