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Abstract Given a large set of unorganized point sample
data, we propose a new framework for computing a tri-
angular mesh representing an approximating piecewise
smooth surface. The data may be non–uniformly dis-
tributed, noisy, and they may contain holes. This frame-
work is based on the combination of two types of surface
representations: triangular meshes, and T-spline level sets,
which are implicit surfaces defined by refinable spline
functions allowing T-junctions. Our method contains three
main steps. Firstly, we construct an implicit representa-
tion of a smooth (C2 in our case) surface, by using an
evolution process of T-spline level sets, such that the
implicit surface captures the topology and outline of the
object to be reconstructed. The initial mesh with high
quality is obtained through the marching triangulation
of the implicit surface. Secondly, we project each data
point to the initial mesh, and get a scalar displacement
field. Detailed features will be captured by the displaced
mesh. Finally, we present an additional evolution pro-
cess, which combines data-driven velocities and feature-
preserving bilateral filters, in order to reproduce sharp
features. We also show that various shape constraints,
such as distance field constraints, range constraints and
volume constraints can be naturally added to our frame-
work, which is helpful to obtain a desired reconstruction
result, especially when the given data contains noise and
inaccuracies.

Keywords Mesh reconstruction · Point cloud ·
Displacement maps · T-spline · Level sets

1 Introduction

We consider the problem of surface reconstruction and
approximation from unorganized data points. Due to the
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widespread use of 3D scanning devices for shape acquisi-
tion, this problem has an increasing number of applica-
tions in computer graphics, computer aided design, com-
puter vision and image processing. Depending on the
area of the application, the reconstructed surface may
have a explicit representation (e.g. meshes) or an im-
plicit representation (e.g. level sets). Among the various
approaches, these two representations may complement
each other. On the one hand, the implicit representa-
tions [51] offer advantages such as the non-existence of
the parametrization problem, repairing capabilities of in-
complete data and simple operations of shape editing,
but they are hard to model sharp features [39]. On the
other hand, the explicit representations can easily han-
dle sharp features, but have difficulties when processing
topology changes.

1.1 Our Work

We propose a hybrid model for surface reconstruction by
combining two types of representations: an implicit T-
spline level set and a mesh. Given a set of unorganized
and noisy data points without normals as input, we want
to reconstruct a mesh surface which approximates the
data. We develop a three-phase algorithm (cf. Fig. 1) to
perform this reconstruction:

1. Initial mesh generation (Fig. 1 (c)). In the first phase,
we use an evolution process (Fig. 1 (a) and (b)) to
create an implicit representation, which is defined as
the zero level set of a C2 T-spline scalar function. The
obtained T-spline level set (with correct topology) is
to serve as a smooth base surface S0 for the displace-
ment mapping. A high-quality initial mesh (with ac-
curate normals) is generated from the implicit func-
tion by using the marching triangulation [26] method.

2. Displacement mapping (Fig. 1 (d)). In the second
phase, we produce a smooth scalar displacement field,
which is computed by projecting data points to the
initial mesh. Small geometric features are then con-
structed by the displacement mapping of the mesh



2 Huaiping Yang, Bert Jüttler

(a) (b) (c) (d) (e)

Fig. 1 Mesh reconstruction of the Rocker-Arm model. The figure shows the data points and the T-mesh in (a), an interme-
diate T-spline level set during the evolution in (b), the final T-spline level set (the initial mesh) in (c), the displaced mesh
in (d), and the final mesh with sharp features in (e).

along the normal direction, which is guided by the
smooth gradient vector field of the implicit function.

3. Recovering sharp features (Fig. 1 (e)). In the third
phase, we use an additional evolution process, which
combines data-driven velocities and feature-preserving
bilateral filters, in order to better represent sharp fea-
tures.

This paper is an extension to our work [55] presented
at Shape Modeling International 2007. In this extended
version, we concentrate more on the process generating
the base surface, i.e., we show how to formulate the evo-
lution of T-spline level sets. More specifically, we dis-
cuss how to combine different shape constraints, such
as distance field constraints, range constraints and vol-
ume constraints, into the framework such that a more
robust and effective evolution process can be established
that produces the desired result. The distance field con-
straints help us to avoid additional branches and singu-
larities of the level sets, without having to use costly
re-initialization steps. The range constraints allow us
to specify regions lying inside or outside of the recon-
structed surface. A suitable volume constraint can be
used to stop the level sets from entering the holes in the
data. We note that these constraints have been used in
our previous work [18] in 2D for dual evolution of planar
B-spline curves and T-spline level sets.

Our method combines two types of representations:
the implicit T-spline level set and the mesh. This com-
bination strategy makes our method benefit from the
advantages of both representations. On the one hand,
the evolution of T-spline level sets is able to capture the
complex topology of noisy data. On the other hand, the
mesh representation helps to produce detailed and sharp
features. Compared with other existing approaches for
similar purposes, our method also shows the following
advantages:

1) The use of two complementary representations can
improve and speed up some geometric computations in

the algorithm. For example, with the help of implicit rep-
resentation, a high-quality initial mesh can be obtained,
and the projection of the data points to the base surface
can be efficiently computed by Newton iteration.

2) We use an evolution process to recover the sharp
features. The evolution is governed by a combination of
two terms: a data-driven velocity and a bilateral filtering.
This evolution process can produce sharp features, which
are faithful to the given data.

3) By incorporating the range constraints and volume
constraints, we are able to conveniently exploit the a pri-
ori knowledge about the geometric properties of the ob-
ject to be reconstructed. This is especially helpful when
the given data contains noise and inaccuracies.

1.2 Related Work

Numerous approaches have been proposed to compute
a surface approximation of a given set of unorganized
points. Depending on the area of the application, differ-
ent representations have been used, such as triangular
meshes [3,7,15,38,2,41,47], subdivision surfaces [28,44,
12], parametric spline surfaces [16,23], discretized level
sets [42,57,8], scalar spline functions [45,33], radial basis
functions [10,40] and point set surfaces [1,43,19]. It is be-
yond the scope of this paper to give a detailed overview
of all the existing work. [29] gives an excellent survey
of the previous work on surface extraction from point
clouds.

In this paper, we suggest a new reconstruction algo-
rithm combining two types of representations: an implicit
T-spline level set and a mesh. The proposed method re-
lies on two main tools: displacement mapping [14] and
bilateral filtering [48,50]. In the remainder of this sec-
tion, we will describe some related work about these two
tools.
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Given a smooth base surface S0, a displaced surface S
can be generated by a scalar field (a displacement map),
which specifies the displacement values along the normal
directions of S0. The use of displacement maps is quite
popular for geometric modeling purposes. They are used
in high end rendering systems [14,5], to capture the fine
detail of a 3D photography model [36], for geometric sim-
plification with appearance-preserving [13], for building
semi-regular multiresolution meshes from an arbitrary
connectivity input mesh[25] and for multiresolution mesh
deformations [35]. In order to avoid cracks between ad-
jacent triangles of a mesh, the interpolated normal is
used [24] to displace the surface, B-spline surfaces are
fitted [36] to the mesh before the displacement mapping,
displaced subdivision surfaces [37] are suggested which is
based on the butterfly subdivision scheme. There are also
existing approaches for reconstructing a displaced sub-
division surface directly from a given set of points [31].
Most recently, the author in [56] presents a displaced
surface representation based on a manifold structure.

Extracting sharp features from 3D data is impor-
tant [49], but difficult due to the feature-insensitive sam-
pling and the noise of the given data. Many approaches
have been proposed to address this problem [27,30,53,
6]. As a non-iterative scheme for edge-preserving smooth-
ing, the bilateral filter is used in [20] and [32] to denoise
a given surface. The author in [52] presents a robust gen-
eral approach conducting bilateral filters to govern the
sharping of triangular meshes. Also, the authors in [4]
conduct the bilateral filter in the reconstruction of sur-
faces from scattered data.

The remainder of the paper is organized as follows.
The next section describes how to formulate the evo-
lution process of T-spline level sets, in order to gener-
ate the smooth base surface for the object reconstruc-
tion. Section 3 discusses the combination of different
constraints into the evolution process. In particular, it
is shown how to incorporate distance field constraints,
range constraints and volume constraints such that the
T-spline level sets evolution will be more robust and ef-
fective when dealing with non-uniformly sampled and
incomplete data. Section 4 presents how to reconstruct
geometric details and sharp features of the object by de-
riving a mesh representation from the smooth implicit
surface. After presenting some experimental results in
Section 5, we conclude this paper and discuss future
work.

2 Evolution of T-spline Level Set for Base

Surface Generation

In this section, we describe how to generate the base
surface through the evolution of T-spline level sets. The
input of our algorithm is a set of unorganized (maybe
noisy and defected) data points (pk)k=1,2,...,n, which are
scattered over an unknown piecewise smooth surface Sp.

The base surface represented S0 by T-spline level sets
will capture the topology and the outline of the surface
Sp.

2.1 Definition of T-spline Level Sets

The T-spline level set Γ (f) is defined as the zero set of
a trivariate T-spline function f over some domain D,

Γ (f) = { (x, y, z) ∈ D ⊂ R
3 | f(x, y, z) = 0 }, (1)

where

f(x, y, z) =

∑n
i=1 ciBi(x, y, z)

∑n
i=1 Bi(x, y, z)

(2)

are T-spline [46] functions in 3D, with the real coeffi-
cients (control points) ci, i = 1, 2, ..., n. For cubic T-
splines, the basis functions are

Bi(x, y, z) = N3
i0(x)N3

i0(y)N3
i0(z), (3)

where N3
i0(x), N3

i0(y) and N3
i0(z) are certain cubic B-

splines, whose associated knot vectors are determined
by the T-spline control grids (T-mesh).

In order to simplify the notation, we use x to repre-
sent the point x = (x, y, z) in 3D, and gather the control
coefficients (in a suitable ordering) in a column vector c.
The T-spline basis functions form another column vector
b = [b1, b2, ..., bn]⊤, where

bi =
Bi(x)

∑n
i=1 Bi(x)

, i = 1, 2, ..., n.

Now the T-spline function f(x) = b(x)⊤c.
T-splines [46] are generalizations of tensor product B-

splines. T-spline control grids permit T-junctions, which
provides a valuable property of local refinement. As shown
in Figure 2, much less (decreased by 71%) control points
are needed to represent the same level set (a horse) by
trivariate T-splines than that by trivariate tensor prod-
uct B-splines. Since a T-spline function is piecewise ra-
tional, the T-spline level sets are piecewise algebraic sur-
faces (C2 in our case).

The T-spline control grid (T-mesh) (cf. Fig. 1 (a)) is
constructed through octree subdivision of the function
domain D, as follows.

1. Set the initial T-mesh to be an axis-aligned bounding
box of the cubic domain which contains all the data
points.

2. For each cell containing more than n0 data points
(n0 is a user-specified constant value), subdivide it
by applying the octree subdivision.

3. Repeat step 2 until a user-specified threshold (e.g., a
maximum level of subdivision) is reached or no cell
contains more than n0 data points any more.

In this way, the distribution of T-spline control points is
made adaptive to the geometry of the object to be recon-
structed, which usually leads to a sparse representation.
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(a) B-splines with 5148 control points (b) T-splines with 1484 control points

Fig. 2 A horse implicitly defined by trivariate B-spline (T-spline) scalar functions.

2.2 Evolution of T-spline level sets

Consider a T-spline level set Γ (f) defined as the zero set
of a time-dependent function f(x, τ), where

f(x, τ) = b(x)⊤c(τ), (4)

with some time parameter τ . It will be subject to the
evolution process

∂x

∂τ
· n(x, τ) = v(x, τ) · n(x, τ), x ∈ Γ (f), (5)

which is driven by a (possibly time-dependent) vector
field v. Note that we only consider the normal compo-
nent (v · n) of the velocity along the level set, since the
tangent velocity does not change the shape at all. The
unit normal vector n is given by

n(x, τ) =
∇f(x, τ)

|∇f(x, τ)|
. (6)

During the evolution, the definition of T-spline level
sets

f(x, τ) ≡ 0, x ∈ Γ (f), (7)

implies

∂f(x, τ)

∂τ
+ ∇f(x, τ) ·

∂x

∂τ
= 0, x ∈ Γ (f). (8)

Combining (5), (6) and (8), we get the evolution equation
of T-spline level sets under the vector field v,

∂f(x, τ)

∂τ
= −v(x, τ) · ∇f(x, τ), x ∈ Γ (f). (9)

In our method, we always start the evolution of T-
spline level sets from an initial level set, which contains
all data points inside. The initial level set function f can
be found by approximating it to the signed distance field
of a bounding sphere or a rough offset of the surface to
be reconstructed [57].

2.3 Evolution Speed Function

The speed function v plays a a key role in the evolution
of T-spline level sets. In order to capture the base surface
of the given data points, we use a similar speed function
as that proposed by Caselles et al. [11],

v = e(d)(γ + κ)n − (1 − e(d))(∇d · n)n (10)

where γ is a constant velocity (which is also known as a
balloon force), κ = div(∇f/|∇f |) is the mean curvature
of the level set surface, d is the unsigned distance func-

tion of the data points, and e(d) = 1− e−ηd2

is the edge
detector function. η is pre-defined, and its value is af-
fected by the size of the data range. In our experimental
setting, all data points are contained in a unit bounding
box (−1 ≤ x, y, z ≤ 1), and we usually set η = 1.

The speed function (10) is a linear combination of
two parts. In the first part, the mean curvature term
κ makes the level set smooth, and the balloon force γ is
used to increase the speed of the evolution (especially for
capturing narrow concave boundaries). The second part
attracts the level set to the detected boundary edges.
The edge detector function e(d) is used as weighting co-
efficients to balance the influence of the two parts.

2.4 Discretization of the Evolution Equation

The evolution equation (9) under the speed function (10)
is discretized by uniformly sampling a set of points xj ,
j = 1, . . . , N0 on the T-spline level set. We use the
marching triangulation method to generate the uniform
samples, which will be described later in Section 4.1.
Since usually the number of sample points N0 is much
larger than the number of T-spline control coefficients
n, the equation can not be exactly satisfied. We use a
least-squares approach to choose the time derivative of
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the function f by solving

E =

N0
∑

j=1

( ḟ(xj , τ) + v(xj , τ) · ∇f(xj , τ) )2 → Min (11)

where ḟ(xj , τ) = ∂f(xj , τ)/∂τ is the time derivative of f .
In order to prevent the problem from being ill-posed,

we add a regularization term to the above function E to
be minimized,

E + λc|ċ|
2 → Min, (12)

where ċ is the time derivative of the T-spline control
coefficients, and λc is a pre-scribed small constant [17].

Since in our case ḟ(x, τ) = b(x)⊤ċ(τ) (cf. Equa-
tion (4)), the solution to (12) can be found by solving
a sparse linear system of equations.

Then we generate the updated control coefficients

c(τ + ∆τ) = c(τ) + ċ∆τ. (13)

by using an explicit Euler step ∆τ . ∆τ is chosen as

∆τ = min(1, {
h

|v(xj , τ) · n(xj , τ)|
}0≤j≤N0

) (14)

where h is a user-defined constant to indicate the max-
imum allowed evolution step size for each sample point
on the T-spline level set.

3 Constraints for T-spline level sets evolution

In this section, we present three different constraints in-
cluding distance field constraints, range constraints, and
volume constraints, which can be applied to improve the
robustness and effectiveness of T-spline level sets evolu-
tion.

3.1 Distance Field Constraint

The distance field constraint is used to restore the signed

distance property of the T-spline level set function during
the evolution, without having to use the costly level set

reinitialization procedure [54].
Since an ideal signed distance function φ satisfies

|∇φ| = 1 everywhere in the domain of D, we propose
the following constraint term

S0 =

∫

D

(
∂|∇f(x, τ)|

∂τ
+|∇f(x, τ)|−1 )2dV → Min, (15)

where dV is the volume element. This constraint acts as
a penalty function to penalize the deviation of f from a
signed distance function.

In practice, we realize that it is usually sufficient to
maintain the signed distance property of f only in a small
neighborhood of the zero level set (like the narrow-band

(a) (b) (c)

Fig. 3 The distance field constraint (DFC) for T-spline level
sets in 2D. The figure shows the data points with T-mesh in
(a), the resulting level set function without DFC in (b), and
the resulting level set function with DFC in (c).

level set method). Thus we propose to use a much more
efficient version of the distance field constraint,

S =

N0
∑

j=1

(
∂|∇f(xj , τ)|

∂τ
+ |∇f(xj , τ)| − 1)2, (16)

by only considering the sample points xj , j = 1, . . . , N0

on the zero level set. Combining the distance field con-
straint into the evolution equation, we get the new ob-
jective function to be minimized

E + λc|ċ|
2 + λsS → Min. (17)

We usually choose the weight λs = 0.1 in our experi-
ments. More details about the influence and choice of λs

are described in [54].
Fig. 3 illustrates an example of using the distance

field constraint. As shown in (b), without the using of
distance field constraints, the level set function becomes
very steep (or flat) in some regions, which may cause
difficulties in maintaining the numerical stability during
the evolution. This situation can be cured by applying
the distance field constraint, as shown in (c).

3.2 Range Constraint

One typical advantage of the implicit representation of a
surface is fast inside/outside distinction. In our case, we
assume that the T-spline level set function f(x) > 0 rep-
resents the region outside the surface, and f(x) < 0 in-
side the surface. The range constraints are used to spec-
ify regions which should lie inside/outside the surface to
be reconstructed. More specifically, we consider a set of
points {xk}k=1,...,N1

which should not lie outside the zero
level set, and another set of points {yk}k=1,...,N2

which
should not lie inside the zero level set,

{

f(xk) ≤ 0, k = 1, . . . , N1.
f(yk) ≥ 0, k = 1, . . . , N2.

(18)

The above range constraints can be achieved by adding
corresponding penalty terms to the objective function (17)

such that the time derivative satisfies ḟ(xk) < 0 if f(xk) >
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0, and ḟ(yk) > 0 if f(yk) < 0, respectively. For example,
to the first set of points xk, we propose to use

R =

N1
∑

k=1

(ḟ(xk, τ) − f(xk, τ))2α(f(xk, τ)) (19)

where the ’activator’ function α is defined as

α(f) =

{

1, f > 0.
0, f ≤ 0.

(20)

The second set of points yk can be dealt with similarly.
The range constraints are very useful in practical ap-

plications. As noticed in [22], the presence of the bal-
loon force in the evolution speed function (10) may lead
to problems when a large time step size is used for the
evolution, because the level set may skip over and miss
object boundaries defined by incomplete data. This prob-
lem can be handled by treating all the data points as the
set of points xk to be constrained not outside the surface,
which is easily done by combining the range constraint
term (19) into the objective function to be minimized

E + λc|ċ|
2 + λsS + λrR → Min. (21)

Usually we use a large value for the weight λr (e.g.
λr = 100) of the range constraint. Figure 4(b) and (c) il-
lustrate different results before and after applying range
constraints. Another example is given in Figure 6.

3.3 Volume Constraint

In some applications of surface reconstruction, the vol-
ume of the object to be reconstructed may be known
a priori. In order to utilize this geometric information,
we propose to formulate the volume constraint for the
evolution of surfaces.

Let V0 be the volume of the initial surface (T-spline
level set), and V∞ be the volume of the final surface. In
our case V0 > V∞, since the initial surface contains the
final surface. By defining a smooth monotonic function
V (τ) with respect to the time τ such that V (0) = V0 and
V (τ) → V∞ as τ → ∞, the volume of the surface will
continuously converge to the desired value V∞. Then the
volume constraint is represented as

∫

Γ

vn(x, τ)dA = V̇ (τ), (22)

where A is the area element of the level set surface Γ ,
and

vn(x, τ) = −
ḟ(x, τ)

|∇f(x, τ)|
(23)

is the normal velocity of the T-spline level set. We use
the exponential function to define the curve of volume
changes

V (τ) = (V0 − V∞)e−τ + V∞, (24)

(a) (b)

(c) (d)

Fig. 4 The range constraint and volume constraint. The fig-
ure shows the data points with T-mesh in (a), the resulting
T-spline level set without range and volume constraints in
(b), the result with range constraint in (c), and the result
with volume constraint in (d).

Fig. 5 The volume function V (τ ).

which is illustrated in Fig. 5. It becomes a volume pre-
serving constraint when V∞ = V0.

By combining (22) and (23), the volume constraint
is linear in the time derivatives of the T-spline control
coefficients. Now the evolution of T-spline level sets is
transformed into a least-squares problem (21) subject to
the linear volume constraint. By using the method of
Lagrange multipliers, the solution can be obtained by
solving a sparse linear system of equations.

The volume constraint is very helpful to handle in-
complete data with large holes. Without the volume con-
straint, the level set may easily shrink into the holes
during the evolution (cf. Fig. 4(b) and (c)). With the
volume constraint, the level set surface will keep an ap-
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propriate volume and the holes will be properly closed
(cf. Fig. 4(d)).

4 Mesh Reconstruction with Geometric Details

and Sharp Features

4.1 Initial Mesh Generation through Marching
Triangulation

After the smooth base surface S0 is obtained, we use
the Marching Triangulation [26] method to generate the
mesh representation of S0. We choose the Marching Tri-
angulation since it is able to produce a high-quality tri-
angular mesh. Other polygonization methods [34,21] can
be also considered.

The requirement for applying the Marching Triangu-
lation method is that the function value f(x) and the
gradient ∇f(x) are available for any point x in the func-
tion domain. This is satisfied by our T-spline function f
since f is C2 continuous in the domain of interest.

A key procedure of the Marching Triangulation is
the choice of seed points on the implicit surface. If the
implicit surface contains multiple components, then at
least one seed point must be chosen for one component,
otherwise those components without seed points will not
be triangulated. In our case, since the implicit function
f defines a good base surface S0 for the data points
(pk)k=1,2,...,n, we solve this problem as follows:

1. Project each data point (pk)k=1,2,...,n to S0, get the
corresponding closest point (qk)k=1,2,...,n. (More de-
tails will be described later in Section 4.2.1.)

2. Initialize the set of potential seed points
P = {pk}k=1,2,...,n.

3. Initialize the set of generated triangles M = ∅.
4. Choose an arbitrary seed point si from P , and apply

the Marching Triangulation to get a new mesh Mi.
Add Mi to M.

5. For each potential seed point (pk)pk∈P , compute the
distance from its closest point qk to the new mesh
Mi. If the distance is sufficiently small, then remove
(pk) from P .

6. Repeat steps 4 ∼ 5 until P = ∅.
7. Output the generated triangular meshes M.

A similar strategy is also used to generate uniform
samples on the T-spline level set during the evolution.
The idea is to treat the sample points on the current
surface as the data points in the above procedure when
applying the marching triangulation for the next surface.
Since the triangulation of the initial surface with only
one component is easily obtained, all the other surfaces
can be handled subsequently.

The Marching Triangulation method is very fast and
also simple to implement. As shown in Section 5, usu-
ally we can generate over 10, 000 triangles within sec-
onds. The generated mesh is semi-regular, and the vast

majority of the mesh vertices have valence 6. The edge
length of the triangles is approximately indicated by the
marching step length δt, which can be determined by
the feature size of the reconstructed surface. We usually
choose δt = 0.2lT , where lT is the diameter of the cells
at the finest level of the T-mesh.

4.2 Displacement Mapping

After the base surface S0 is triangulated by the initial
mesh M0, the topology and parametrization of the sur-
face to be reconstructed is now defined by M0. Fine geo-
metric details are to be captured through a displacement
mapping,

M = M0 + D, (25)

where the displacement field D is generated from the
data points (pk)k=1,2,...,n.

4.2.1 Data Points Projection

In order to get the displacement field D, we project all
data points to the initial mesh M0. Since M0 is a dis-
cretization of the smooth base surface S0, the projection
process can be transformed into the computation of clos-
est points on the surface S0, which is implicitly defined
by the T-spline function f . Thus, for each data point
pk, one can compute its closest point qk efficiently by
Newton iteration. Then we associate qk to its closest
triangle Tk, which will be needed later for the Gaussian
filtering of the displacement field. The whole projection
procedure is given as follows:

1. For each triangle Ti ∈ M0, initialize the array of in-
dices of its associated data points Ii = ∅.

2. Initialize the displacement array (dk = 0)k=1,2,...,n.
3. For each data point (pk)k=1,2,...,n,

(a) Initialize the closest point qk,0 = pk.
(b) Using Newton’s method to get the updated closest

point qk,i+1 = qk,i −
f(qk,i)

‖∇f(qk,i)‖
2∇f(qk,i).

(c) Repeat step 3.2 until ‖qk,i+1−qk,i‖ is sufficiently
small. Set qk = qk,i+1.

(d) Set the signed displacement value dk = sign(f(pk))·
‖pk − qk‖.

(e) Find the closest vertex vkv
of M0 to the point qk.

(f) From the one-ring neighborhood of vkv
, get the

closest triangle(s) Tkt
to qk.

(g) Add k to the array of indices Ikt
.

4. Output (Ii)Ti∈M0
and the displacement array (dk)k=1,2,...,n.

Please note that we do not compute any ray-triangle
intersections for the data points projection. This im-
provement of efficiency has been achieved by exploiting
the advantages of the implicit representation of the base
surface.
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4.2.2 Displaced Mesh

After the scalar displacement field D is already sampled
at each closest point (qk)k=1,2,...,n, we then want to map
it to each vertex v of the initial mesh M0,

v̂ = v + d(v) · n. (26)

Note that the normals n are computed from the implic-
itly defined T-spline surface, n = ∇f

‖∇f‖ |v, instead of the

discretized mesh.
Since the given data points are often noisy, the sam-

pled field is therefore not smooth. In order to avoid cracks
between adjacent triangles of the displaced mesh, we use
Gaussian filtering to smooth the displacement field (we
usually choose σ = 2δt, where δt is the marching step
length in Section 4.1). Of course, the use of Gaussian fil-
tering will also smooth some desired sharp features. The
next section will describe how to recover these sharp fea-
tures.

After the displacement mapping, the quality of the
displaced mesh may be degraded. In the worst case, flips
or self-intersections may happen to the displaced trian-
gles, where the displacement values are too large for some
deep convex or concave parts of the object surface. The
allowed displacement can be bounded with the help of
the principal curvature radii, which can be estimated
from the implicit T-spline function.

One way to prevent this problem is to find a better
base surface by using more degrees of freedom (T-spline
control coefficients) and applying the ’final refinement’
step [54] to make the T-spline level set more close to
the data points. In our algorithm, we use the principal
curvature radii as an indicator. If the displacement value
is close to or larger than the corresponding curvature
radii, we check if the displaced triangle is flipped. If some
flips happen, we refine the T-spline level set to make sure
that the displacement mapping is intersection free.

4.3 Recovering Sharp Features

After the displacement mapping, the displaced mesh ap-
proximates the data points far better than the initial
mesh. Most parts of the object to be reconstructed are al-
ready well fitted, except near sharp features. In this sec-
tion, we introduce a data-driven bilateral filtering method
to reproduce sharp features of the reconstructed mesh.

4.3.1 Bilateral Filter

The bilateral filter, which was originally proposed in im-
age processing [48,50], is a nonlinear filter derived from
Gaussian blur, with a feature-preserving term that de-
creases the weights of pixels as a function of intensity
differences. Following the formulation in [48], the bilat-
eral filtering for image I(p) at the pixel p∗ is defined

as

ˆI(p∗)=
∑

pj∈N(p∗)

Wc(‖p∗ − pj‖)Ws(|I(p∗) − I(pj)|)

W
I(pj),

(27)

where N(p∗) is the neighborhood of p. Wc is the stan-

dard Gaussian filter with parameter σc: Wc(x) = e−x2/2σ2

c ,
and Ws is a similarity weight function for feature-preserving

with parameter σs: Ws(x) = e−x2/2σ2

s . W is a normal-
ization factor

W =
∑

pj∈N(p∗)

Wc(‖p
∗ − pj‖)Ws(‖I(p∗) − I(pj)‖).

Recently, the bilateral filter has been applied to mesh
denoising while preserving sharp features [20,32]. The
author in [52] uses the bilateral filtering for recovering of
sharp edges on feature-insensitive sampled edges. In [4],
the bilateral filter in used for data denoising such that the
filtered data points can be later connected into a mesh
structure. Unlike these previous works, we combine the
bilateral filtering term into a data-driven evolution pro-
cess, such that the produced sharp features are faithful
to the given data points.

4.3.2 Data-Driven Bilateral Evolution

Recall that our bilateral evolution is to obtain a mesh
that meets two goals:

1. It provides a good fit to the point set (pk)k=1,2,...,n.
2. It recovers sharp features by conducting bilateral fil-

ters.

Consider a mesh M with time-dependent vertices V(τ) =
(vi(τ))i=1,2,...,m (m is the number of vertices), whose
evolution process is governed by minimizing the following
energy function

F (V(τ)) = Edist(V(τ)) + ωEbila(V(τ)) → min, (28)

where the two terms Edist and Ebila correspond to the
two goals listed above, and ω > 0 is a constant weighting
coefficient.

The distance energy Edist is defined as

Edist(V(τ)) =
n

∑

k=1

(q̇k + qk − pk)2, (29)

where qk on the mesh is the closest point of pk, and its
time derivative q̇k = ∂qk/∂τ can be represented as a
linear combination of related vertex velocities v̇j

q̇k =
∑

vj∈φ(pk)

λj v̇j , (30)

where φ(pk) contains 3 vertices of the corresponding tri-
angle, and λj are the barycentric coordinates of qk.
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eavr (10−3) emax (10−3) Run time (s)
Dataset np nt nv MI MD MS MI MD MS TL MT D-Map B-Evl
Rocker-Arm 10044 992 8577 4.34 0.88 0.69 24.44 14.12 11.30 10.50 2.19 0.52 6.64
Horse 48485 1484 9137 5.63 0.36 – 43.78 7.69 – 36.13 2.40 3.11 –
Fandisk(cut) 5817 1019 12856 18.27 1.27 0.21 68.86 19.90 7.93 12.30 2.94 0.39 7.78
Ball-joint 137062 988 11831 33.42 0.83 – 60.33 8.05 – 7.50 2.41 6.32 –
Foot 25845 871 4517 35.86 0.62 0.55 98.47 9.07 8.22 7.94 0.81 1.19 0.63
Sculpture 25386 2551 14026 3.93 0.74 0.63 20.72 6.33 5.41 56.33 5.03 1.67 6.16

Table 1 The approximation errors and the execution time of the given examples. np: number of data points; nt: number
of T-spline control points; nv: number of mesh vertices; MI : initial mesh; MD: displaced mesh; MS: sharpened mesh after
bilateral evolution; TL: T-spline level set evolution; MT: marching triangulation; D-Map: displacement mapping; B-Evl:
bilateral evolution. The right three columns show the run time for the T-spline level set evolution, the marching triangulation,
the displacement mapping and the bilateral evolution, respectively. The left several columns show the number of data points,
the number of T-spline control points, and the number of mesh vertices. The middle columns give both the approximation
errors (eavr) and the maximum errors (emax) for the initial meshes, the displaced meshes and the final meshes, respectively.

The bilateral energy Ebila is defined as

Ebila(V(τ)) =

m
∑

i=1

(v̇i + vi − v′
i)

2, (31)

where v′
i is the updated position of vi according to the

bilateral filter [52]

v′ =
∑

Tj∈N(v)

Wc(‖v− cj‖)Ws(‖v − v∗
j‖)

W
αjv

∗
j , (32)

where v is any vertex of the mesh M , v∗
j is the projec-

tion point of v on the plane of the triangle Tj , αj is the
area of Tj , cj is the center of Tj , and N(v) is the set
of neighboring triangles contributing to the position of
v. Wc and Ws are the Gaussian filters as used in (27).
See [52] for more details.

Combining (28), (29), (30) and (31), the minimizer
of (28) leads to a quadratic objective function of the un-

known time derivatives V̇ = (v̇i)i=1,2,...,m. The solution

V̇ is found by solving a sparse linear system of equations,
∇F = 0. Using explicit Euler steps vi → vi+∆τ v̇i, with
a suitable step-size ∆τ , one can trace the evolving mesh.

Actually, in practice, we do not need to update all
vertices during the data-driven bilateral evolution, since
the non-sharp region of the surface is already well fitted
by the displacement mapping. Instead, we only need to
update those sharp-vertices with both a high dihedral an-
gle and a large approximation error, while keeping v̇ = 0
for the remaining vertices. Here, we use the same method
as indicated in [52] to detect potential sharp vertices with
a high dihedral angle. If the one-ring neighborhood re-
gion of a potential sharp vertex is already well fitted (the
approximation error is small), then we discard it from the
list of real sharp vertices. After that, to construct Edist

and Ebila, we only consider those terms related with real
sharp-vertices, such that the size of the linear system is
greatly reduced.

The bilateral evolution continues until the approxi-
mation error can not be reduced any more. In our method,

the approximation error eavr is measured as the average
distance of the data points to the mesh

eavr =
1

n

n
∑

k=1

‖qk − pk‖. (33)

4.3.3 Discussion

The parameters σc and σs of the bilateral filter are im-
portant to get a satisfying reconstruction result. On the
one hand, if σc and σs are set too large, the sharp fea-
tures will be smoothed. On the other hand, if they are set
too small, the reconstruction result will be very sensitive
to the noise of the given data set. In our experimen-
tal settings, we usually choose σs = σc = 2δt (δt is the
marching step length in Section 4.1).

Usually within 10 iterations, the sharp features can
be well reconstructed. But because most sharp-vertices
are attracted towards their corresponding sharp edges,
many degenerate triangles will be produced afterwards.
Therefore, in order to improve the regularity of the re-
constructed mesh, a MeshSlicing [9] operation is used to
remove degenerate triangles after the bilateral evolution
stops (See Figures 7 (d1), 8 (c1) and 10 (d1)).

5 Experimental results

In this section, we present some examples to demon-
strate the effectiveness of our method. All the given data
points are normalized to be contained in a cubic domain
([−1, 1] × [−1, 1] × [−1, 1]). The maximum error emax

mentioned below is the maximum distance of the data
points to the mesh. The average error eavr is the approx-
imation error defined by Eq. (33). All the experiments
are run on a PC with AMD Opteron(tm) 2.20GHz CPU
and 3.25G RAM. The approximation errors and the ex-
ecution time are reported in Table 1.

Example 1. The first example is the Rocker-Arm model,
which contains non-uniform samples with holes and sharp
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(a) (b) (c)

Fig. 6 Mesh reconstruction of the Horse model. The figure shows the disconnected base surface without range constraints
in (a), the correct base surface with range constraints in (b), and the final surface in (c).

(a) (b) (c) (d)

(c1) Close-up view of (c) (d1) Close-up view of (d)

Fig. 7 Mesh reconstruction of part of the Fandisk model. We modified the original data set by cutting it with a plane. The
figure shows the data points in (a), the initial mesh in (b), the displaced mesh in (c), and the final mesh with sharp features
in (d). Flat shading is used in (d), (c1) and (d1).

(a) (b)

(b1) Close-up view of (b)

(c1) Close-up view of (c) (c)

Fig. 8 Mesh reconstruction of the Foot model. The figure shows the initial mesh in (a), the displaced mesh in (b), and the
final mesh (after bilateral filtering and mesh slicing) with sharp features in (c). Flat shading is used in (b1) and (c1).
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(a) (b) (c)

Fig. 9 Mesh reconstruction of the Ball-joint model. The figure shows the data points and the T-mesh in (a), the initial
mesh in (b), and the displaced mesh in (c).

(a) (b) (c) (d)

(c1) Close-up view of (c) (d1) Close-up view of (d)

Fig. 10 Mesh reconstruction of the Sculpture model. The figure shows the data points and the T-mesh in (a), the initial
mesh in (b), the displaced mesh in (c), and the final mesh with sharp features in (d). Flat shading is used in (c1) and (d1).

features, as shown in Fig. 1. The T-spline level set adapts
its topology from genus-0 in (b) to genus-1 in (c), where
the initial mesh is constructed. The displaced mesh is
shown in (d). By using the data-driven bilateral evolu-
tion, the approximation error is further reduced by 21.6%
(cf. Table 1), and the sharp edges are recovered in (e).

Example 2. The second example is a horse model, as
shown in Fig. 6. The narrow and thin legs of the horse
can easily split into several disconnected components in
(a) without using the range constraint. After combining
the range constraint (cf. Section 3.2), the base surface
is correctly constructed in (b), and the final mesh with
geometric details is shown in (c).

Example 3. The third example is part of the Fandisk
model, which was cut by a plane, creating a large hole in
the data set, as shown in Fig. 7. By using our method,
the cutting hole can be filled by the T-spline level set
representation, and the sharp edges can be recovered by
the bilateral evolution of the mesh, as shown in (d). The
approximation error is reduced by 83.5%, and the maxi-
mum error is reduced by 60.2% during the bilateral evo-
lution (cf. Table 1).

Example 4. The fourth example is the Ball-joint model,
as shown in Fig. 9. Since the data points are already well
approximated by the displacement mesh, the last phase
of our algorithm (recovering sharp features) is discarded.
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Example 5. The fifth example is the Foot model, as shown
in Fig. 8. After the displacement mapping in (b), the
sharp edges can be recovered by the data-driven bilat-
eral evolution, as shown in (c).

Example 6. The last example is a complex sculpture
model, as shown in Fig. 10. Through the evolution of
T-spline level sets, the base surface with a correct topol-
ogy is obtained in (b). The updated mesh after displace-
ment mapping is given in (c). Finally, the sharp edges
are produced in (d) by using the bilateral evolution.

6 Conclusions

We have introduced a new framework for surface re-
construction from unorganized data points. We use the
displacement mapping of a smooth base surface, which
is implicitly represented by scalar T-spline functions.
We have shown that, with the help of different shape
constraints, even non-uniformly sampled and incomplete
data can be handled by the implicitly defined base sur-
face. Geometric details can efficiently be dealt with with
the help of the displacement mapping. The sharp fea-
tures of the mesh surface are produced by using a data-
driven bilateral evolution. Possible future work includes
comparing results by using different forms of functions
for the implicit representation of the base surface, and
exploiting other kinds of a priori knowledge about the
geometric properties of the surface to be reconstructed.
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