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Abstract

We discuss rational parameterizations of surfaces whose support functions are rational functions
of the coordinates specifying the normal vector and of a given non-degenerate quadratic form.
The class of these surfaces is closed under offsetting. It comprises surfaces with rational support
functions and non-developable quadric surfaces, and it is a subset of the class of rational surfaces
with rational offset surfaces. We show that a particular parameterization algorithm for del Pezzo
surfaces can be used to construct rational parameterizations of these surfaces. If the quadratic
form is diagonalized and has rational coefficients, then the resulting parameterizations are almost
always described by rational functions with rational coefficients.
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1. Introduction

The support function representation of a surface is one of the classical tools in the field
of convex geometry (see Bonnesen and Fenchel, 1987; Groemer, 1996; Gruber and Wills,
1993). It describes the surface as the envelope of its tangent planes, where the distance
between the tangent plane and the origin is specified by a function of the unit normal
vector. This representation is particularly well suited for discussing offsets surfaces, since
the offsetting operation corresponds simply to the addition of constants. See Gravesen
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et al. (2008); Š́ır et al. (2008) for a detailed discussion of surfaces with polynomial and
rational support functions.

The analysis and parameterization of offset curves and surfaces via techniques from
symbolic computation and algebraic geometry has been the central topic of several pub-
lications. Alcazar et al. (2007) apply a method for computing critical sets of algebraic
surfaces to the offsetting problem. Alcazar and Sendra (2007) study the local shape of
offsets to algebraic curves. Landsmann et al. (2001) present an algorithm for parameter-
izing canal surfaces by decomposing a polynomial into a sum of squares. Canal surfaces
can be seen as (generalized) offsets of space curves. Arrondo et al. (1997) give a theoret-
ical analysis of the rationality and unirationality of offsets to hypersurfaces. Of course it
is also possible to apply results about the parameterization of general rational surfaces
(Schicho, 1998) to the case of offset surfaces. However, this is generally not practical
because the implicit equation of the offset either is not known or it is too large to be
treated with Schicho’s algorithm.

Due to their importance in applications in Computer Aided Design, the case of offsets
to quadric surfaces has attracted special attention. Moreover, these surfaces are (after
planes) the simplest instance of offsets to a class of algebraic surfaces. With the help
of techniques from Laguerre Geometry, Peternell and Pottmann (1998) derive a rational
parameterization of the offsets of quadric surfaces. First, the quadric surface and its
offsets are represented as the envelope of a one-parameter-family of quadratic cones of
revolution. Then a parameterization of the envelope is found by a geometric algorithm,
which involves the decomposition of a polynomial into a sum of squares, similar to the
case of canal surfaces, see Landsmann et al. (2001). This decomposition requires a suitable
field extension, which may make the use of exact symbolic computation techniques more
difficult. Sendra and Sendra (2000) discuss generalized offsets of irreducible quadrics and
show how to obtain rational parameterizations (if available) from the parameterization
of the original quadric.

In this paper we apply the support function representation to a class of surfaces which
generalizes both surfaces with rational support functions (see Gravesen et al., 2008) and
offsets of quadric surfaces. More precisely, the support function is a rational function
of the coordinates of the normal vector and of the square root of a single quadratic
form. We show how to generate rational parameterizations of surfaces from this class.
Consequently, this class is a subset of the class of rational surfaces with rational offset
surfaces (see Pottmann, 1995).

Except for certain special cases, such as the offsets to two-sheeted hyperboloids of
revolution, the presented parameterization algorithm does not require field extensions.
Consequently, it produces parameterizations with rational coefficients, provided that the
input surfaces have also been specified by support functions with rational coefficients.

The remainder of this paper is structured in five parts. The next section recalls the
concept of the dual representation of non-developable algebraic hypersurfaces and ana-
lyzes its relation to support functions. Section 3 introduces the class of surfaces which is
studied in this paper, and Section 4 discusses its parameterization via the envelope op-
erator. The fifth section presents an algorithm for parameterizing the intersection of two
special hyperquadrics in four-dimensional space and applies it to the parameterization
problem. Finally we conclude the paper.

2. Dual representation of algebraic surfaces and support functions

We consider algebraic surfaces in the three–dimensional Euclidean space, which is
identified with R

3. Sometimes it will be helpful to use the projective closure R̄
3 of this
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space. Recall that a non-developable algebraic surface S in R
3 has a dual representation

of the form
F (h,n) = 0 (1)

where F is a homogeneous polynomial in h and n = (n1, n2, n3)
⊤. The degree of F is

called the class of the surface S. The set of all planes

Th,n = {x ∈ R
3 : n⊤x = h}, F (h,n) = 0, (2)

forms the system of the tangent planes of the surface S. The vector n is the normal
vector. If n⊤n = 1, then the value of h is the oriented distance of the tangent plane to
the origin.

If the partial derivative ∂F/∂h does not vanish at (h0,n0) ∈ R
4 and F (h0,n0) = 0

holds, then (1) implicitly defines a function

n 7→ h(n), (3)

which is well-defined in a certain neighborhood of (h0,n0) ∈ R
4. The restriction of this

function to the unit sphere
S = {n ∈ R

3 : n⊤n = 1} (4)

is then called the support function of the surface S.

Remark 1. Note that the dual representation (1) does not require the normal vectors
n to be normalized. However, the support function is only defined for unit normals.
Whenever we use the support function, then its argument n will be assumed to be a unit
vector.

Alternatively, we may consider

h : n1 : n2 : n3 = 1 : x1 : x2 : x3 (5)

as homogeneous coordinates in R
3. Then Eq. (1) defines the dual surface D associated

with S. The dual surface has the equation

F (1,x) = 0. (6)

The points (resp. tangent planes) of this surface D are obtained by applying the polarity
with respect to the imaginary unit sphere to the tangent planes (resp. points) of the
surface S. This polarity identifies the homogeneous coordinates of points and of planes
according to (5).

If a parametric representation of a surface is known, then the support function can be
obtained as shown in the following example.

Example 2. We consider the algebraic surface of order 4 which possesses the quadratic
parameterization p(u, v) = (u + v, u2, v2). The dual representation

F (h,n) = n2
1(n2 + n3) + 4hn2n3 = 0 (7)

can be found by eliminating u and v from the three equations

n⊤
∂

∂u
p = 0, n⊤

∂

∂v
p = 0, n⊤p − h = 0. (8)

Consequently, as F is a cubic homogeneous polynomial, this surface has class three. The
dual surface D is a cubic monoid (see Johansen et al., 2008) with a unique singular point
at the origin. The support function of the surface is the function

h(n) = −n2
1(n2 + n3)

4n2n3
. (9)

In this case, we have obtained even a unique rational support function. This was possible,
as the given parameterization describes a non–developable quadratic polynomial surface
(see Gravesen et al., 2008).
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On the other hand, the support function can also be obtained directly from the implicit
equation of a surface, as shown in the next example.

Example 3. The quadric surface with the equation

f(x) = x2
1 +

1

b
x2

2 +
1

c
x2

3 − 1 = 0, (10)

where we assume that b, c 6= 0, has axis-aligned principal diameters with radii 1,
√

b and√
c. The dual representation

F (h,n) = n2
1 + bn2

2 + cn2
3 − h2 (11)

can be found by eliminating the four variables λ and x = (x1, x2, x3) from the five
(= 3 + 1 + 1) equations

n− λ∇f = 0, n⊤x − h = 0, f(x) = 0. (12)

The support functions of the surface take the form

h(n) = ±
√

n2
1 + bn2

2 + cn2
3. (13)

Remark 4. In the case of algebraic surfaces of higher degree, the elimination of λ and
x = (x1, x2, x3) from the equations (12) produces the dual equation of the surface. The
support function is then implicitly defined by it, as described in the beginning of this
section.

Finally we note that certain geometric operations correspond to simple modifications
of the support functions:

(1) Rotations can be composed with the support function; the support function of ̺(S)
is h ◦ ̺, where ̺ is a rotation around the origin.

(2) A translation by a vector ~v correspond to the addition of the homogeneous linear
polynomial ~v⊤n to the support function.

(3) The one-sided offset of a surface at distance δ can be obtained by adding the
constant δ to the support function.

(4) The reciprocal support function (1/h) describes the surface which is obtained by
applying the polarity with respect to the unit sphere to the pedal surface.

In the remainder of the paper we consider a class of surfaces with a specific form of
the support function.

3. A special class of support functions

We consider support functions of the form

h(n) = R(Q,n) (14)

where Q =
√

n⊤Dn, D = diag(1,b,c) with b, c 6= 0, and R is a rational function of its
four arguments Q and n = (n1, n2, n3)

⊤. We can rewrite this function as

h(n) =
p1(Q,n) + p2(Q,n)

q(Q,n)
, (15)

where the two functions p2 and q are homogeneous polynomials in Q and n = (n1, n2, n3)
⊤

of the even degree 2d, and p1 is a homogeneous polynomial of the odd degree 2d + 1,
where d is a non-negative integer. This can be proved by exploiting the observation that
the terms can be multiplied by multiples of n⊤n, since this expression equals 1 on the
unit sphere S, similar to the proof of Lemma 2 in Gravesen et al. (2008).
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Clearly, the class of surfaces with support functions of the form (14) comprises non-
developable quadric surfaces and their offsets, see Example 3. It is closed under offsetting
and translations.

Remark 5. More generally, one might consider square roots of a general quadratic form.
In order to simplify the notation, we assume that it has been diagonalized and scaled
such that the first coefficient is equal to 1. Consequently, we assume that an appropriate
coordinate system has been chosen.

The corresponding dual equation (1) can be found by eliminating N and Q from the
three equations

p1(Q,n) + p2(Q,n)N − h q(Q,n) = 0, N2 − n⊤n = 0, Q2 − n⊤Dn = 0. (16)

The left-hand sides of all equations are homogeneous polynomials in h, N, Q and n =
(n1, n2, n3)

⊤. Consequently, the elimination of N and Q produces a homogeneous poly-
nomial F . Note that the dual equation (1) then corresponds to the four support functions

hǫ1,ǫ2(n) =
p1(ǫ1

√
n⊤Dn,n) + ǫ2p2(ǫ1

√
n⊤Dn,n)

q(ǫ1
√

n⊤Dn,n)
, ǫ1, ǫ2 ∈ {±1}, (17)

due to the sign ambiguities in N and D. This gives two pairs of support functions
describing the same surface. Indeed, the support functions h(n) and h∗(n) = −h(−n)
describe the same surface, but with opposite orientations of the normals.

Remark 6. The three equations (16) define three hypersurfaces in the five dimensional
space with the homogeneous coordinates h : N : Q : n1 : n2 : n3. We briefly describe
these surfaces and their relation to the dual surface D associated with the support func-
tions (17):
• The first equation describes a hypersurface of degree 2d + 1, where each point of the

line

n1 = n2 = n3 = Q = 0 (18)

has multiplicity 2d. It is therefore a very special instance of a monoid hypersurface,
see Johansen et al. (2008). We call this surface an axial monoid with axis (18) .

• The remaining two surfaces describe two quadratic hypercones with two–dimensional
generators and one-dimensional singular loci.

• The first three unit points of the projective coordinate system span three lines. One
of them is the axis of the axial monoid, while the other two lines are the singular loci
of the hypercones.

• The three hypersurfaces intersect in a two dimensional surface. The dual surface is
obtained as its image by a central projection with the center line spanned by the two
points (0 : 1 : 0 : 0 : 0 : 0) and (0 : 0 : 1 : 0 : 0 : 0) into the 3-plane N = Q = 0.

Example 7. We consider the support function

h(n) = n1

√

n2
1 + n2

2 + 2n2
3. (19)

In this case, we have d = 1, D = diag(1, 1, 2) and

p1(Q,n) = 0, p2(Q,n) = n1Q, q(Q,n) = n2
1 + n2

2 + n2
3. (20)

After eliminating Q and N from the equations (16) we arrive at the dual representation
of the surface S,

F (h,n) = (n2
1 + n2

2 + n2
3)h

2 − n2
1(n

2
1 + n2

2 + 2n2
3). (21)
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Example 3 (continued). One of the support functions is h = Q with D = diag(1, b, c),
hence d = 0, p1 = Q, p2 = 0, q = 1. In this special case, the first surface degenerates
into the hyperplane Q − h = 0. If p2 = r 6= 0 was a non-zero constant, then the support
function h′ = Q + r would correspond to the offsets of the quadric, and the first surface
would be the hyperplane Q + rN − h′ = 0. In both cases, the dual surface is obtained
by projecting the intersection of the two remaining quadrics with the hyperplane into
three–dimensional space.

4. Parameterization using the envelope operator

First we introduce an operator that assigns to each support function a parameteriza-
tion of the corresponding surface, where the parameter domain is the sphere or a subset
thereof, cf. Š́ır et al. (2008).

Definition 8. Let U ⊂ S be an open subset of the unit sphere 1 and h ∈ C∞(U, R) be
a support function. We define the envelope operator

E : C∞(U, R) → C∞(U, R3) (22)

which is defined via

E(h) : U → R
3 : n 7→ h(n)n + (∇Sh)(n) (23)

with the intrinsic gradient

(∇Sh)(n) = (∇h)(n) −
(

n⊤[(∇h)(n)]
)

n. (24)

Remark 9. The intrinsic gradient (24) is the projection of the gradient in R
3 onto the

unit sphere, where we assume that h has been extended to the embedding space. Eq.
(23) gives the envelope of the two-parameter family of planes Th(n),n, see (2).

For any parameterization ν : Ω → U of U ⊆ S with the domain Ω ⊆ R
2, the mapping

E(h)◦ν : Ω → R
3 is a parameterization of the corresponding open subset of the surface S

in three–dimensional space. Clearly, if we apply the envelope operator E to a rational
support function h and compose the result with a rational parameterization ν of the
sphere, then we obtain a rational parameterization E(h)◦ν of the corresponding surface S.

In the case of surfaces with support functions of the form (14) we have the following
result.

Lemma 10. If the five bivariate polynomials x1, x2, x3, x4, x5 ∈ R[u, v] satisfy the two
identities

x2
1 + x2

2 + x2
3 = x2

4 and x2
1 + b x2

2 + c x2
3 = x2

5, (25)

such that (x1

x4
, x2

x4
, x3

x4
) is a rational parameterization of the unit sphere, then the mapping

(u, v) 7→ E(h)

(

x1(u, v)

x4(u, v)
,
x2(u, v)

x4(u, v)
,
x3(u, v)

x4(u, v)

)

(26)

is a piecewise rational parameterization of the surface which is defined by the support
function h(n) of the form (14).

Proof. If the support function has the form (14), then E(h) as defined in (23) contains

only rational functions of n and
√

n⊤Dn. The rational parameterization of the unit sphere
ν = (x1

x4

, x2

x4

, x3

x4

) can be composed with the envelope operator E(h). After replacing the

square root
√

n⊤Dn in (26) with |x5| one obtains a piecewise rational parameterization
of the surface. 2

1 U is the intersection of an open set with respect to the Euclidean topology in R3 with the unit sphere S.
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f(x) = 0

g(x) = 0

c = r(0) = r̂(0)

r(t̄)r̂(tf )

r̂(tg)

x5 = 0yŷ

Figure 1. Stereographic projection of two intersecting quadrics

The next section discusses how to generate quintuples of bivariate polynomials that
satisfy the assumptions of the Lemma.

5. Intersections of special hyperquadrics in four-dimensional space

The two identities (25) define two quadric surfaces

f(x1, x2, x3, x4, x5) = x2
1 + x2

2 + x2
3 − x2

4 = 0

g(x1, x2, x3, x4, x5) = x2
1 + b x2

2 + c x2
3 − x2

5 = 0
(27)

in four–dimensional real projective space with homogeneous coordinates x1 : x2 : x3 :
x4 : x5. The intersection is a two-dimensional del Pezzo surface (see Schicho, 2005).

We assume that the input satisfies b 6= c. See Remark 14 for a discussion of the special
case b = c. We parameterize the intersection by applying the following algorithm.

Algorithm 11. Parameterization of the intersection of (27), where b 6= c.
(1) Find a point c on the intersection of the two quadrics.
(2) Apply stereographic projection with center c into a three-dimensional subspace to

the intersection surface. This gives a cubic surface k.
(3) Find a straight line l on the cubic surface k and parameterize it linearly with

parameter u.
(4) For each point l(u) on the line, compute the tangent plane q(u) of the cubic k.
(5) The intersection of the tangent plane q(u) with the cubic surface k gives a conic

section, which is parameterized with the parameter v.
(6) Lift the parameterization of k back into the five-dimensional space.

Now we describe the six steps of the algorithm in more detail.

Step (1) We simply observe that the point c = (1, 0, 0, 1, 1)⊤ lies on both quadrics, hence
it is also contained in the intersection.

Step (2) We apply stereographic projection with center c and project the intersection of
both quadrics into the plane x5 = 0. More precisely, for each point y = (y1, y2, y3, y4, 0)
we consider the line

r(t) = (1 − t)c + ty, (28)

see Figure 1 for a two-dimensional sketch. A point y belongs to the image of the intersec-
tion if and only if the line (28) intersects both quadrics in the same point. Equivalently,
there exists a parameter t̄ 6= 0 such that the equations

f((1 − t̄)c + t̄y) = 0, g((1 − t̄)c + t̄y) = 0 (29)
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are simultaneously satisfied. This can characterized by the resultant

k(y) = Res(
1

t
f((1 − t)c + ty),

1

t
g((1 − t)c + ty), t), (30)

where we factored out the root t = 0 which corresponds to the trivial intersection c. By
evaluating the resultant we obtain the equation

k(y) = cy2
3y4 + by2

2y4 − y1y
2
4 + y2

1y4 + (1 − b)y1y
2
2 + (1 − c)y1y

2
3 (31)

which defines a cubic surface in three-dimensional real projective space with homogeneous
coordinates y1 : y2 : y3 : y4.

Step (3) A close inspection reveals the fact that the cubic surface k(y) contains the
straight line l(u) = (0, 1, u, 0)⊤. Indeed, this line is the intersection of the two-dimensional
tangent plane at the center c of the surface in five-dimensional space with the image
hyperplane.

Step (4) Now we move the tangent plane of k along this line and intersect it with the
cubic. This technique is closely related to one of the local parameterization techniques
for cubic surfaces that were described by Szilágyi et al. (2006). In this special case the
computations become much simpler, as a line on the cubic surface is known. For any
value of u, the tangent plane can be parameterized by

q(u, s1, s2) = l(u) + s1v1(u) + s2v2(u) (32)

where v1 = (0, 0, 1, 0)⊤ and v2 = (b + cu2, 0, 0, (c − 1)u2 + b − 1)⊤.

Step (5) The intersection of q(u, s1, s2) with k(y) gives the equation

k(q(u, s1, s2)) = 2u(b − c)s1 + (b − c)s2
1 + (u2 + 1)(b + cu2)(b − 1 + u2(c − 1))s2

2, (33)

which defines a conic section in the s1, s2-plane. The conic-section is non-degenerate, as
b 6= c was assumed. We parameterize each of these conic sections by intersecting it with
lines through (s1, s2) = (0, 0), which gives

s1 =
1

N
2u(c − b), s2 =

1

N
2uv(c − b), where

N = b−c+v2(c2u4−2u2b−cu2+b2u2+c2u6−bu4−cu6−2cu4+2bcu2+2bcu4−b+b2).

(34)
Finally we obtain a parameterization

y1 = 2uv(b − c)(cu2 + b)

y2 = 2bcv2u4 + 2bcv2u2 + c2v2u4 − cv2u6 + c2v2u6 − bv2 − bv2u4

+ b2v2u2 − 2bv2u2 − 2cv2u4 − cv2u2 + b2v2 − c + b

y3 = u(2bcv2u4 + 2bcv2u2 + c2v2u4 − v2cu6 + c2v2u6 − bv2 − bv2u4

+ b2v2u2 − 2bv2u2 − 2cv2u4 − cv2u2 + b2v2 + c − b)

y4 = 2uv(b − c)(−1 + b + cu2 − u2)

of the cubic surface.

Step (6) We lift the parameterization back into the five-dimensional space. We substitute
the parameterization y(u, v) = (y1(u, v), y2(u, v), y3(u, v), y4(u, v), 0) into (29) and solve
this equation for t̄(u, v). The parameterization of the intersection is then given by

p(u, v) = (1 − t̄(u, v))c + t̄(u, v)y(u, v). (35)
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Figure 2. The surface of Example 7 and its offsets (a), and the simultaneous parameterizations
of the sphere and of the ellipsoid (b,c).

We apply the algorithm to two examples:

Example 7 (continued). The support function (19) fulfills the requirements of the pa-
rameterization algorithm with b = 1 and c = 2. The first stereographic projection gives
the cubic surface

k(y) = −y1y
2
3 − y1y

2
4 + y4y

2
1 + y4y

2
2 + 2y4y

2
3 . (36)

Following the next step of the algorithm, we compute the tangent planes along the line
l(u) = (0, 1, u, 0)⊤ and intersect them with the cubic. After parameterizing them we
obtain a parameterization of the cubic surface,

y1 = −2uv(1 + 2u2)

y2 = 2v2u6 + 3v2u4 + v2u2 − 1

y3 = u(2v2u6 + 3v2u4 + v2u2 + 1)

y4 = −2u3v

(37)

Now we can substitute these polynomials into (29) and obtain

t̄(u, v) =
4uv

v4(4u12 + 12u10 + 13u8 + 6u6 + u4 + 1) + v2(4u6 + 10u4 + 2u2) + 1
. (38)

Lifting this parameterization back into five-dimensional space gives the five bivariate
polynomials

x1 = v4(4u12 + 12u10 + 13u8 + 6u6 + u4) + v2(4u6 − 6u4 − 6u2) + 1

x2 = 4uv(3v2u4 + 2v2u6 + v2u2 − 1)

x3 = 4u2v(3v2u4 + 2v2u6 + v2u2 + 1)

x4 = v4(4u12 + 12u10 + 13u8 + 6u6 + u4) + v2(4u6 + 2u4 + 2u2) + 1

x5 = v4(4u12 + 12u10 + 13u8 + 6u6 + u4) + v2(4u6 + 10u4 + 2u2) + 1

(39)

that satisfy the two identities (25). The corresponding two parameterizations 1
x4

(x1, x2, x3)

and 1
x5

(x1, x2, x3) of the unit sphere and of the ellipsoid are shown in Fig. 2b,c. In both
cases, the parameters u, v vary in the domain [0, 1.5] × [0, 1.5]. Finally we evaluate the
envelope operator (26) and obtain the parameterization z(u, v) of the surface with the
support function (19), see Fig. 2a. The parameterization is presented in Table 1.
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Table 1. Parameterization of the surface of Example 7

z1 =
1

D
(1 − 20v5u6 + 32v7u20 + 248v8u20 + 132v6u10 + 48v5u12 + 36v4u6 + 252v7u14

+ 4v7u8 − 72v5u8 + 24v3u8 − 12v3u6 + 36v7u10 + 48v5u14 + 4vu2 + 360v8u18 + 4v6u6

+ 36v6u8 + 8v2u6 + 180v8u14 + 144v7u18 + 264v7u16 − 52v5u10 + 252v6u12 + 4v2u2

+ 72v4u10 + 16v8u24 + 24v4u12 + 62v8u12 + 62v4u8 + 96v8u22 + v8u8 + 12v8u10

+ 6v4u4 + 32v6u18 − 20v3u4 + 144v6u16 + 12v2u4 + 264v6u14 + 321v8u16 + 132v7u12)

(1 + 20v5u6 − 32v7u20 + 248v8u20 + 132v6u10 − 48v5u12 + 36v4u6 − 252v7u14 − 4v7u8

+ 72v5u8 − 24v3u8 + 12v3u6 − 36v7u10 − 48v5u14 − 4vu2 + 360v8u18 + 4v6u6 + 8v2u6

+ 36v6u8 + 180v8u14 − 144v7u18 − 264v7u16 + 52v5u10 + 252v6u12 + 4v2u2 + 72v4u10

+ 16v8u24 + 24v4u12 + 62v8u12 + 62v4u8 + 96v8u22 + 12v8u10 + 6v4u4 + v8u8

+ 32v6u18 + 20v3u4 + 144v6u16 + 12v2u4 + 264v6u14 + 321v8u16 − 132v7u12)

z2 =
1

D
64u5v3(1 − 3v2u4 − 2v2u6 − v2u2)(1 + 3v2u4 + 2v2u6 + v2u2)2

(4v4u12 + 12v4u10 + 13v4u8 + 4v2u6 + 6v4u6 − 6v2u4 + v4u4 − 6v2u2 + 1)

z3 =
1

D
4(4v4u12 + 12v4u10 + 13v4u8 + 4v2u6 + 6v4u6 − 6v2u4 + v4u4 − 6v2u2 + 1)

u2v(1 + 3v2u4 + 2v2u6 + v2u2)(1 + 12v3u6 + 8v3u8 + 4v2u6 + 4vu2 + v4u4 + 4v3u4

+ 13v4u8 + 4v4u12 + 12v4u10 + 2v2u2 + 2v2u4 + 6v4u6)(1 − 12v3u6 − 8v3u8 + 4v2u6

− 4vu2 + 13v4u8 + 4v4u12 + 12v4u10 + 2v2u2 + 2v2u4 + v4u4 − 4v3u4 + 6v4u6)

D = (1 + 3v2u4 + 2v2u6 + v2u2 + 2vu2)3(1 + 3v2u4 + 2v2u6 + v2u2 − 2vu2)3

(1 + 2v2u2 + 10v2u4 + 4v2u6 + v4u4 + 6v4u6 + 13v4u8 + 12v4u10 + 4v4u12)

Example 12. In this example we consider the surface given by the support function
h(x) =

√

x2
1 + x2

2 − x2
3 + 1. It is the offset at distance 1 of a one-sheeted hyperboloid of

revolution. Applying the parameterization process as in the previous example, we obtain
the following parameterization:

z1 =
1

D
(2v4u12 − 4v4u8 − 4v2u6 + 2v4u4 − 12v2u2 + 2)(−1 + v2u6 − v2u2)2

z2 = −
1

D
8uv(−1 + v2u6 − v2u2)2(1 + v2u6 − v2u2)

z3 =
1

D
64u6v3(−1 + v2u6 − v2u2)

D = (v4u12 − 2v4u8 − 2v2u6 − 8u4v2 + v4u4 + 2v2u2 + 1)

(v4u12 − 2v4u8 − 2v2u6 + 8u4v2 + v4u4 + 2v2u2 + 1)

Although the degree of this surface is (8, 24), the representation is quite compact as the

polynomials are very sparse.

Lemma 10, combined with the results of this section, gives the following theorem.

Theorem 13. For a surface with a support function of the form (14) with b 6= c we

obtain a piecewise rational parameterization by combining the result of Algorithm 11 with
Lemma 10. If b, c and all other coefficients in the given support function h are rational

numbers, then all coefficients of this parameterization are again rational.

Consequently, since the class of support functions of the form (14) is closed with respect

to addition of constants, these surfaces are a special case of surfaces with rational offsets

(cf. Pottmann, 1995).
Finally we analyze the case b = c, which was excluded so far.
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Remark 14. If b = c = 1, then we can simply parameterize the unit sphere and choose
x4 = ±x5. If 1 6= b = c > 0 we can solve the problem by swapping the first two
coordinates.

The case b = c < 0 is more involved. For instance, the offsets of two-sheeted hyper-
boloids of revolution belong to this case. After stereographic projection and dehomoge-
nization (x4 = 1) we obtain the cubic surface

k = (x1 + b − bx1)x
2
2 + (x1 + b − bx1)x

2
3 + x2

1 − x1 = 0 (40)

which can be rewritten as
r1r2x

2
2 + r1r2x

2
3 = r2

2 , (41)

with r1 = (x1 + b − bx1) and r2 = x1 − x2
1. In order to admit solutions, the factor r1r2

has to be positive. This is the case if x1 ∈ ] −∞, 0[ or x1 ∈ ] −b
1−b

, 1]. Here we discuss the
first situation. The second one can be treated similarly.

After substituting x1 = −t2 in (40), we obtain

r1r2 = t6 + t4 − 2bt4 − bt2 − bt6 = A2 + B2 and r2 = −t4 − t2. (42)

with
A = t3

√
1 − b − t

√
−b and B = t2

√
1 − b + t2

√
−b. (43)

Note that r1r2 is now non–negative for all values of t, hence it is possible to represent it
as a sum of two squares. The point with coordinates

x1 = −t2, x2 =
Ar2

A2 + B2
and x3 =

Br2

A2 + B2
(44)

lies on each of the circles, and it can be used to create a parameterization of the cubic
surface (40). Note that this parameterization has coefficients involving certain square
roots of the original coefficients, as a decomposition of a polynomial into a sum of squares
is needed.

6. Conclusion

Motivated by the analysis of offsets to quadric surfaces, we analyzed a class of surfaces
which have special support functions of the form (14). It was shown that the surfaces of
this class, which is closed under offsetting, admit rational parameterizations. Hence they
are special instances of surfaces with rational offsets, which were discussed by Pottmann
(1995). On the other hand, this class of surfaces comprises both surfaces with rational
support functions and quadric surfaces.

We show that the rational parameterization of surfaces from this class is closely related
to the parameterization of del Pezzo surfaces. If the given support function involves only
coefficients which are rational numbers, then the coefficients of these parameterizations
are again rational numbers.

In particular, this relation to del Pezzo surface exists for offsets of quadric surfaces.
In that case, our method produces a parameterization of higher degree than the param-
eterization described by Peternell and Pottmann (1998). The technique described in the
present paper is more general, as it can deal with a larger class of surfaces. As a poten-
tial advantage, it relies solely on rational operations. In particular, no decomposition of
a non-negative polynomial in a sum of squares – hence no field extension – is required.

As a possible topic of future work one may look into general rational parameterizations
of the cubic surfaces from the previous sections. It can be shown that each rational
parameterization of a surface with a support function (14) corresponds to a rational
parameterization of this cubic. Consequently, one may try to obtain parameterizations
of lower by using other parameterizations of the cubic surfaces. In addition, methods for
obtaining proper parameterizations would be of potential interest.
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