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Abstract. The support function of a free-form–surface is closely related
to the implicit equation of the dual surface, and the process of comput-
ing both the dual surface and the support function can be seen as dual
implicitization. The support function can be used to parameterize a sur-
face by its inverse Gauss map. This map makes it relatively simple to
study isophotes (which are simply images of spherical circles) and off-
set surfaces (which are obtained by adding the offsetting distance to the
support function).
We present several classes of surfaces which admit a particularly simple
computation of the dual surfaces and of the support function. These in-
clude quadratic polynomial surfaces, ruled surfaces with direction vectors
of low degree and polynomial translational surfaces of bidegree (3,2).
In addition, we use a quasi-interpolation scheme for bivariate quadratic
splines over criss-cross triangulations in order to formulate a method
for approximating the support function. The inverse Gauss maps of the
bivariate quadratic spline surfaces are computed and used for approx-
imate isophote computation. The approximation order of the isophote
approximation is shown to be 2.

1 Introduction

This paper is devoted to the use of support functions and dual implicitization
in order to deal with the problem of computing isophotes of free form surfaces.
Like reflection lines and highlight lines, isophotes are very useful tools for shape
interrogation, see [11, 12]. They are defined as lines of equal light intensity and
they are used to detect and visualize small surface irregularities and disconti-
nuities that can not be seen by other means like, for example, a shaded surface
image.

The first use of isophotes in this context is due to [22]. Isophotes appear also
in other contexts such as Image Processing for the so called image interpolation
(e.g. [18, 28]), Computer Vision for object detection (e.g., [17]) or in the study of
feature sensitive mathematical morphology of surfaces where an isophotic metric
has been introduced [25].

Dual implicitization (or support function computation) provides an alterna-
tive way to represent curves and surfaces that allows, in many cases, to analyze
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and to manipulate the considered curves and surfaces [26, 9]. In this paper we
show several concrete cases (quadratic polynomial surfaces, ruled surfaces with
polynomial direction vectors of low degree, polynomial translational surfaces of
low degree or some special cubics) where the dual implicit equation is very easy
to compute explicitly in terms of rational functions and square roots. Using dual
implicitization and the inverse Gauss map then isophotes are easy to characterize
for these cases.

In order to compute the isophotes on free form surfaces in the general case we
propose to compute a support function approximation through the computation
of a piecewise quadratic approximation for the considered free form surface.
This support function then defines the inverse Gauss maps which are used to
determine the isophotes for the considered free form surface.

The remainder of this paper is organized as follows. After recalling the no-
tions of dual surfaces and support functions of free-form surfaces, the second
section discusses the support functions of several particular classes of surfaces:
quadratic polynomial surfaces, rational ruled surfaces with direction vectors of
low degree, polynomial translational surfaces of low degree, and special cubic
polynomial surfaces. Section 3 uses the support function to analyze offset sur-
faces, isophotes and contour generators. Based on a simple representation for
the inverse Gauss map, it presents results on exact rational paramaterizations
of offsets and on parametric represetations of isophotes, in both cases for special
classes of surfaces. Section 4 discusses the case of general free-form surfaces. We
propose to approximate the support function via quasi-interpolation by piece-
wise quadratic surfaces and use the result for approximate isophote computation.
Finally we analyze the convergence of the method.

2 Dual implicitization

We recall the notions of the dual surface and the support function of a rational
surface. In the second part we discuss several classes of surfaces whose support
function can be expressed by using solely square roots and rational functions.

2.1 Dual surface and support functions

We consider a non-developable polynomial or rational surface p : Ω → R
3

with domain Ω ⊆ R
2. Its partial derivative vectors with respect to the surface

parameters u, v will be denoted with pu and pv, respectively.
Consider the three equations

h − p(u, v)⊤n = 0, (1)

pu(u, v)⊤n = 0, (2)

pv(u, v)⊤n = 0. (3)

If these equations are satisfied by non-trivial values of h and n, then the plane
with normal n and distance h/||n|| to the origin is the tangent plane of the
surface at its point p(u, v).
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This system is homogeneous with respect to h and n. Eliminating u and v
from (1)–(3) leads to a single equation of the form

F (n, h) =

d
∑

i=0

hifm−i(n) = 0 (4)

for certain values of the total degree m and the degree d with respect to h.
This equation is homogeneous of degree m with respect to h and n, since the
original equations (1)–(3) were homogeneous. Consequently, the functions fm−i

are homogeneous polynomials of degree m − i in n.
Eq. (4) is the dual implicit equation of the surface p, as it is satisfied by

the coefficients of the tangent planes of the surface. We refer to the process of
computing this equation as dual implicitization.

In order to visualize it, one may consider the surface

F ((x, y, z)⊤, 1) = 0 (5)

which is obtained by substituting h = 1 and n = (x, y, z)⊤. This is the dual
surface (see [13]), which is generated by applying the polarity with respect to
the unit sphere to the tangent planes of p.

Hoschek [13] uses the polarity with respect to the imaginary unit sphere. We
shall use the standard unit sphere instead, see e.g. [10]. In this case, a point q

is mapped to the plane q · x = 1 and vice versa, and the center of the sphere is
mapped to the plane at infinity.

We are particularly interested in surfaces where it is possible to solve the two
equations (2)–(3) for u, v by using rational operations and square roots. After
substituting the result into (1), the variable h can be expressed by a function

h = H(n) (6)

of n. The function H may possess different branches, if square roots are involved.
For a given normal n, the different roots of F (n, h) = 0 are the different possible
values of H .

The function H is a 1-homogeneous function, i.e.

H(λn) = λH(n), (7)

since the elimination procedure preserves the homogeneity of the original system.
The equation

H(n) = 1 (8)

is another implicit representation of the dual surface (5).
The restriction of H to the unit sphere is the support function of the surface.

This function is always odd,

H(−n) = −H(n), (9)

since H is homogeneous. The value(s) of H(n) is (are) the support distance(s)
of the tangent plane(s) with unit normal n (cf. see [9, 26, 10]).

We describe several classes of surfaces leading to certain special values of the
degrees d and m which admit closed form solutions of (4) with respect to h.
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2.2 Quadratic polynomial surfaces

We recall results from [10, Example 2] on the support function of non–developable
quadratic polynomial surfaces (triangular Bézier surfaces of degree 2), see also [16].
These surfaces possess an affine classification, which is described in [4, 21]. We
are mainly interested in non–developable surfaces. Developable quadratic poly-
nomial surfaces are planes, parabolic cylinders or quadratic cones.

If the components of p are quadratic polynomials in u and v, then – in the
generic case – the dual implicit equation has the form (4) with d = 1 and m = 3.
Consequently, the support function H is an odd rational function

H = −f3(n)/f2(n) (10)

which is the quotient of two homogeneous polynomials f3 and f2 of degree 3 and
degree 2, respectively. The dual surface is a cubic monoid surface (see [15]) with
a threefold point at the origin.

2.3 Ruled surfaces with polynomial direction vectors of low degree

Next we consider ruled surfaces,

p(u, v) = q(u) + vw(u) (11)

where the directrix q(u) is a rational curve and the direction vector of the gen-
erators are described by a polynomial function

w(u) =

k
∑

i=0

ui wi (12)

with certain real coefficient vectors wi ∈ R
3. The two equations (2), (3) take the

form
[q′(u) + vw′(u)]⊤n = 0 and w(u)⊤n = 0. (13)

We analyze the cases k = 1 and k = 2.

– k = 1: The two equations (13) are linear with respect to v and u, respectively,
and the second equation does not involve v. One may easily express both u
and v by rational functions of n.
The dual implicit equation takes the form (4) with d = 1. The support
function of the surface is an odd rational function.

– k = 2: The first equation is linear in v and it can be used to express it as a
rational function of n and u. The second equation is a quadratic equation
for u, which can be solved by using one square root. Note that its argument
is a homogeneous quadratic form of n.
The dual implicit equation takes the form (4) with d = 2. The support
function of the surface can be expressed as

H(n) = R(n,±
√

n⊤Dn) (14)

where R is a homogeneous rational function and D is a symmetric 3 × 3
matrix.
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Consequently, rational ruled surfaces with linear and quadratic direction vectors
are special instances of the surfaces studied in [10] and [1], respectively.

2.4 Polynomial translational surfaces of low degree

A translational surface is generated by translating a moving curve along a fixed
curve. The general parametric representation of a rational translational surface
is

p(u, v) = q(u) + r(v) (15)

where q and r are rational curves. The last two equations (2) and (3) take the
form

q′(u)⊤n = 0 and r′(v)⊤n = 0. (16)

We analyze the special case where both q and r are polynomial curves of low
degree (at most cubic). We assume that q is a cubic curve and study the cases
of quadratic and cubic curves r separately.

– r is quadratic: The first equation in (16) is quadratic with respect to u and
the coefficients are linear in the coordinates of n. The second equation (16)
is even just linear in v, hence u and v can immediately be computed from n

using rational functions and one square root.
The dual implicit equation takes the form (4) with d = 2 and m = 6. The
support function of the surface can be expressed as

H(n) = R(n,±
√

n⊤Dn) (17)

where R is a homogeneous rational function with a numerator of degree 4 and
a denominator of degree 3, and D is a symmetric 3×3 matrix. Consequently,
polynomial translational surfaces of degree (3,2) are special instances of the
surfaces studied in [1].

– r is cubic: Both equations in (16) are now quadratic. The parameters u and
v can immediately be computed from n using rational functions and two
square roots.
The dual implicit equation takes the form (4) with d = 4 and m = 12. The
support function of the surface can be expressed as

H(n) = R(n,±
√

n⊤D1n,±
√

n⊤D2n). (18)

It is a homogeneous rational function with a numerator of degree 5 and a
denominator of degree 4, and D1 and D2 are two symmetric 3× 3 matrices.

Example 1. The computation of the support function of the translational surface

p(u, v) = (u, v, u2 + v3)⊤ (19)

which is generated by translating the cubic parabola along the quadratic parabola
gives

H(n) =
1

36

−9 x2 ± 8
√

3
√−zy y

z
(20)

where n = (x, y, z)⊤.
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2.5 Special cubic polynomial surfaces

Finally we mention two special classes of cubic surfaces whose support function
can be computed explicitly simply by using square roots. A general polynomial
cubic surface has a parametric representation of the form

p(u, v) =
3
∑

i=0

3−i
∑

j=0

ai,ju
ivj (21)

with real coefficients ai,j ∈ R
3. If the coefficients satisfy either

a2,1 = a2,0 = a1,1 = a0,2 = a0,1 = 0 (22)

or

a2,1 = a1,2 = a0,3 = 0, (23)

then the two equations (2), (3) can be used to express u and v as functions of n

using rational functions and square roots. Consequently, the support functions
of these surfaces involve only rational expressions and square roots, but the
arguments of the roots are now polynomials with a higher degree than two.

3 Offsets, isophotes and contour generators

We discuss the inverse Gauss map of surfaces with odd support functions and
address the existence and computation of rational PN (Pythagorean normal)
parameterizations. Finally we analyze the parameterization of isophotes with
the help of the inverse Gauss map.

3.1 The inverse Gauss map

Any 1–homogeneous function H satisfies

∇H(λn) = ∇H(n), (24)

i.e., the gradient field is constant along the lines through the origin. Indeed,
applying the gradient operator to (7) gives (24), where both sides of the equation
are multiplied by λ.

For any point n, the scaled point n0 = n/H(n) lies on the dual surface, since
it satisfies

H(n0) = H

(

n

H(n)

)

=
1

H(n)
H(n) = 1, (25)

see (8). Moreover the normal vector of the dual surface at n0 is (∇H)(n), due
to (24). The equation of the tangent plane of the dual surface at n0 is

(∇H)(n) · x = 1 (26)
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since

(∇H)(n) · n

H(n)
=

1

H(n)

d

dt
H((1 + t)n)

∣

∣

∣

∣

t=0

=
1

H(n)

d

dt
(1 + t)

∣

∣

∣

∣

t=0

H(n) = 1.

Now we apply the polarity with respect to the unit sphere to the tangent plane
(26). This leads to the corresponding point ∇H(n) of the original surface, such
that the vector n is a normal vector of the surface. Consequently, the mapping

Γ : S
2 → R

3 : n → (∇H)(n) (27)

is the inverse Gauss map of the surface with the 1-homogeneous support func-
tion H , see [9, 10].

Example 2. The inverse Gauss maps of the translational surface from Example
1 are

Γ (n) =

(

− x

2z
,−

√
3y

±3
√−zy

,
±9

√−zyx2 + 4
√

3zy2

±36z2
√−zy

)⊤

, (28)

where n = (x, y, z). This expression is constant along the lines through the
origin, hence it can also be evaluated at non-normalized normal vectors.

3.2 PN parameterizations and offset surfaces

Consider a rational parameterization ν : Ω → S
2 of the sphere with parameters

(u, v) ⊂ Ω ⊆ R
2, cf. [5]. The parameterization of the surface

q = Γ ◦ ν (29)

which is obtained by composing ν with the inverse Gauss map, is a PN (Pytha-
gorean Normal vector) parameterization of the given surface, see [23]. It has an
associated polynomial field of (non-normalized) normal vectors, such that their
length is equal to the square of another polynomial, hence the components of
the polynomial normals satisfy a Pythagorean condition.

A general construction and a design methodology for rational PN parame-
terizations have been described in [23], based on the dual representation and
control structure of rational surfaces. These surfaces have also been studied in
the frame of Laguerre geometry [20]. As an advantage of rational PN surfaces,
the offset surfaces are again rational. They can be obtained either by adding the
offsetting distance to the support function or by adding constant multiples of
the rational unit normals to the PN parameterization.

Clearly, surfaces with rational support functions have rational PN param-
eterizations, since their inverse Gauss maps Γ are again rational. This is true
both for odd rational support functions, where Γ takes the form (27), and for
general rational support functions, see [10]. As observed in Section 2.2, this case
includes quadratic polynomial surfaces and rational ruled surfaces with polyno-
mial direction vectors.
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In addition, surfaces with support functions of the form (14) or (17), where R
is a rational function and the matrix D has rank 3, can be equipped with rational
PN parameterizations. This is proved by describing an algorithm for generating
the parameterization in [1], where support functions of this type have been de-
rived by studying quadric surfaces. It is shown that the parameterization of these
surfaces is closely related to the analysis of the intersection of two quadrics in
four–dimensional space, which forms a del Pezzo surface.

Based on the results in Section 2.2 we note following fact.

Proposition 1. Non–developable ruled surfaces with polynomial direction vec-
tors of degree less than three and non–developable polynomial translational tensor-
product surfaces of degree (3, 2) possess rational PN parameterizations.

Proof. The PN parameterizations can be constructed as follows. First we com-
pute the support function, which gives functions of the form (14). Second we
apply the parameterization technique in [1]. This technique is not limited to
regular matrices D. It is possible to use it for surfaces with singular quadratic
forms, too. (See also the example below.) �

PN parameterizations of rational ruled surfaces where also discussed in [24,
19]. The first paper [24] observes that these parameterizations always exist. It
also presents an algorithm for parameterization for the case of direction vectors
of low degree (less than 3). The second paper [19] shows how to find parame-
terizations over the field of complex numbers which are, however, not directly
useful for geometric computing.

PN parameterizations of translational surfaces have not been discussed pre-
viously.

Example 3. In order to find a PN parameterization of the translational surface
from Example 1 with the inverse Gauss maps (28), we consider the two quadrics

x2 + y2 + z2 = 1 and yz = w2 (30)

in four-dimensional (x, y, z, w)–space. We generate a rational parameterization
(x(u, v), . . . , w(u, v)) of their intersection 2-surface. Then we may substitute it
into (28) and replace the square roots by |w(u, v)|.

The substitution x = Z, y = 1
2

√
2(X − Y ), z = 1

2

√
2(X + Y ),w = W

transforms the two quadrics (30) into

X2 + Y 2 + Z2 = 1 and X2 − Y 2 = W 2. (31)

We apply a central projection with center (1, 0, 0, 1) into the hyperplane X = 0
and obtain the cubic surface

W Z2 − W + W Y 2 + Y 2 + W 2 = 0. (32)

It contains the line W = Y = 0 which passes through two singular points (at
Z = ±1) of the surface. One may now parameterize this cubic surface using the
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family of conics which are obtained as intersections with planes through the line.
After a short computation one arrives at

x = (−2 + 2 u2v2 − 2 uv2 − 2 u)/N,

y = 1
2

√
2(2 + uv2 + u)u(v + 1)2/N,

z = 1
2

√
2(2 + uv2 + u)u(v − 1)2/N,

N = u2v4 + 4 u2v2 + u2 + 2 uv2 + 2 u + 2

which defines a rational parameterization of the sphere of degree (3, 4).

3.3 Isophotes

Recall that an isophote (a line of constant brightness) on a C1 smooth surface
is the set of all points where

∠(pu × pv,d) = ∠(n,d) = φ0 (33)

where d is the direction of the incoming light and φ0 is the (constant) angle
between the surface normal and the light direction, see [14]. For given values of
d and φ0, the unit normals along the isophotes form a circle on the unit sphere.

In particular, if φ0 = π, then the isophote is the contour generator of the sur-
face with respect to the parallel projection with direction r. The corresponding
normals form the great circle on the sphere which lies in the plane with normal d
through the origin. The contour generator contains the shadow boundary with
respect to illumination with direction d.

Since circles possess a rational parameterizations, one obtains that isophotes
on surfaces with rational support functions are rational curves. This is equiva-
lent to [23, Theorem 3.3], which analyzes isophotes on surfaces possessing PN
parameterizations whose unit normals define birational parameterizations of the
sphere. This class of surfaces is identical to the set of surfaces with rational
support functions.

In particular we analyze the case of quadratic polynomial surfaces, which
have rational support functions of degree (3/2). The inverse Gauss map is a
rational function of degree (4/4). We obtain the following result.

Proposition 2. The isophotes (resp. contour generators) on non–developable
quadratic polynomial surfaces are rational curves of degree 8 (resp. 4), which
correspond to rational curves of degree 4 (resp. 2) in the parameter domain of
the surface.

Proof. The isophotes are obtained by applying the inverse Gauss map to spher-
ical circles, which possess rational quadratic parameterizations. The contour
generators are found by applying the inverse Gauss map to lines, since these
project into great circles on the sphere (by a central projection with respect to
the origin) and the inverse Gauss map gives the same point for all points along
a line through the origin.
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Fig. 1. Isophotes on a translational surface for different light directions d.

The second part of this observation is proved by solving the linear system

pu(u, v)⊤n(t) = 0, pu(u, v)⊤n(t) = 0 (34)

for the surface parameters (u, v), where n(t) is a quadratic rational parameter-
ization of the spherical circle defined by (33), or a line in the plane which is
perpendicular to d. �

In the case of developable quadratic polynomial surfaces (34), which are ei-
ther planes, quadratic cylinders or quadratic half–cones, the two linear equations
in (34) do not possess solutions for all n. If solutions exist, then they are non-
unique, and they form lines in the parameter domain. It turns out that the
isophotes are either straight lines (for planes and cylinders) or half-lines (for
half–cones).

Isophotes on surfaces with more general support functions can be parame-
terized by composing the parameterization of a spherical circle with the inverse
Gauss map. If the support functions involves only rational operations and square
roots, then one obtains square-root parameterizations of the isophotes.

Example 4. The isophotes on the translational surface from Example 1 have
square-root parameterizations. Fig. 1 shows the isophotes for three different light
directions.

3.4 Other applications of the dual surface

We conclude this section by briefly mentioning two additional applications of
support functions and dual surfaces of free-form surfaces.

First, one may use them to compute the contours with respect to central
projection. The tangent planes of the cone which is formed by the projection lines
touching the surface correspond to a curve on the dual surface, which is simply
the intersection with a plane. The intersection of this cone with the image plane
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gives the contour of the surface with respect to the central projection. In certain
cases it is possible to find simple parameterizations of the planar intersections of
the dual surfaces. E.g., in the case of quadratic polynomial surface, one obtains
planar cubics on the dual surface which admit square-root parameterizations.

Second, it is an interesting idea to exploit duality for convex hull computation
of free-form surfaces. This is described in more detail in [7].

4 Support function approximation

We propose a new method for computing isophotes on general free-form surfaces.
The method consists of three steps. First, a piecewise quadratic approximation of
the surface is generated. Second, this approximation is used to define a piecewise
defined approximation of the inverse Gauss map of the surface. Finally, the Gauss
map is applied to spherical circles.

4.1 Piecewise quadratic approximation

We consider a given surface p : Ω → R
3 with domain Ω = [0, 1]2, which is

assumed to be C3 smooth, i.e., p ∈ C3(Ω, R3). Several techniques for generating
a C1 smooth piecewise approximation p∗ exist.

For instance, one may use any triangulation of the domain and then use
Powell–Sabin elements with respect to this triangulation, see [14]. The Powell–
Sabin spline is uniquely determined by given first order Hermite data at the
vertices of the original triangulation (which can be sampled from the given
function), and it is C1 smooth. However, Powell-Sabin elements tend to cre-
ate relatively long and thin triangles, and therefore the visual quality of the
approximation is often not satisfying.

Instead we use a piecewise quadratic function with respect to a criss–cross
partition of the domain. First, the domain Ω is split into n2 boxes with ver-
tices ( i

n
, j

n
)i,j=0,...,n. Second, each box is split into four triangles by adding the

diagonals of the box. The space of piecewise quadratic functions, which are C1

smooth, will be denoted with Sn. It is spanned by the translates the Zwart-Powell
element, which is a special box spline, see [3].

Recently, a quasi-interpolation operator Q for this space has been presented
in [8]. For a given value of n, the operator Q maps any function f ∈ C3(Ω, R)
into a piecewise quadratic approximation Qf ∈ Sn. When applied to the three
components of the surface p, one obtains a piecewise quadratic approximation
p∗ = Qp ∈ S3

n. The computation of Qp requires solely the evaluations of p at
certain points.

As shown in [8], this operator preserves quadratic functions and produces ap-
proximations Qf which possess the optimal approximation order 3 with respect
to the maximum norm in C(Ω, R). In addition, all first and second derivatives
are approximated with order 2 and 1.

More precisely, the maximum difference between p and p∗ and between its
various first and second derivatives, can be bounded by Ĉk∆k, where k = 3, 2, 1,
respectively. The constants Ĉk depend on p and ∆ = 1

n
is the size of the boxes.
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4.2 Approximate dual implicitization

Once a piecewise quadratic approximation p∗ has been found, we use it to define
an approximate inverse Gauss map.

1. First we split p∗ into its polynomial segments. Each segment is represented
as a quadratic triangular Bézier patch.

2. If one of these patches contains parabolic points, but is not entirely devel-
opable, then the corresponding points in the triangular domain form one or
more (at most three) straight lines. These lines will be called the parabolic
lines, see [2].
In this case we split the domain triangle along the parabolic lines and tri-
angulate the resulting subdomains. After this step, all patches either do not
contain any parabolic points in the interior of their domains, or they are
developable surfaces. Let

{p∗
i , i = 1, . . . , N} (35)

be the set of the obtained patches.
3. We compute the Gauss images Gi ⊂ S

2 of all patches p∗
i .

– For non–developable patches we obtain curved spherical triangles, which
are bounded by spherical conics, i.e., by intersections of quadratic cones
(with their apices at the origin) with the unit sphere.

– If one of the patch boundaries is a parabolic line, then the Gauss im-
age degenerates into a curved spherical biangle. Indeed, the normals of
quadratic patches along their (at most 3) parabolic lines are constant. If
p is regular, then also p∗ is regular, provided that ∆ is sufficiently small.
Consequently, at most one the three patch boundaries is a parabolic
line for each non-developable patch, since parabolic lines on quadratic
patches intersect in singular points.

– The Gauss images of developable patches are arcs of spherical conics.

The collection of all Gauss images Gi covers a certain subset of the unit
sphere. Each point may be covered several times. Each Gauss images Gi can
be represented by the equations of (at most) three cones and by an auxiliary
plane,

Gi = {n ∈ S
2 : n⊤A

(1)
i n ≥ 0 ∧ n⊤A

(2)
i n ≥ 0 ∧ n⊤A

(3)
i n ≥ 0 ∧ n⊤wi ≥ 0},

where the symmetric matrices A
(j)
i represent the cones and the vector wi is

the normal vector of the auxiliary plane.
4. Finally we compute the inverse Gauss maps.

– For non–developable surface patches p∗
i we compute the rational support

function Hi, see Section 2.2, and the inverse Gauss map Γi = ∇Hi,
see Eq. (27). Hi and Γi are rational functions of degree 3/2 and 4/4,
respectively.

– The Gauss map Γi of a developable surface patch p∗
i assigns to each

normal in Gi a line segment on the surface patch.
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The union of the support functions defines a multi–valued mapping

H∗ :

N
⋃

i=1

Gi → R : n 7→
⋃

n∈Gi

{Hi(n)} (36)

which approximates the support function of the original surface p. The surface
defined by H∗(n) = 1, where we extended the domain of each support function
segment to the cone RGi, can be seen as an approximate dual implicitization of
the original surface, cf. (8). (See [6] for information on approximate implicitiza-
tion.)

The union of the Gauss maps defines a multi–valued mapping

Γ ∗ :

N
⋃

i=1

Gi → R
3 : n 7→

⋃

n∈Gi

{Γi(n)} (37)

which approximates the inverse Gauss map of the original surface p.

4.3 Isophote approximation

We compute the isophotes on the approximating surface p∗ for a given light
direction d and different angles φ0. This is done by applying the mapping Γ ∗

to the points of the corresponding circles n⊤d = cosφ0 on the unit sphere.
The circles are represented as rational quadratic curves and the intersections
with the boundaries of the domains Gi are found by numerically solving quartic
equations.

Several examples are shown in Figures 2–4. It can be seen that the quality
of the isophotes improves if a larger number of quadratic patches (and hence a
smaller box size ∆) is used.

We consider an arbitrary but fixed value of φ0 ∈ [0, π]. The isophotes can be
described with the help of the brightness functions

β(u, v) = d⊤N(u, v) and β∗(u, v) = d⊤N∗(u, v) (38)

of p and p∗, where N = (pu ×pv)/||pu × pv|| is the field of unit normals of the
given surface p and N∗, which is similarly defined, is the field of unit normals
of the approximating surface p∗. The level sets

L = β−1(cos φ0) and L∗ = (β∗)−1(cosφ0) (39)

in the parameter domain define the isophotes

p(L) and p∗(L∗), (40)

on the exact and on the approximating surface, respectively.
For any two closed sets A, B ⊆ R

k, let

HD(A, B) = max
x∈A

min
y∈B

||x − y|| (41)

be their one–sided Hausdorff distance. We will use it to analyze the convergence
of the isophotes.
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Fig. 2. The circles on the unit sphere are mapped into the isophotes of a quadratic
approximation of a torus surface.

Fig. 3. Isophotes on a vase-shaped surface, which is approximated by 32 (left) and 100
(right) quadratic patches.

Theorem 1. Consider a C3 smooth surface patch p whose domain Ω = [0, 1]2

does neither contain parameter values of parabolic points of the surface nor points
where the surface normal is parallel to the light direction d. We approximate the
surface using the quasi-interpolant described in Section 4.1 and use the result
to compute the isophote for a given value of cosφ0. There exists a constant C,
which depends on the given surface p, on the light direction d and the angle φ,
such that

max{HD(p(L),p∗(L∗ ∪ ∂Ω)), HD(p∗(L∗),p(L ∪ ∂Ω))} ≤ C∆2 (42)

where ∆ is the box size used for the quasi-interpolants.

Proof. The brightness functions β and β∗ are C2 smooth and merely continuous,
respectively. However, β∗ is piecewise differentiable (within each triangle of the
criss–cross triangulation). Since the first derivatives of p∗ have uniform quadratic
convergence, we may conclude that there exists a constant C1 such that

∀(u, v) ∈ Ω : |(β − β∗)(u, v)| < C1∆
2. (43)
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Fig. 4. The contour generator of a vase approximated by 100 quadratic patches and
its image under the parallel projection. The contour generator is projected into the
contour of the surface.

Since parabolic points and points with normal d were excluded from Ω, the
length of the gradient ∇β (with respect to the surface parameters u, v) is strictly
positive, i.e., there exists a constant C2 such that

∀(u, v) ∈ Ω : ||(∇β)(u, v)|| > C2. (44)

As the first and second derivatives of the quadratic approximation converge to
the derivatives of p, we obtain that

∀(u, v) ∈ Ω0 : ||(∇β∗)(u, v)|| >
C2

2
(45)

for sufficiently small values of ∆, where Ω0 is the domain which is obtained by
excluding the lines of the criss-cross triangulation.

In order to prove (42) for the first of the two one–sided Hausdorff distances,
we consider an arbitrary point (u0, v0) in the parameter domain which belongs
to the level set L. The value of the brightness function β∗ at this point satisfies

cosφ0 − C1∆
2 ≤ β∗(u0, v0) ≤ cosφ0 + C1∆

2. (46)

Starting at this point, we create a curve c(s) by integrating the normalized
gradient field ∇β∗/||∇β∗||. This curve is then given by an arc length parame-
terization, since it is the integral curve of a field of unit vectors. While it is not
C1 smooth (as the gradient ∇β∗ are not C1), it is C1 except for its intersec-
tions with the lines of the criss-cross triangulation. The restriction (β∗ ◦ c)(s)
of the brightness function β∗ to this curve defines a continuous and monotonic
function of the arc length parameter. Its derivative with respect to s – which is
defined everywhere except for the intersections with the lines in the criss-cross
triangulation – satisfies

(β∗ ◦ c)′(s) =
(∇β∗)(c(s))

||(∇β∗)(c(s))|| · (∇β∗)(c(s)) = (∇β∗)(c(s)) >
C2

2
. (47)

If β∗(u0, v0) < cosφ0, then we travel along the curve c(s) into the direction of
the gradient, which increases the value of β∗, until we hit either the level set L∗
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or the domain boundary ∂Ω. However, since the derivative satisfies (47) and the
deviation of β∗(u0, v0) from cosφ0 is not larger than C1∆2, the travel distance
is bounded by

C1∆
2 2

C2
. (48)

Otherwise, if β∗(u0, v0) > cosφ0, then we travel along the curve c(s) into the
direction of the negative gradient and use a similar argument to bound the travel
distance.

Summing, we find a point (u, v) ∈ L∗ ∪ ∂B such that

||(u, v) − (u0, v0)|| ≤ C1∆
2 2

C2
. (49)

Now we apply the mappings p and p∗ and use the triangle inequality,

||p∗(u, v)−p(u0, v0)|| ≤ ||p∗(u, v)−p(u, v)|| + ||p(u, v)−p∗(u0, v0)||.

The first term on the right hand side is bounded by C3∆
3, due to the third

order of approximation. The second term is bounded by 2C4(C1/C2)∆
2, where

C4 is a global bound on the norm of the Jacobian of p. This proves the result for
the first Hausdorff distance in (42). The second Hausdorff distance can be dealt
with similarly, but this time using the smooth integral curves of the vector field
∇β/||∇β||. �

5 Conclusion

We discussed the support functions of several special classes of free-form surfaces.
Based on observations concerning quadratic polynomial surfaces, which possess
rational support functions of degree 3/2, and on a quasi-interpolation scheme for
bivariate quadratic splines, we formulated an algorithm for approximate isophote
computation and analyzed its convergence.

Instead of quadratic polynomial surfaces, one might use other classes of ap-
proximating surfaces which still admit closed-form representations of the inverse
Gauss maps (e.g., using square roots). This could give approximations schemes
for isophotes with an even higher rate of convergence, which may be a possible
topic of further research.

Another possible application of our results is mesh contour smoothing, see [27].
This motivates the further investigation of surfaces with simple contours, such
as quadratic polynomial surfaces.
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