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Abstract. Isogeometric Analysis uses NURBS representations of the
domain for performing numerical simulations. The first part of this paper
presents a variational framework for generating NURBS parameteriza-
tions of swept volumes. The class of these volumes covers a number of
interesting free-form shapes, such as blades of turbines and propellers,
ship hulls or wings of airplanes. The second part of the paper reports
the results of isogeometric analysis which were obtained with the help of
the generated NURBS volume parameterizations. In particular we dis-
cuss the influence of the chosen parameterization and the incorporation
of boundary conditions.
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1 Introduction

The concept of isogeometric analysis, which was introduced by Hughes et al. [15],
provides an opportunity for bridging the gap between Computer Aided Design
(CAD) and numerical simulation based on the finite element method (FEM). Its
potential has been demonstrated in a substantial number of publications, which
also discuss related issues such as efficient techniques for numerical integration
and the incorporation of boundary conditions [3–6, 9–12, 16, 17, 22].

The European project EXCITING [1] aims at applying Isogeometric Anal-
ysis to free-form objects arising in real-world applications, in particular in the
transportation industry. In this paper we report on our first experiences with
this approach. In particular we will focus on the following problem: Given a
three-dimensional free-form object, find a parameterization by (one or several)
NURBS volumes.

NURBS volumes have been discussed in the classical literature in Computer
Aided Geometric design, see [14] and the references cited therein. The existing
literature on volume parameterizations by NURBS concentrates mostly on ap-
plications to object modeling via free-form deformations. In this context, the
given object (often represented as a triangular mesh) is embedded into a sim-
ple NURBS volume, which represents (e.g.) the bounding box of the object. By
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modifying the control points and weights of the NURBS volume one can then
edit the shape of the embedded object. This or similar editing capabilities are
available in many modeling systems.

In order to obtain NURBS volume parameterizations which are suitable for
isogeometric analysis, we have to solve a different problem. The boundary sur-
faces of the object are given as (trimmed or untrimmed) NURBS surfaces. A
volume parameterization which respects the given boundary surfaces has to be
generated. While it is a very challenging open problem to solve this task for gen-
eral CAD objects, it is possible to obtain reasonable results for special classes
of free-form objects. Nevertheless, these classes already cover a number of inter-
esting applications.

The first part of the paper presents a method for generating NURBS param-
eterizations of swept volumes, which are obtained by sweeping a closed curve
through space. These volumes are also known as generalized cylinders, and there
exists an extensive literature discussing them, e.g. [7, 8, 20]. The second part re-
ports results of isogeometric analysis which we obtained with the help of the
generated NURBS volume parameterizations.

2 Swept volume parameterization

We will describe a variational framework for generating the control points of a
NURBS volume from given boundary conditions and one or more guiding curves.

2.1 NURBS representation of swept volumes

A non-uniform rational B-spline volume (NURBS volume) is defined by the
parametric representation

F(r, s, t) =
∑

i∈I

∑

j∈J

∑

k∈K

Rijk(r, s, t)wijkdijk, (r, s, t) ∈ [0, 1]3, (1)

where the domain is the unit cube in R
3. More generally, the domain can be

chosen as any axis-aligned box in R
3, but for the purposes of the present paper

it suffices to consider the unit cube.
The blending functions

Rijk(r, s, t) =
Ni,R(r)Nj,S (s)Nk,T (t)

∑

i′∈I

∑

j′∈J

∑

k′∈K

wi′j′k′Ni′,R(r)Nj′,S(s)Nk′,T (t)

are called the rational splinebasis functions associated with the weights wijk .
The functions Ni,R(r), Nj,S(s) and Nk,T (t) are B-splines of certain degrees with
respect to three given knot vectors R, S and T with degree–fold boundary knots
0 and 1. The index sets I,J ,K ⊂ Z of the control points are determined by the
knot sequences and degrees of the B-splines.
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(a) (b) (c)

Fig. 1. Parameterization of three simple swept volumes. The cylinders (a) and (b) are
based on different representations of the circular patch.

The vector–valued coefficients dijk ∈ R
3 are called de Boor points or control

points. The three-dimensional grid determined by them is called the de Boor net
or control net. In order to simplify the notation, we denote the vector of control
points by

d = (dijk)i∈I,j∈J ,k∈K. (2)

In addition, each control point has an associated scalar value wijk, which is called
its weight. In the remainder of this paper we will assume that these weights are
given; they are not subject to the optimization process described below. More
precisely, we assume that they are determined by teh given planar shape which
is moved through space.

See [14, 19] for more information on rational spline techniques.
The parameterization of a general three-dimensional volume by a collection

of tensor-product spline volumes (“patches”) is a non-trivial problem, and one
cannot expect to find a general method that can deal successfully with all cases.
In this paper we concentrate on the special class of swept volumes.

These volumes are obtained by moving a two-dimensional shape through
space, where the geometry of the moving shape may be subject to an evolution
during the sweep. The motion of the shape is guided by one or more guiding
curves. This class of volumes includes a large number of objects with significant
industrial applications, ranging from simple shapes (cylinders, spherical shells)
to more complicated ones (turbine blades, aircraft wings, ship hulls). Three
examples of simple shapes are presented in Fig. 1.

In the sequel we assume that t, which will be called the sweep parameter,
is associated with the motion of the two-dimensional shape. The remaining two
parameters r and s parameterize the two-dimensional shape as a surface patch.
More precisely, the surface

F(r, s, t′), (r, s) ∈ [0, 1]2, (3)

which is obtained by considering a constant value of t′ ∈ [0, 1], will be called
(one instance of) the moving surface. On the other hand, the curve

F(r′, s′, t), t ∈ [0, 1], (4)
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(a) (b)

Fig. 2. Parameterization of the two-dimensional shape as a tensor-product patch with
three singular vertices (a). Two guiding curves (blue), intermediate moving surfaces
and a segment of the final parameterization (b).

which is obtained by considering constant values of (r′, s′) ∈ [0, 1]2, will be
considered as the trajectory of a point.

The variational framework will be illustrated by an example of a blade-like
NURBS volume, see Fig. 2. The underlying parameterization of the planar shape
as a tensor-product patch with three singular vertices is shown in Fig. 2a.

2.2 Boundary conditions

Due to the multiplicity of the boundary knots, the two boundary nets

(di j minK)i∈I,j∈J and (di j maxK)i∈I,j∈J (5)

of the grid of control points determine the two boundary surfaces

F(r, s, 0) and F(r, s, 1), (r, s) ∈ [0, 1]2, (6)

of the NURBS volume. Consequently, if these two boundary surfaces are specified
by the user, then the corresponding subset of the set of control points d can be
eliminated from the set of unknowns; it is already determined by the boundary
conditions.

In addition, the next two nets

(di j(minK+1))i∈I,j∈J and (di j(maxK−1))i∈I,j∈J (7)

of control points determine the derivatives with respect to the sweep parameter t
along the two boundary faces. Sometimes it is necessary to specify the direction
of these derivatives, e.g., for composing two B-spline volumes with C1 continuity.
If a vector specifying the direction of these derivatives at t = 0 is given, then
the second family of control points dij(minK+1) is obtained by moving a copy of
the boundary control points dij minK along this vector. A similar construction



5

can be applied at the other boundary, where t = 1. The distance between the
first and second family of control points can either be prescribed or can also be
subject to the optimization procedure described below.

2.3 Guiding curves and reference shape

Guiding curves. In addition to the boundary conditions, we assume that n
guiding curves

cℓ : [0, 1] → R
3, t 7→ cℓ(t), ℓ = 1, . . . , n, (8)

are given, which are to specify the motion of the moving two-dimensional shape
through space. The motion will be governed by the guiding curves and by several
shape constraints.

The moving surfaces F(r, s, t′), which are obtained for constant values t′ ∈
[0, 1] and (r, s) ∈ [0, 1]2 are to follow the motion of the points cℓ(t

′) of the
guiding curves. For each guiding curve cℓ, we choose parameter values (r̃ℓ, s̃ℓ) of
an associated point in the two-dimensional shape. In order to define the NURBS
volume, we minimize the distance

fA(d) =

n
∑

ℓ=1

∫ 1

0

||F(r̃ℓ, s̃ℓ, t) − cℓ(t)||
2dt. (9)

between the guiding curves and the associated points. The right-hand side in (9)
will be called the approximation term of the objective function.

Reference shape. In principle one can use any point (r̃ℓ, s̃ℓ) in the parameter
domain as parameters of the associated points. However, it is more appropriate to
select certain special points, e.g. the center of gravity or points on the boundary
of the moving surface.

More precisely, we consider a planar reference shape

R : [0, 1]2 → R
2 (10)

of the moving surface, see Fig. 3. The reference shape is a parameterization of
the plane which represents the expected average shape of the moving surface.
The given guiding curves cℓ are now associated with certain points R(r̃ℓ, s̃ℓ) of
the reference position. These points will be called the anchors of the guiding
curves.

For instance, in the case of the blade-like NURBS volume (Fig. 2), we use
two guiding curves and associate them with the two extremal points of the two-
dimensional reference shape.

Influence functions. For each guiding curve cℓ we define an influence function

αℓ : [0, 1]2 → [0, 1] (11)
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R(r̃1, s̃1) R(r̃2, s̃2) = R(r̂2, ŝ2)
R(r̂3, ŝ3)

R(r̂1, ŝ1)

Fig. 3. Reference shape for two guiding curves. The points R(r̃i, s̃i) serve as anchors
of the guiding curves. The points R(r̂i, ŝi) will be used later to define the first shape
term.

such that the weight αℓ(r, s) controls the influence of the lth guiding curve to
the trajectory F(r, s, t), t ∈ [0, 1] and

n
∑

ℓ=1

αℓ(r, s) ≡ 1. (12)

More precisely, the point F(r, s, t) is associated with the weighted average

ĉ(r, s, t) =

n
∑

ℓ=1

αℓ(r, s) cℓ(t) (13)

of guiding curves. The choice of the influence functions depends on the number
n of guiding curves, as follows.

– If n = 1, the cross section sweeps along a single guiding curve c1(t), hence
we choose α1(r, s) ≡ 1.

– If n = 2, then the weights α1(r, s) and α2(r, s) are computed by orthogo-
nal projection of R(r, s) onto the line segment connecting the points with
parameters (r̃1, s̃1) and (r̃2, s̃2), see Fig. 3. The ratio of the projected point
with respect to the line segment determines the values of α1(r, s), α2(r, s).
The points

ĉ(r, s, t) = α1(r, s)c1(t) + α2(r, s)c2(t) (14)

form the ruled surface which is spanned by the two curves c1(t) and c2(t),
see Fig. 2(b).

– If n = 3, then the weights αℓ(r, s) are chosen as the barycentric coordinates
of the point R(r, s) with respect to the triangle formed by the points with
parameters (r̃ℓ, s̃ℓ), ℓ = 1, 2, 3.

– If n > 3, then one can use one of the various generalizations of barycentric
coordinates to closed planar polygons with more than three vertices, see e.g.
[13].

2.4 Controlling the shape

Orthogonality condition. In order to ensure a constant shape of the moving
surface, it should travel in the normal plane of the n guiding curves (cℓ)

n
ℓ=1. If
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(a) (b)

Fig. 4. Parameterization of a blade. In (a), the orthogonality is averaged between the
two guiding curves. As the guiding curves are not parallel, the moving surfaces are non-
planar. In (b) the cross sections are forced to be orthogonal to an averaged guiding
curve (α1 = α2 = 0.5), hence the planarity is better preserved.

n = 1, then all points of the moving surface are expected to travel in the normal
plane of the single guiding curve. However, more than one guiding curve may be
given, and this condition is not well defined if n > 1 . We resolve this ambiguity
by using the weighted average of the guiding curves.

More precisely, the point F(r, s, t) is expected to travel in the normal plane
of the weighted average ĉ(r, s, t) of guiding curves, see Eq. (13). This is achieved
by using the orthogonality term

fO(d) =

∫ ∫ ∫

[0,1]3

(

(F(r, s, t) − ĉ(r, s, t)) ·
∂tĉ(r, s, t)

||∂tĉ(r, s, t)||

)2

dr ds dt (15)

of the objective function, where ∂t indicates differentiation with respect to the
sweep parameter t. By minimizing this term, the point F(r, s, t) of the moving
surface is restricted to the normal plane of the weighted average (14) of guiding
curves.

Note that minimizing (15) produces a volume parameterization where the
moving surfaces are as orthogonal as possible to all guiding curves. As their
associated tangent directions do not coincide in general, the moving surfaces
are forced to deviate from planarity, see 4(a). However, if one wishes to achieve
planar cross sections, one may choose the coefficients αℓ(r, s) as constants. The
weighted average (13) then defines a single space curve. The moving surfaces
then remain approximately in the normal plane of this curve, see Fig. 4(b).

Rotation minimization. The previous two conditions do not prevent the mov-
ing surfaces from rotating around the tangent vectors of the guiding curves. In
order to avoid this undesirable twist, we propose to use an additional term which
forces the rotation of the parameterization of the sweeping surface to be minimal.
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If no rotation around the tangent is present, then the trajectory of a point
F(r, s, t) intersects all moving surfaces orthogonally. Consequently, the rotation
vanishes if

||∂tF(r, s, t) ×
∂tĉ(r, s, t)

||∂tĉ(r, s, t)||
||2 = 0. (16)

In order to minimize the rotation along all guiding curves we integrate again
over the parameter domain and obtain the rotation minimizing term

fRM(d) =

∫ ∫ ∫

[0,1]3

||∂tF(r, s, t) ×
∂tĉ(r, s, t)

||∂tĉ(r, s, t)||
||2dr ds dt. (17)

See [21] for more information on rotation-minimizing frames of space curves.

Shape control. The terms which we introduced so far try to keep the shape
of the moving surface constant during the motion along the guiding curves.
However, this is not always appropriate, e.g., if the distance between the guiding
curves changes during the motion. In this situation, it is desirable to have a tool
for controlling the change of the shape during the motion.

We present three methods that allow to influence the shape (e.g. the ratio of
certain lengths) of the moving surface.

1. Ratio of width and height. Consider again the reference shape (see (10) and
Figure 3), where we choose three points R(r̂j , ŝj), j = 1, 2, 3, such that

(R(r̂2, ŝ2) − R(r̂1, ŝ1)) × N = µ (R(r̂3, ŝ3) − R(r̂1, ŝ1)) , (18)

where N is the unit normal vector of the plane containing the reference
shape which points into the direction of the sweep and µ is a real number.
Consequently, the three points form a right triangle and the ratio of the
lengths of the two legs is equal to µ. We now use the corresponding points
of the moving surface in order to define the first shape term

f
(1)
S (d) =

∫ 1

0

‖(F(r̂2, ŝ2, t) − F(r̂1, ŝ1, t)) ×
∂tĉ(r̂1, ŝ1, t)

‖∂tĉ(r̂1, ŝ1, t)‖

−µ(F(r̂3, ŝ3, t) − F(r̂1, ŝ1, t))‖
2dt.

(19)

The normal vector N has been replaced with the unit tangent vector of the
guiding curve ĉ(r̂1, ŝ1, t), which is associated with the apex of the right angle,
cf. (13).

2. The ratio of three collinear points can be controlled in a similar way. We
consider three collinear points R(r̂j , ŝj), j = 1, 2, 3 of the reference shape,
which satisfy

R(r̂3, ŝ3) = λR(r̂1, ŝ1) + (1 − λ)R(r̂2, ŝ2). (20)

These three points can be used to define the second shape term

f
(2)
S (d) =

∫ 1

0

‖λF(r̂1, ŝ1, t) + (1 − λ)F(r̂2, ŝ2, t) − F(r̂3, ŝ3, t)‖
2dt. (21)
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c1(t)

c2(t)

F(r̂1, ŝ1, t)

F(r̂2, ŝ2, t)

q(t)

Fig. 5. Cross section moving along two guiding curves and associated ruled surface.

3. Height control. If the number of guiding curves satisfies n ≥ 2, then the height
of the moving surface can be controlled directly. We consider two points
R(r̂1, ŝ1) and R(r̂2, ŝ2) of the reference shape such that the line segment
connecting them intersects the line connecting the two anchors R(r̃1, s̃1)
and R(r̃2, s̃2) orthogonally at a point

(1 − β)R(r̃1, s̃1) + βR(r̃2.s̃2), (22)

Let N(t) be the unit normal vector of the ruled surface generated by the two
guiding curves c1 and c2 at the point

q(t) = (1 − β)c1(t) + βc2(t), (23)

see Fig. 5, and let ν be the desired distance of the two points F(r̂1, ŝ1, t) and
F(r̂2, ŝ2, t). The distance can be controlled using the third shape term

f
(3)
S (d) =

∫ 1

0

((F(r̂1, ŝ1, t) − F(r̂2, ŝ2, t)) ·N(t) − ν)2dt. (24)

The length ν can be chosen as a constant, or it can be chosen according to
the distance between the two points which are associated with the guiding
curves,

ν(t) =
‖(R(r̂1, ŝ1) − R(r̂2, ŝ2)‖

‖(R(r̃1, s̃1) − R(r̃2, s̃2)‖
‖(F(r̃1, s̃1, t) − F(r̃2, s̃2, t)‖ (25)

Similarly, in the case of only one guiding curve, one may use t-dependent
values of µ and λ, in order to change the ratio of the lengths during the
sweep.

Regularity. In order to obtain a regular B-spline volume, we introduce the
regularity term

fR(d) =
∑

i∈I

∑

j∈J

∑

{k,k+1}⊂K

‖dijk − dijk+1‖
2. (26)

Alternatively one may consider

f ′
R(d) =

∫ ∫ ∫

[0,1]3

‖∂tF(r, s, t)‖2dr ds dt. (27)

These two terms are related to the lengths of the trajectories, and their minimiza-
tion leads to shorter trajectories. This may help to avoid unwanted oscillations.



10

2.5 Variational design

We define the objective function as a linear combination of the terms

f(d) = ωAfA(d) + ωOfO(d) + ωRMfRM (d) + ω
(i)
S f

(i)
S (d) + ωRfR(d) (28)

with non-negative weights ω∗. The index i specifies the number of the shape
term which is used, where the third term can be used only if n ≥ 2. The weights
can be used to control the influence of the individual terms.

In order to simplify the computation, we use numerical integration in order to
evaluate the integrals in the objective function and their derivatives with respect
to the control points. As a necessary condition for a minimum of (28), the first
derivatives of f with respect to all unknowns have to vanish. Since the objective
function is a quadratic function of the unknowns d, this yields a linear system
of equations for the components of the control points dijk. Consequently, the
solution

d∗ = argmin
d
f (29)

of the parameterization problem can be obtained in one step by solving a linear
system of equations for the vector of unknowns.

2.6 Examples

We conclude this section of the paper by presenting two examples.

Blade (continued). We continue the blade example and use it to demonstrate
the influence of the third shape term. Two parameterizations of a blade-shaped
volume are shown in Fig. 6. In this example, we specify only one boundary face
of the sweep volume as a boundary condition (the one in the back of the image),
and we use two guiding curves. In Fig. 6(a), the ratio of the height to the width
of the cross section is increased during the sweep. In 6(b), the ratio is decreased
to zero.

In the previous example, the distance between the two guiding curves was
roughly the same for all parameter values t. Now we consider another example,
where the distance decreases from 3 to 1.5, i.e. it shrinks by a factor of two.
Figure 7(a) shows the behaviour of the cross section without any scaling. For
the parameter value t = 1, the height is still 1, which corresponds to the original
height. In contrast, in Fig. 7(b) the height decreases and the shape of the moving
surface is preserved better.

Table support structure. As another example, which is motivated by a figure
in [21], we consider the space curve c(t) = (r cos(t), r sin(t), cos(αt)), t ∈ [0, 2π]
which we use as the guiding curve for a swept volume. Figure 8 shows this curve.
The parameter α specifies the number of oscillations of the curve. In our case
we choose α = 4.
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(a) (b)

Fig. 6. Controlling the shape of the moving surface during the sweep. The ratio of
height and width is doubled in (a) and decreased in (b).

(a) (b)

Fig. 7. In (a), the height of the moving surface has not been adapted to the distance
of the guiding curves, which causes some distortion. This distortion can be avoided by
using the third shape term, as shown in (b).

Starting from this curve we want to parameterize the volume that is covered
when moving a quadrilateral along the guiding curve c(t). The parameteriza-
tion F(r, s, t) of the volume shall fulfill the conditions described in the previous
section.

Note that the guiding curve c(t) possesses certain symmetries. Hence we
parameterize only a segment of the volume between two extremal points and use
the symmetries to obtain the entire volume. In order to ensure that the volumes
can be pieced together with C1 continuity, we prescribe boundary conditions as
explained in Section 2.2.

The moving surfaces are parameterized as bilinear patches, while the degree
in the sweep direction equals two. After piecing together the rotated segments
of the volume we obtain the support structure of the table which is shown in
Fig. 8.
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Fig. 8. Support structure of a table (right) and its guiding curve (left).

3 Isogeometric analysis for swept volumes

In this section, we outline the main features of Isogeometric Analysis, compare
it with the classical Finite Element Method (FEM), and then focus on three-
dimensional geometries generated by the swept volume technique.

3.1 Weak form and geometry function

Both FEM and Isogeometric Analysis have the same theoretical foundation,
namely the weak form of a partial differential equation. For ease of presentation,
we consider Poisson’s equation

−∆u = f in Ω (30)

as an illustrative model problem. Here, Ω ⊂ R
3 is a Lipschitz domain with

boundary ∂Ω, f : Ω → R is a given source term, and the unknown function
u : Ω → R shall satisfy the Dirichlet boundary condition

u = u0 on ∂Ω. (31)

The discussion of Neumann boundary conditions is postponed to the end of this
section.

The weak form of the PDE (30) is obtained by multiplication with test func-
tions v and integration over Ω. More specifically, one defines the function space

V := {v ∈ H1(Ω), v = 0 on ∂Ω}, (32)

which consists of all functions v ∈ L2(Ω) that possess weak and square-integrable
first derivatives and that vanish on the boundary. For functions u, v ∈ H1(Ω),
the bilinear form

a(u, v) :=

∫

Ω

∇u · ∇v dx (33)

is well-defined, and even more, it is symmetric and coercive. Setting

〈l, v〉 :=

∫

Ω

fv dx (34)
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as linear form for the integration of the right hand side, the solution u ∈ H1(Ω)
is then characterized by the weak form

a(u, v) = 〈l, v〉 for all v ∈ V (35)

and the boundary condition u = u0 (in the sense of traces).
As a prelude to the idea of Isogeometric Analysis, suppose now that the

physical domain Ω is parameterized by a global geometry function

F : Ω0 → Ω, F(ξ) = x =





x1

x2

x3



 . (36)

Below we will apply NURBS and the swept volume technique to define F, but
for the moment the geometry function is simply an invertible C1-mapping from
the parameter domain Ω0 ⊂ R

3 to the physical domain. Integrals over Ω can be
transformed into integrals over Ω0 by means of the well-known integration rule

∫

Ω

w(x) dx =

∫

Ω0

w(F(ξ)) |det DF(ξ)| dξ (37)

with 3 × 3 Jacobian matrix DF(ξ) = (∂Fi/∂ξj)i,j=1,2,3. For the differentiation,

the chain rule applied to u(x) = u(F(ξ)) yields, using a row vector notation for
the gradient ∇u,

∇x u(x) = ∇ξ u(ξ) · DF(ξ)−1. (38)

Summarizing, the integrals in the weak form (35) satisfy the transformation rules
∫

Ω

∇u · ∇v dx =

∫

Ω0

(∇uDF(ξ)−1) · (∇vDF(ξ)−1) |det DF(ξ)| dξ (39)

and
∫

Ω

fv dx =

∫

Ω0

(fv)(F(ξ)) |det DF(ξ)| dξ . (40)

Obviously, the geometry function, which is in general nonlinear, leads to more
complicated expressions in the integrals. We will come back to this point below.

3.2 Galerkin projection

The Galerkin projection replaces the infinite dimensional space V by a finite
dimensional subspace Vh ⊂ V , with the subscript h indicating the relation to a
spatial grid. Let φ1, . . . , φn be a basis of Vh, then the numerical approximation
uh is constructed as linear combination

uh = φ0 +

n
∑

i=1

qiφi (41)

with unknown real coefficients qi and a given function φ0 that satisfies φ0 = u0

on the boundary ∂Ω. Below we will address the issue of boundary conditions in
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more detail. For the moment, however, we simplify the discussion by assuming
u0 = 0 = φ0.

Upon inserting uh into the weak form (35) and testing with v = φi for
i = 1, . . . , n, one obtains the linear system

Aq = b (42)

with n × n stiffness matrix A = (a(φi, φj))i,j=1,...,n and right hand side vector
b = (〈l, φi〉)i=1,...,n. Since the matrix A inherits the properties of the bilinear
form a, it is straightforward to show that A is symmetric positive definite, and
thus the numerical solution q or uh, respectively, is well-defined.

In the classical FEM, the subspace Vh consists of piecewise polynomials with
global C0-continuity. It is not appropriate to discuss the FEM in full detail here,
but in our context, three features are of particular importance: the concept of
nodal bases, local shape functions, and the isoparametric approach, cf. [18].

A finite element mesh in three dimensions consists of grid points or nodes zj

and tetrahedral or hexahedral elements Tk such that the physical domain Ω is
approximated by

Ωh =
⋃

k

Tk. (43)

A nodal basis (φ1, . . . , φn) is characterized by the favorable property φi(zj) = δij ,
which means that

uh(zj) =

n
∑

i=1

qiφi(zj) = qj . (44)

In other words, the coefficient qj stands for the numerical solution in zj and thus
carries physical significance. This concept of a nodal basis can be generalized to
the partition of unity, which is the property

n
∑

i=1

φi = 1. (45)

Shape functions are a very useful technique to unify the treatment of the
polynomials in each finite element Tk by the transformation to a reference ele-
ment T0. Let φj be a basis function with support S ⊃ Tk. Restricted to Tk, φj

can be written as a polynomial pkj
, and in case of a nodal basis this polynomial

is one in a specific node, say zj , and zero in all other nodes of Tk. Instead of
using pkj

(x) for x ∈ Tk, the shape function

Nl(η) = pkj
(x(η)) for η ∈ T0 (46)

allows the evaluation with respect to the reference element T0. As an example,
consider a tetrahedron

T0 =

{

η ∈ R
3 : 0 ≤ ηi ≤ 1, i = 1, 2, 3, and

3
∑

i=1

ηi ≤ 1

}

(47)
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and linear shape functions

N1(η) = η1, N2(η) = η2, N3(η) = η3, N4(η) = 1 − η1 − η2 − η3. (48)

Correspondingly, the integrations for the assembly of the stiffness matrix and
the load vector are carried out by summation over all involved elements and a
transformation G : T0 → Tk from the reference element,

Aij = a(φi, φj) =
∑

k

∫

Tk

∇φi · ∇φj dx (49)

and
∫

Tk

∇φi · ∇φj dx =

∫

T0

(∇Nm DG(η)−1) · (∇Nl DG(η)−1) |det DG(η)| dη.

(50)
Though one observes some similarities with the transformation rule (39), it
should be stressed that there are two major differences: The integral (50) refers
to a single element with simple geometry, and the mapping G is either linear or,
in case of the isoparametric approach, polynomial. Due to the simple structure of
the shape functions and the polygonal shape of the elements, the integration of
(50) is straightforward and can be implemented in terms of standard quadrature
rules or sometimes even via closed form integration.

For the approximation of curved boundaries, the isoparameteric approach
applies the shape functions both for defining the basis functions and for describ-
ing the physical domain. Thus, the mapping G : T0 → Tk from above is written
as

x = G(η) =

L
∑

l=1

Nl(η)zkl
, (51)

where zkl
stands for the nodes of the element Tk. In each element, one has

therefore the local representation

x =

L
∑

l=1

Nl(η)zkl
, uh(x) =

L
∑

l=1

Nl(η)qkl
=

L
∑

l=1

Nl(G
−1(x))qkl

. (52)

In practice, isoparametric elements employ quadratic or at most cubic Lagrange-
type shape functions, and only edges or faces of elements along a curved bound-
ary are treated this way. In other words, interior element boundaries remain flat
faces. Contributions from isoparametric elements in the stiffness matrix are also
computed via (50).

While isoparametric finite elements approximate the boundary by a C0-
interpolant, isogeometric analysis exactly represents the boundary by using a
geometry description which is directly related to the CAD representation. The
basic idea is to formulate the Galerkin projection with respect to basis functions
defined on the parameter domain Ω0 and to use the geometry function F from
(36) as a global push-forward operator to map these functions to the physical
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domain Ω. Let (ψ1, . . . , ψn) be a set of linear independent functions on Ω0. By
setting φi := ψi ◦ F−1, each function is pushed forward to the physical domain
Ω. In other words,

Vh = span {ψi ◦ F−1}i=1,...,n (53)

is the finite dimensional subspace for the projection.
Two features are particularly important for an isogeometric method:

(i) The geometry function F is typically inherited from the CAD description.
In this paper, we concentrate on a single patch parameterization in terms
of trivariate NURBS, but other options such as volume meshes generated
from trimmed surfaces or from T-Spline surfaces are currently under inves-
tigation [11].

(ii) The second ingredient is the choice of the functions ψ1, . . . , ψn for the Galerkin
projection. Hughes et. al [15] select those NURBS that describe the geome-
try, and mesh refinement steps or degree elevation enlarge the subspace while
still preserving the original geometry. This is in analogy to the isoparametric
approach, but on a global level. However, as long as the geometry function is
exact and used as in the transformation rule (39), other choices for ψ1, . . . , ψn

will also preserve the geometry. For instance, one could think of B-Splines
instead of NURBS and thus avoid the rational terms.

For swept volumes, the geometry function is of the form

F(ξ) = F(r, s, t) =
∑

i∈I

∑

j∈J

∑

k∈K

Rijk(r, s, t)dijk (54)

with trivariate NURBS Rijk defined on the patch Ω0 = [0, 1]3 and control points
dijk ∈ R

3. Like in [15], we use the same functions Rijk as basis functions and
thus have

Vh ⊂ span {Rijk ◦ F−1}i∈I,j∈J ,k∈K . (55)

Note that the boundary condition u = u0 has also to be taken into account, and
for this reason we write Vh as a subset of the span. Accordingly, the numerical
solution is given by

uh(x) =
∑

i∈I

∑

j∈J

∑

k∈K

Rijk(F−1(x)) qijk (56)

where some of the coefficients qijk are determined from the boundary condition.
A comparison with isoparametric finite elements leads to the following ob-

servations:

(i) The knot vectors partition the patch into a computational mesh, and adopt-
ing the finite element terminology, we can call three-dimensional knot spans
also elements (in the parameter domain). However, the support of the basis
functions is in general larger than in the FEM case.

(ii) The NURBS do not form a nodal basis, and thus single coefficients qijk do
not represent approximations in specific grid points. On the other hand, the
partition of unity property (45) is satisfied.
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(iii) Depending on the chosen degree and the knot multiplicity in the NURBS
data, global smoothness of class C1 or higher is easily achieved in Isogeo-
metric Analysis.

Note also that both the FEM and Isogeometric Analysis coincide for an impor-
tant special case. For degree p = 1 in all three coordinate directions, the geometry
function (54) generates a regular assembly of hexahedral finite elements, and the
corresponding Rijk reduce to trilinear basis functions in each element. Thus, the
wide-spread trilinear hexahedral finite element is part of Isogeometric Analysis.

While the idea of Isogeometric Analysis is impressive, its actual implemen-
tation requires additional efforts in order to come up with powerful algorithms.
For this reason, we address some of the major issues in the following.

3.3 Boundary conditions, quadrature, refinement

In standard FEM, the treatment of Dirichlet boundary conditions is greatly
simplified by the nodal basis property. Recall Poisson’s equation (30) and the
boundary condition u = u0 on ∂Ω. For inhomogeneous u0 6= 0, the numerical
solution is split into uh = φ0 +

∑n
i=1 qiφi, and the function φ0 has to be chosen

such that φ0 = u0 on ∂Ω. Now let zj for j = 1, . . . ,m denote all nodes on
the boundary and χj the corresponding basis function with χi(zj) = δij . By
construction,

φ0 :=

m
∑

j=1

u0(zj)χj (57)

interpolates u0 in the nodes and is thus an appropriate choice for incorporating
the boundary condition.

Based on the interpolation (57), the next steps are straightforward. One
inserts uh in the weak form and moves the term involving φ0 to the right hand
side. While the definition of the stiffness matrix in (42) remains the same as for
zero boundary conditions, the load vector is modified to

b = (〈l, φi〉 − a(φ0, φi))i=1,...,n. (58)

This direct incorporation of boundary conditions is usually performed at the lin-
ear algebra level, i.e., the stiffness matrix is first generated including the nodes on
the boundary as additional degrees of freedom, and then the matrix is condensed
and the contributions from φ0 are moved to the right hand side.

Two alternatives are also common in FEM codes. In both cases, the basis for
generating the stiffness matrix includes the nodes on the boundary, i.e.,

Ṽh = span {φ1, . . . , φn, χ1, . . . , χm} (59)

is used in the Galerkin projection, which corresponds to

uh =
m

∑

j=1

wjχj +
n

∑

i=1

qiφi. (60)



18

The interpolation conditions wj = u0(zj) are then explicitly enforced. The first
alternative simply replaces the rows and columns that belong to the wj coef-
ficients by ones on the diagonal and zeros elsewhere. The corresponding right
hand side entries are set to u0(zj). This leads to an enlarged stiffness matrix of
dimension (n+m) × (n+m).

The second alternative is related to the concept of weak boundary conditions.
The equations wj = u0(zj) can be viewed as m linear constraints for the node
vector

q̃ := (q1, . . . , qn, w1, . . . , wm)⊤. (61)

In matrix-vector notation, this is equivalent to

Bq̃ = c (62)

with an m×(m+n) Boolean matrix B and a right hand side vector c determined
by cj := u0(zj), j = 1, . . . ,m. Overall, the constraint (62) combined with the
discretized weak form results in the linear system

(

Ã B⊤

B 0

) (

q̃
λ

)

=

(

b
c

)

, (63)

which has a saddle point structure. The additional unknowns λ ∈ R
m are discrete

Lagrange multipliers. Note that the (n +m) × (n + m) matrix Ã is generated
from the Galerkin projection with enlarged space Ṽh.

In total, this second alternative yields thus a system of n+ 2m linear equa-
tions, which seems rather expensive. However, this approach is the most flexible
one since it can be extended to a weak formulation

∫

∂Ω

(u− u0)µds = 0 for all µ ∈Mh (64)

of the boundary conditions. Such a weak formulation is of great advantage in
case of coupling conditions for multi-physics and multi-domain problems, and
it is also closely related to domain-decomposition methods. Compare also [5]
on the advantages of weak boundary conditions in fluid mechanics applications.
However, it should be stressed that the choice of the space Mh for the test
functions µ in (64) requires some care, cf. the inf-sup condition in mixed and
hybrid finite element methods.

If we consider the above techniques in combination with Isogeometric Analy-
sis and the swept volume meshes, it turns out that the lack of a nodal basis is a
drawback and renders the incorporation of boundary conditions more involved.
More specifically, zero Dirichlet boundary conditions are the easiest case and
simply require the determination of those basis functions Rijk that do not van-
ish on the boundary. The corresponding solution coefficients qijk are then set to
zero, which can be accomplished by the first alternative above. Non-zero bound-
ary conditions u = u0, however, demand for additional measures and will be
subject of future work. One option is to derive an analogon to the interpolation
(57) in terms of the basis functions. Another one is to use quasi-interpolation op-
erators that project the boundary condition into the spline space. Alternatively,
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the weak form (64) can be used to discretize the boundary in a more general
way.

If we have to deal with mixed Dirichlet and Neumann boundary conditions,
i.e.,

u = u0 on ΓD,
∂u

∂n
= h on ΓN (65)

with outward normal vector n and ∂Ω = ΓD ∪ ΓN , the situation is basically the
same. One first determines the knot spans in the patch Ω0 that correspond to
ΓD and ΓN and then identifies the non-vanishing NURBS that are involved. The
Neumann boundary condition yields an additional surface integral in the weak
form (35), which can be subsumed under the linear form on the right hand side
via

〈l, v〉 :=

∫

Ω

fv dx +

∫

ΓN

hv ds. (66)

Accordingly, the load vector b is computed by projection of (66).
As discussed in the very beginning of this section, the evaluation of integrals

over Ω can be replaced by integrals over the parameter domain Ω0 via the
transformation rules (39) and (40). More specifically, consider the right hand
side vector b, whose entries consist of integrals

bl =

∫

Ω

fφl dx =

∫

Ω0

f(F(ξ))φl(F(ξ)) |det DF(ξ)| dξ . (67)

Now assume that the parameter domain is discretized into a mesh

Ω0 =
⋃

κ

Bκ (68)

with hexahedral elements Bκ that are defined by the knot spans in the three
coordinate directions. Then, similar to the finite element approach (49), the
integral (67) is split into

bi =
∑

κ

∫

Bκ

f(F(ξ))ψl(ξ) |det DF(ξ)| dξ . (69)

In case of swept volumes, the basis functions ψℓ are the tri-variate NURBS Rijk,
and numerical quadrature is employed to approximate the integrals, see [17] for
a discussion of specific quadrature rules. In this context, it is important to take
both the larger support of the basis functions and the increased smoothness into
account, which means that the Gaussian quadrature rules used in the standard
FEM are not optimal in Isogeometric Analysis. The same reasoning applies to
the computation of the stiffness matrix.

Finally, we shortly comment on the options for refining the grid in Isogeomet-
ric Analysis. The overall goal of refinement is to enlarge the finite dimensional
subspace Vh in a step-by-step procedure, which leads to a sequence

Vh = V1 ⊂ V2 ⊂ V3 ⊂ . . . , (70)
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and in the limit Vi → V . The process of h-refinement consists of inserting ad-
ditional knots in the computational mesh. For swept volumes, this means that
in one or several of the coordinates r, s, t the corresponding knot vectors are
refined. This step changes the representation of the geometry function F but
leaves the geometry and the mapping between Ω0 and Ω invariant, which is a
very important property. Due to the tensor product structure, h-refinement has
always a global effect on the mesh. For recent work on T-Splines, which allow
local refinement, see [11].

As alternative to h-refinement, p-refinement increases the polynomial degree
in each element Bκ. More precisely, if the initial mesh and geometry description
is given in terms of piecewise linear functions, p = 1, then p-refinement increases
the local smoothness inside each element but leaves the global continuity un-
changed, which means that multiple knots are used in the refinement process.
When starting with piecewise linear functions the knots of a degree p NURBS
are repeated p−1 times, and there is basically not much difference to the classi-
cal p-FEM. The combination of both degree elevation and knot insertion (in this
order) with increased smoothness is called k-refinement. Due to the embedding
(70), the original continuity properties at the knots of the mesh belonging to
V1 have to be preserved also in k-refinement, but at the additional knots the
smoothness is Cp−1 for NURBS of degree p.

4 Simulation examples

Instead of Poisson’s equation (30), we study in this section the deformation of
three dimensional solids under the assumption of linear elasticity. All geometries
are generated by the swept volume method and then used as input data for the
experimental isogeometric solver of Hughes at al. [15]. In the simulations, the
displacement field u(x) = (u1(x), u2(x), u3(x))⊤ ∈ R

3 is the unknown quantity,
and it satisfies the equilibrium equations

div σ(u) = f (71)

with given volume load f . Hooke’s law

σ(u) = λ(trace ǫ(u))I + 2µǫ(u) (72)

defines the stress tensor σ in terms of the strain tensor

ǫ(u) =
1

2
(∇u + ∇u⊤) (73)

and the Lamé constants λ and µ as material parameters. These parameters are
related to Young’s modulus E and Poisson ratio ν by

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (74)
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E = 7.5 · 10
7

ν = 0.25

u = 0

Fig. 9. Left: Cylinder geometry and boundary conditions. Right: COMSOL discretiza-
tion.
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Fig. 10. Displacement components of the solution in x- (left) and z-direction (right)

In the weak form (35), the bilinear form a is then replaced by

a(u,v) :=

∫

Ω

σ(u) : ǫ(u) dx (75)

with tensor product σ : ǫ = trace (σǫ).

4.1 Simulation of swept volumes

Cylinder We start with the study of a cylinder with zero-Dirichlet boundary
condition at the base and a surface force in y-direction at the top, see Fig. 9. We
distinguish two different possibilites to parameterize the cylinder shown in Fig. 1.
In Section 4.2 we will investigate the effects of the different parameterizations
on the numerical simulation in more detail.

However, the plots of the simulation results for both parameterizations give
identical results, which are displayed in Fig. 10.

Table Our next simulation example is the supporting structure of a table al-
ready introduced in 2.6. Due to the rotational symmetry of the structure we only
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Fig. 11. The table example: Components of the solution in z-direction

need to simulate a quarter of it. At the faces on the symmetric planes we apply
symmetric boundary conditions, that means zero Dirichlet boundary conditions
for displacement orthogonal to the face and zero Neumann boundary conditions
for displacement parallel to the plane. The numerical result for the displacement
into z-direction can be seen in Fig. 11.

Blade This example is based on a blade-shaped NURBS volume which has been
generated with the help of the techniques in Section 2. The blade is subject to a
volume load in the central segment and to zero displacement boundary conditions
on the right-hand side. The result of teh numerical simulation is visualized in
Fig. 12.

4.2 Experimental comparison with a traditional simulation tools

We now compare our results with a numerical approximation obtained by a
conventional FEM package. We use COMSOL [2] in combination with linear
and quadratic isoparametric tetrahedral elements. A discretization of a cylinder
by tetrahedra is shown in Fig. 9. The original geometry is therefore approxi-
mated by piecewise polynomials and also changes in every refinement step. For
the isogeometric simulation we use a triquadratic parameterization which we
already introduced in Section 4.1. This justifies the direct comparison with to
the quadratic isoparametric approach.

In order to compare the different approximations obtained, we calculate the
energy norm

||uh||E =
√

q⊤Aq (76)

of the numerical approximation. The norm ||uh||E is plotted in Fig. 13. As can
be seen, by refining the grids all numerical solutions tend to the same maximum
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Fig. 12. The blade example: The figure shows the initial shape (wireframe) and the
deformed solid (colored), where the displacement has been magnified by a factor of
2.5 · 104. The coloring represents the components of the solution in z-direction.

value. This confirms the theoretical result that ||uh||E → ||u||E from below for
any convergent Galerkin projection method. The speed of this convergence may
serve as an indicator of the convergence behaviour of the method and can be
used to compare different methods.

Note that the discretizations using isoparametric quadratic elements behave
better than the one using only linear elements. The second cylinder parameteriza-
tion and its refinements in comparison show a similar behavior to the quadratic
isopramatric approach. Remarkably, the first cylinder parameterization which
uses significantly less degrees of freedom than the other two.

In Fig. 14 we compare different refinement strategies applied to the two
cylinder parameterizations. The rs-parameter directions are parallel to the xy-
plane and the t-direction is equal to the z-direction in space coordinates. As
expected, the refinement in t-direction strongly affects the energy norm due to
the fact that the displacement varies more strongly in this direction than in the
other directions.

5 Conclusion

For using isogeometric analysis, the creation of trivariate volumetric NURBS rep-
resentations is a great challenge. The swept volume framework presented here
provides a means for generating, optimizing and refining such volume meshes.
Swept volumes lead to a single patch description of the geometry, which can be
used to set up and perform an isogeometric simulation. In view of the prelim-
inary numerical results discussed above, the selection of the parameterization
deserves specific attention. Since an adept choice of the parameterization leads
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to significant savings in the number of degrees of freedom required to achieve a
certain precision of the numerical solution, there is a clear connection to the ap-
proximation properties of the NURBS basis functions in the Galerkin projection.
However, at the moment we have no measure to assess or predict the quality of
the parameterization in this respect. The numerical results also indicate that
isogeometric analysis is a competitive approach as compared to standard FEM
with isoparametric quadratic elements.
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