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Abstract

We present an evolution-based method for optimal mechanism syn-

thesis. It is based on the embedding of the Euclidean motion group in

the space of affine displacements upon which an object-oriented Euclidean

metric is imposed. This Euclidean structure allows the use of curve and

surface evolution techniques from computer aided design and image pro-

cessing. We demonstrate the algorithm by synthesizing planar four-bar

mechanisms and we show how to modify it so that the resulting four-bar

is free of circuit defects.

Keywords: optimal mechanism synthesis, curve and surface evolution, four-
bar mechanism, circuit defect.

1 Introduction

Optimal mechanism synthesis means finding a mechanism (type, dimension,
position of base and end-effector) that approximately performs a certain task.
It is a well-established field in mechanism science that evolved from the natural
need for a more extensive but less accurate task description. In this article we
present a novel approach to optimal motion generation.

There exists a wealth of literature on optimal mechanism synthesis and we
confine ourselves to just a few references on optimal motion generation. The
maybe most direct approaches use numerical techniques for solving an over-
constrained system of equations [Zhang et al., 2000, Hayes et al., 2004, Smaili
and Diab, 2005]. Mixed numerical and graphical methods for optimal four-bar
synthesis have been presented by Yao and Angeles [2000]. They allow identifica-
tion of all critical points of the underlying optimization problem. Finally, we can
distinguish genetic algorithms [Cabrera et al., 2002, Kunjur and Krishnamurty,
1995, Zhou and Cheung, 2001] and methods based on evolution techniques, for
example Shiakolas et al. [2002], 2005.

Our approach fits into the last category. Its main distinction from other opti-
mal synthesis schemes is the use of an object-oriented metric that makes the de-
sign space Euclidean. This allows the advantageous use of geometric techniques
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from computer aided design and image processing. In particular, we perform
closest point computation and curve/surface evolution in this space. Evolution
techniques permit great flexibility and control over the mechanism shape dur-
ing the evolution and can be used to avoid mechanism defects. Moreover, the
formulation of the synthesis problem within this framework is independent of
the fixed coordinate frame. While our concept is general and can, at least in
principle, be used for synthesizing many mechanisms of diverse type and shape,
we confine ourselves to the synthesis of planar four-bars. Extensions to further
mechanism types will be discussed in a subsequent publication.

In Section 2 we introduce the object-oriented metric used in our approach.
It is followed by an outline of a general framework for curve and surface fitting
via evolution in Section 3. In Section 4 we explain how to formulate a four-
bar synthesis problem within this framework and present a first example. In
Section 5 we discuss how to incorporate additional constraints in order to avoid
unwanted defects of the synthesized four-bars and in Section 6 we conclude the
paper with directions for future research.

2 A metric for affine displacements

Measuring the “distance” between two displacements is a fundamental prob-
lem of mechanism science with many important applications, in particular in
mechanism synthesis. Among the various available concepts (see for example
Larochelle et al. [2004], Angeles [2006]) we choose an approach which leads to an
embedding of the Euclidean motion group into the space of affine displacements
that is equipped with an object-oriented Euclidean metric [Belta and Kumar,
2002, Chirikjian and Zhou, 1998]. This metric has already been used for motion
design [Hofer et al., 2004, Hofer and Pottmann, 2004], for computing generalized
penetration depths [Nawratil et al., 2007], and for defining performance indices
of robots [Nawratil, 2007], but apparently not in mechanism design.

The distance concept is based on the choice of a number of feature points
mi ∈ R

2. These feature points define a positive definite scalar product 〈α, β〉 =
∑

〈α(mi), β(mi〉 and an associated squared distance dist2(α, β) =
∑

‖α(mi) −
β(mi)‖

2 between α and β that depends only on the barycenter of the feature
points and on their inertia matrix. It endows the space GA+(2) of affine dis-
placements with a Euclidean metric. The space GA+(2) contains the Euclidean
motion group SE(2) as a sub-manifold of dimension three. The feature points
mi can be replaced by an arbitrary mass distribution µ on R

2. In this case
the formulas for inner product and distance are expressed in terms of integrals
[Chirikjian and Zhou, 1998]. The inner product defined by the feature point
mi (or by the mass distribution µ) is also generated by four suitable chosen
points of equal mass. Hence, the computation of inner product and distance
is very efficient. Extensions of this distance concept to higher dimensions are
straightforward.
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3 Evolution-based fitting of algebraic varieties

Now we describe a general concept for fitting implicitly defined varieties to a
number of prescribed feature points (see also Aigner and Jüttler [2007] and
Aigner et al. [2007]). Its relation to optimal synthesis of four-bars will be ex-
plained in the next section.

Consider a system F1(x), . . . , Fm(x) of polynomials and its zero set C ⊂ R
d.

We assume that the coefficients of Fi depend on a vector s = (s1, . . . , sp) of shape
parameters. The vector s of shape parameters is to be determined such that the
zero set C of the polynomials Fi approximates a set of target points q0, . . . , qn.
By pj we denote the point on C that minimizes the distance to qj and by ∇Fi

we denote the gradient of Fi with respect to x.
Now we view s as depending on a time-variable t, that is s = s(t). As s(t)

varies in time, the points pj = pj(t) move along certain trajectories. Because of
Fi(pj(t), s(t)) ≡ 0 we also have

d

dt
Fi(pj(t), s(t)) = 〈∇Fi, ṗj〉 +

p
∑

l=1

∂Fi

∂sl

ṡl ≡ 0, (1)

where the derivatives of Fi are evaluated at (pj(t), sj(t)) and the dot denotes
derivatives with respect to t. Hence, ṗj is the velocity of the closest point pj .
By {bj1, . . . , bjm} we denote an orthonormal basis of the normal space of C in
pj. Ideally, the change of s(t) should be such that qj − pj = ṗj , that is,

〈qj − pj , bjk〉 = 〈ṗj , bjk〉 for j = 0, . . . , n and k = 1, . . . , m. (2)

There exist coefficients βjki such that bjk =
∑m

i=1 βjki∇Fi. In view of (1), this
yields

〈ṗj , bjk〉 =

m
∑

i=1

βjki〈ṗj ,∇Fi〉 = −

m
∑

i=1

βjki

p
∑

l=1

∂Fi

∂sl

ṡl (3)

Hence, (2) leads to an over-constrained system of linear equations in the
unknowns ṡj that can be solved in least-squares sense. The result is independent
of the choice of the basis vectors bjk. Following the thus defined flow in the
manifold of shape parameters leads to a locally optimal solution. It can be
shown that the numerical integration of the trajectories via explicit Euler steps is
equivalent to a Gauss-Newton method for non-linear least-squares optimization.

4 A concept for optimal four-bar synthesis

The evolution technique for fitting algebraic varieties to points as described in
Section 3 can be used for optimal mechanism synthesis. In principle it is ap-
plicable for arbitrary mechanisms (planar, spherical, spatial, serial, or parallel).
We are going to describe the concept for the case of planar four-bar synthesis.
Extensions to other classes of mechanisms are postponed to a further publica-
tion.
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Figure 1: Solution to McCarthy’s eleven poses (from left to right: initial four-
bar, after 15 iterations, after 30 iterations)

We model a four-bar motion via two circle constraints. For i = 1, 2 the
point with coordinates (ai, bi) in the moving system is constraint to a circle
with center (ξi, ηi) and radius ̺i. Then the synthesis problems relates to the
concept of Section 3 as follows:

• The target points q0, . . . , qn are n + 1 prescribed poses, viewed as points
on the Euclidean motion group SE(2) ⊂ GA+(2) ⊂ R

6.

• The vector s of shape parameters has the ten entries a1, b1, ξ1, η1, ̺1, a2,
b2, ξ2, η2, and ̺i.

• The four-bar motion is defined by five algebraic equations F1, . . . , F5.
Three of them (the orthogonality conditions on the transformation ma-
trix) define SE(2) as sub-manifold of GA+(2) and remain constant over
time. The two remaining equations are the circle constraints ‖α(ai, bi) −
(ξi, ηi)‖

2 = ̺2
i .

• All distances and angles in R
6 are measured using the inner product 〈., .〉,

which corresponds to the feature-point dependent metric, as described in
Section 2. Also, the gradient vectors are computed with respect to that
metric.

As a first example we fit a four-bar to eleven prescribed poses, proposed by
J. Michael McCarthy on the occasion of the ASME Design Engineering Techni-
cal Conference in Montreal in 2002 [see also Chen and Angeles, 2007]. Figure 1
shows these poses, the initial configuration, and the results after 15 and 30 itera-
tions. In each picture we display the target poses (dark), the closest poses of the
current four-bar motion (white), and the four-bar mechanism in a configuration
to reach the third of the prescribed poses. As can be seen, the prescribed poses
are particularly amenable to a four-bar approximation.

In all examples of this article we choose the mass distribution by defining a
set M of feature points that roughly represents the shape of the end-effector as
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depicted in Figure 1. The total mass distribution is the union of all images of
M under the prescribed poses.

In order to control the step-size in the evolution sequence, we specify a cer-
tain maximum allowed displacement H for the closest points pj . The squared
length of the displacement vector of pj approximately equals δ2

j =
∑m

k=1〈ṗj , bjk〉
2

and can be computed via (3). The allowed step size h for the current step is
obtained as h = H min{δ−1

j }. Furthermore, we decrease the value of H once
the maximal expected change of the closest points is smaller than H in order
to avoid forcing a large step away from an already good configuration.

Currently, the most time-consuming part of the evolution procedure consists
in the computation of the closest points on the constraint variety in GA+(2).
The remaining calculations (evaluations of elementary functions and solving a
small linear system in the least-squares sense) are relatively cheap. The closest
point computation is equivalent to computing the closest pose on a four-bar
motion to a given pose. In our implementation we compute these points via
standard constrained optimization routines. This is not completely reliable
and we have no guarantee that we really end up in the global minimum. We
found, however, that using the closest points from the preceding iteration step as
starting values for the new closest points yields a reasonably good performance.
A single closest point computations takes about 1–2 ms.

5 Penalty functions

In this section we show how to integrate penalty functions into our evolution
framework. We discuss how to avoid singular four-bars and use this technique
to produce optimal solutions that are free of circuit defects. Denote the base
length of the four-bar by g and the coupler length by h. The lengths of driver
and follower are the shape parameters ̺1 and ̺2, respectively, while g and h are
simple functions of the remaining shape parameters. Then a four-bar is singular
(folding) if and only if one of the functions

C1 = (̺1+̺2−g−h)2

(̺1+̺2+g+h)2 , C2 = (̺1−̺2+g−h)2

(̺1+̺2+g+h)2 , C3 = (̺1−̺2−g+h)2

(̺1+̺2+g+h)2 (4)

vanishes. For each of the functions Ci we choose a minimal permissible value δi,
and an offset σi. Using these values, we construct a smooth penalty function wi

and an activator function αi as depicted in Figure 2. If Ci falls within [δi, δi+σi],
then the evolution pushes the shape parameters away from the zero set of Ci.
This is achieved by adding the equation

α(Ci) ·
(

∑10
l=1

∂Ci

∂sl

ṡl − wi(Ci)
)

= 0, (5)

which is linear in ṡ, to the over-constrained system obtained from (3).
A four-bar mechanism is called circuit defective with respect to a set of

poses, if it cannot attain the poses within the same continuous range of motion
Chase and Mirth [1993] . It needs to be disassembled and re-configured in a
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Figure 2: Penalty function wi and activator function αi
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Figure 3: Avoiding solutions with circuit defect.

different way in order to reach all poses. In our case, the poses are only attained
approximately. Therefore, we say that a four-bar exhibits a circuit defect, if it
is circuit defective with respect to the closest poses.

Assume now that the optimal four-bar obtained via evolution is circuit de-
fective but the initial curve that evolves towards the target was not. Since the
closest points pi(t) move smoothly during the evolution process, this can only
happen if the topology of the four-bar motion – which is seen as a curve on
SE(2) ⊂ GA+(2) – changes to two disconnected components (either from one
or two components, or from two components via one component back to two
components). At the transition between any two stages is a folding four-bar.
Therefore, four-bars with circuit defect can be prevented by avoiding folding
four-bars. A similar technique can also avoid Grashof defects and mechanism
with a bad transmission ratio.

An example avoiding a circuit defect is shown in Figure 3. The five prescribed
poses permit precisely one exact solution that suffers from a circuit defect.
The direct application of our algorithm (left-hand side) produces this defective
mechanism. The picture in the middle shows an optimal solution, generated
from the same initial values, but avoiding the assembly mode defect. The graph
on the right-hand side displays the evolution of the square root of the sum of
squared distances between target points and closest points over time – dotted
for the first (assembly mode defective) solution, and in continuous line-style for
the second solution. As opposed to the first solution’s graph, the graph of the
second solution comes only close to zero. The kink occurs when the four-bar is
pushed away from a singular configuration.
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6 Conclusion

We presented an algorithm for optimal mechanism synthesis (motion genera-
tion). In this paper we discussed the synthesis of a planar four-bars. The exten-
sion to other classes of mechanisms and incorporation of further defect-avoiding
constraints is subject of ongoing research.

The evolution viewpoint to numerical optimization – as described in this
paper – provides several advantages, including the connection to well-established
techniques from image processing, the availability of a geometrically motivated
step-size control, the possibility to add constraints via penalty functions, and
the invariance with respect to the specific choice of the shape parameters [see
Aigner and Jüttler, 2008]. In addition our method provides a geometrically
significant solution, due to left-invariance of the used metric and the repeated
closest point computation.
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