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Abstract

We construct biorthogonal spline wavelets for periodic splines which extend the
notion of “lazy” wavelets for linear functions (where the wavelets are simply a subset
of the scaling functions) to splines of higher degree. We then use the lifting scheme
in order to improve the approximation properties with respect to a norm induced by
a weighted inner product with a piecewise constant weight function. Using the lifted
wavelets we define a multiresolution analysis of tensor-product spline functions and
apply it to image compression of black-and-white images. By performing – as a
model problem – image compression with black and white images, we demonstrate
that the use of a weight function allows to adapt the norm to the specific problem.

1 Introduction

Tensor-product spline functions are often used to describe scalar fields on
subsets of R

d, d = 2, 3. An important area of applications of tensor-product
spline representation is Computer Aided Design [12, 13].

In the present paper we are interested in a multiresolution analysis for tensor-
product spline functions. For this we will use spline wavelets, especially peri-
odic uniform spline wavelets. Spline wavelets became a powerful mathematical
tool for the hierarchical representation of geometric objects, combining the
properties of splines and wavelets. Spline wavelets for tensor-products were
investigated by Quak and Weyrich in [20], where the construction was de-
scribed on a rectangular domain. Two relevant decomposition and reconstruc-
tion methods for tensor-product spline wavelets have already been presented
in [1]. Both methods, the standard and non-standard decomposition and re-
construction are based on the one-dimensional spline wavelet transform.

Various types of spline wavelets are described in the literature. These include
spline wavelets on the real line e.g. [2, 6, 7, 8, 24], (compactly supported) spline



wavelets on a bounded interval e.g. [3, 5, 9, 10, 21, 22], spline wavelets with
minimal support e.g. [16], and periodic spline wavelets. The latter ones are
particularly useful for applications in signal processing and numerical analysis.
One example of such spline wavelets is the construction of Plonka and Tasche
[19] which is based on periodization of semiorthogonal Chui-Wang wavelets [6].

In the present paper we describe a non-standard tensor-product spline wavelet
construction for periodic B-splines which is based on weighted spline wavelets.
These are univariate spline wavelets which are adapted to a region of interest,
depending on the application, by means of a weighted inner product. In the
wavelet literature, such inner products have been considered in [24, 25]. In
this paper we use a weighted inner product which is governed by a piecewise
constant weight function with two values. We design spline wavelets such that
analysis provides an approximate best approximation with respect to the norm
induced by this weighted inner product.

The remainder of this paper is organized as follows. Section 2 gives an outline
of the concept of spline wavelets, especially for 1-periodic uniform B-splines.
Section 3 describes the construction of lazy spline wavelets, which are biorthog-
onal spline wavelets with a small support. Section 4 introduces the concept of
weighted biorthogonal spline wavelets which are wavelets constructed from the
lazy spline wavelets with the help of lifting and the weighted inner product.
Section 5 describes tensor-product spline wavelets which are obtained from
these weighted biorthogonal spline wavelets. We use the tensor-product spline
wavelet construction for an application and compare it with standard uniform
ones. Finally we conclude this paper.

2 Preliminaries

We give an outline of the concept of wavelets and recall several definitions
concerning periodic B-splines.

2.1 Spline wavelets

We follow the notation in [23]. Consider a sequence (V i,d)i=0,1,... which is
nested, V i,d ⊂ V i+1,d, of spline spaces of degree d ∈ N0. Let (W i,d)i=0,1,...

be a sequence of spline wavelet spaces such that V j+1,d = V j,d ⊕W j,d for all
j ∈ N0. Finally let

Φj,d = [φj,d
0 , . . . , φj,d

dimV j,d−1] and Ψj,d = [ψj,d
0 , . . . , ψj,d

dimW j,d−1] (1)
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be a basis of V j,d and W j,d, respectively. The functions φj,d
i are called scaling

functions and the functions ψj,d
i are called wavelets. For ease of notation we

use row vectors of functions.

Since V j−1,d and W j−1,d are subsets of V j,d, there exist constant matrices P j

and Qj such that Φj−1,d = Φj,dP j and Ψj−1,d = Φj,dQj . These relations can
also be expressed by a single equation, using block matrix notation

[Φj−1,d|Ψj−1,d] = Φj,d[P j|Qj]. (2)

This equation is referred to as a two-scale relation for scaling functions and
wavelets (cf. [23]). The matrices P j can be obtained with the help of knot
insertion. The matrices Qj will be constructed later.

The relation between cj and cj−1, dj−1 is expressed by

cj = [P j|Qj][
cj−1

dj−1
], cj−1 = Ajcj, dj−1 = Bjcj, with [

Aj

Bj
] = [P j|Qj]−1.(3)

Computing cj from cj−1 and dj−1 is called synthesis. The process of splitting
the coefficients cj into coefficients cj−1 and dj−1 is called analysis. The ma-
trices P j, Qj and Aj, Bj are called synthesis matrices and analysis matrices,
respectively.

The different types of wavelets are distinguished by whether or not scaling
functions and wavelets satisfy certain orthogonality relations. Let 〈·|·〉 be the
standard inner product 〈f |g〉 :=

∫ 1
0 f(x) · g(x)dx. The functions ψj,d

i are called
orthogonal wavelets if

〈φj,d
k |φj,d

l 〉 = δkl, 〈ψj,d
k |ψj,d

l 〉 = δkl and 〈φj,d
k |ψj,d

l 〉 = 0 (4)

for all j, k and l. If the orthogonality relation

〈φj,d
k |ψj,d

l 〉 = 0 (5)

for all j, k and l is satisfied, we denote the wavelets as semiorthogonal. Oth-
erwise we call them biorthogonal wavelets. We are interested in biorthogonal
wavelets for 1-periodic uniform B-splines.

2.2 Periodic B-splines

We consider 1-periodic uniform B-splines of degree d ∈ N0. Let V j,d be the
nested spaces spanned by the 1-periodic B-splines which are constructed from
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Fig. 1. The abbreviation PBM(m,n, o, s, [v0, . . . , vl]) and two examples.

the knot sequence

(tj0, . . . , t
j

2j(d+1)−1) =
1

2j(d+ 1)
(0, 1, 2, . . . , 2j(d+ 1) − 1), (6)

where dimV j,d = 2j(d + 1). The scaling functions φj,d
i are chosen as B-spline

with support [ i
2j(d+1)

, i+d+1
2j(d+1)

] (periodically extended). In order to simplify the
notations we shall use the following abbreviation.

Definition 1 Let m,n, s, l ∈ N0 and o ∈ Z such that m = sn. Let v =
[v0, v1, . . . , vl] ∈ R

l+1. We denote by PBM(m,n, o, s, [v0, . . . , vl]) the m × n
periodic band matrix [ai,j]

j=0,...,n−1
i=0,...,m−1 with offset o, shift s and generic

column [v0, . . . , vl] with elements

a(o+i+k·s) mod m,k =











vi if i ∈ {0, . . . , l} and k ∈ {0, 1, . . . , n− 1}
0 otherwise

.(7)

See Fig. 1 for an illustration and two examples. The refinement matrix P j for
1-periodic uniform B-splines is the periodic band matrix

P j =
1

2d
PBM(2j(d+ 1), 2j−1(d+ 1), 0, 2, [

(

d+1
0

)

,
(

d+1
1

)

, . . . ,
(

d+1
d+1

)

]). (8)
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2.3 A weighted inner product

Let Dj ⊂ [0, 1] and let wj : [0, 1] → R such that

wj(x) =











1 for x ∈ [0, 1] \Dj

u for x ∈ Dj
(9)

where u ∈ R with u > 0. We use this piecewise constant function to define
the weighted inner product 〈·|·〉wj by

〈f |g〉wj =

1
∫

0

wj(x) · f(x) · g(x) dx. (10)

In our case the weighted inner product 〈·|·〉wj is induced by a simple non-
constant weight function wj. By choosing a value u > 1 (or u < 1) we empha-
size the region of interest Dj (or [0, 1] \Dj).

In the application described in Section 5 we specify Dj as a union of intervals
with the knots tji as end points. The choice of the length of the intervals may
differ from application to application and depends on the level j, too.

By aligning Dj with knot segments we guarantee that only a small number of
different weighted spline wavelets have to be considered. All other weighted
wavelets can be constructed from them with the help of translation and scaling.

3 Lazy spline wavelets

We describe a method for constructing biorthogonal wavelets for 1-periodic
uniform B-splines of any degree d ∈ N. We obtain spline wavelets with small
support with banded analysis and synthesis matrices.

3.1 Lazy spline wavelets

For degree d = 1, one gets a particularly simple biorthogonal spline wavelet
construction by choosing the wavelets ψj−1,1

i for W j−1,1 as ψj−1,1
i = φj,1

2i , where

{φj,1
k }2j(d+1)−1

k=0 are linear B-splines (hat functions), see [23, 25]. Because the
wavelets for W j−1,1 are only a subset of the functions φj,1

i for V j,1 and therefore
nothing has to be done to compute them, these wavelets have been called lazy
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wavelets by Sweldens [25, 26]. The synthesis filters P j, Qj and the analysis
filters Aj, Bj are the periodic band matrices

P j = PBM(2j+1, 2j, 0, 2, [1
2
, 1, 1

2
]) Qj = PBM(2j+1, 2j, 0, 2, [1]), and

Aj = PBM(2j+1, 2j, 1, 2, [1])T , Bj = PBM(2j+1, 2j,−1, 2, [−1
2
, 1,−1

2
])T .

(11)

We extend this construction to higher degrees. 1 In this situation, the scaling
functions are 1-periodic uniform B-splines of degree d ∈ N. Let k = d+ 1 the
order of these B-splines. The matrix P j is known and has the form (8).

The construction of the remaining analysis and synthesis matrices Qj , Aj and
Bj is done as follows. We consider an auxiliary matrix P̄ j which we derive
from P j by an index shift. Next we construct matrices Q̄j , Āj, B̄j such that
Āj · P̄ j = I, Āj · Q̄j = 0, B̄j · P̄ j = 0 and B̄j · Q̄j = I. Finally we find the
matrices Qj , Aj and Bj from Q̄j, Āj , B̄j by another index shift.

We need to distinguish between odd and even degrees.

3.2 Lazy spline wavelets of odd degree

First we apply the index shift to P j,

P̄ j = PBM(2jk, 2jk,−1, 1, [1]) · P j

=
1

2k−1
PBM(2jk, 2j−1k,−1, 2, [

(

k

0

)

,
(

k

1

)

, . . . ,
(

k

k

)

]).
(12)

We choose the matrix B̄j such that it satisfies B̄j · P̄ j = 0,

B̄j =
1

2k−1
PBM(2jk, 2j−1k, 0, 2, [

(

k

0

)

,−
(

k

1

)

,
(

k

2

)

, . . . ,
(

k

k

)

])T . (13)

Now we construct the matrix

Q̄j = PBM(2jk, 2j−1k, 1, 2, [c0, c1, . . . , ck−2]). (14)

This matrix is to satisfy B̄j · Q̄j = I. We compute the coefficients of Q̄j by
solving a system of linear equations. It suffices to consider the system which

1 A more general method for constructing compactly supported biorthogonal
wavelets has been described in [11], but it does not generalize the lazy wavelets (11)
and gives matrices with slightly larger bandwidths (Qj has bandwidth k instead of
k − 1).
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is obtained by multiplying each row of B̄j with the first column of Q̄j ,

1

2k−1



































−
(

k

1

) (

k

2

)

−
(

k

3

) (

k

4

)

· · ·
(

k

k−2

)

−
(

k

k−1

)

0
(

k

0

)

−
(

k

1

) (

k

2

)

· · ·
(

k

k−4

)

−
(

k

k−3

)

0 0 0
(

k

0

)

· · ·
(

k

k−6

)

−
(

k

k−5

)

...
...

...
. . .

. . .
. . .

. . .

−
(

k

5

) (

k

6

)

−
(

k

7

) (

k

8

)

· · · 0 0

−
(

k

3

) (

k

4

)

−
(

k

5

) (

k

6

)

· · ·
(

k

k

)

0



































·



































c0

c1

c2
...

ck−3

ck−2



































=



































1

0

0
...

0

0



































. (15)

As observed in Lemma 8, which is presented in the appendix, the d × d-
coefficient matrix of the system is regular, hence a unique solution ci exists,
which is also independent of j. Finally, we choose

Āj = PBM(2jk, 2j−1k, 0, 2, [−ck−2, ck−3,−ck−4, . . . , c1,−c0])T , (16)

which implies Āj · Q̄j = 0. This matrix also satisfies Āj · P̄ j = I, which can be
shown to be equivalent to (15).

Finally we apply the inverse index shifts and get

Qj = PBM(2jk, 2jk,−1, 1, [1]) · Q̄j , Aj = Āj · PBM(2jk, 2jk,−1, 1, [1])

and Bj = B̄j · PBM(2jk, 2jk, 1, 1, [1]).
(17)

satisfying Aj · P j = I, Aj ·Qj = 0, Bj · P j = 0 and Bj ·Qj = I.

Example 2 For d = 3 we get

P j = 1
8
PBM(2j+2, 2j+1, 0, 2, [1, 4, 6, 4, 1]),

Qj = 1
8
PBM(2j+2, 2j+1, 0, 2, [4, 16, 4]),

Aj = 1
8
PBM(2j+2, 2j+1, 1, 2, [−4, 16,−4])T ,

Bj = 1
8
PBM(2j+2, 2j+1,−1, 2, [1,−4, 16,−4, 1])T .

(18)

The wavelets and scaling functions are shown in Figure 2.
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Fig. 2. 1-periodic uniform B-splines of degree d = 3: (left) the scaling func-

tions φj,d
i and (right) the lazy spline wavelets ψj,d

i for j = 1 with control
points and control polygon (grey).

3.3 Lazy spline wavelets of even degree

We first construct the matrices P̄ j and B̄j as in the previous section, obtaining
again (12) and

B̄j =
1

2k−1
PBM(2jk, 2j−1k, 0, 2, [−
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, . . . ,
(
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k

)
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. (21)

Once again, due to Lemma 8 in the appendix, the coefficient matrix is regular,
hence we obtain a unique solution which does not depend on the level j.
Finally,

Āj = PBM(2jk, 2j−1k, 0, 2, [ck−2,−ck−3, ck−4, . . . ,−c0])T (22)

which again implies Āj · Q̄j = 0 and along with (21) Āj · P̄ j = I. Finally we
choose Qj = Q̄j , Bj = B̄j and

Aj = Āj · PBM(2jk, 2jk,−2, 1, [1]). (23)
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3.4 Properties of lazy spline wavelets

A few simple observations are summarized below.

1. If d is odd, the constructed biorthogonal spline wavelets are symmetric,
otherwise they are non-symmetric.

2. The lazy spline wavelets ψj,d
i have a support of the length d

(d+1)2j .
3. An explicit formula for the coefficients ci for the lazy spline wavelets of

degree d can be derived with the help of Cramer’s rule.

We consider scaled versions of scaling functions and wavelets (cf. [17]), i.e.

Φ̂j,d :=
√

2j(d+ 1)Φj,d and Ψ̂j,d :=
√

2j(d+ 1)Ψj,d. (24)

Lemma 3 Consider the 1-periodic scaled uniform B-splines {Φ̂j,d}j∈N0 of de-

gree d ≥ 1 and let {Ψ̂j,d}j∈N0 be the corresponding scaled lazy spline wavelets.

Then the basis {Φ̂j,d ∪ Ψ̂j,d}j∈N0 of V j+1,d is uniformly stable.

Proof: The scaled B-splines are uniformly stable (cf. [17]), hence there exist
positive constants M1,M2 such that

M1||cj||l2 ≤ ||Φ̂j,dcj||L2 ≤M2||cj||l2 (25)

for all sequences cj ∈ R
dim V j,d

and j ∈ N0.

Let P̂ j := 1√
2
P j and Q̂j := 1√

2
Qj such that

[Φ̂j−1,d|Ψ̂j−1,d] = Φ̂j,d[P̂ j|Q̂j]. (26)

We denote the entries of the matrices P̂ j and Q̂j by p̂j
k,l and q̂j

k,l. Let

mj
1 = min( min

k,l: p̂
j

k,l
6=0

|p̂j
k,l|, min

k,l: q̂
j

k,l
6=0

|q̂j
k,l|),

mj
2 = max(max

k,l
|p̂j

k,l|,max
k,l

|q̂j
k,l|) and

nj = max(bandwidth of P̂ j, bandwidth of Q̂j).

(27)

Due to the structure of P̂ j and Q̂j we get values mj
1, m

j
2, n

j ∈ R
+ which

are independent of the level j. Therefore we use for further computation the
constants m1 = mj

1, m2 = mj
2 and n = nj . We choose j ∈ N0 and consider an

arbitrary but fixed sequence (cj,dj) ∈ R
dimV j,d+dim W j,d

. Then

9



||Φ̂j,dcj + Ψ̂j,ddj ||L2 = ||Φ̂j+1,dP̂ j+1cj + Φ̂j+1,dQ̂j+1dj ||L2

≤ ||Φ̂j+1,d(P̂ j+1cj + Q̂j+1dj)||L2

≤M2||P̂ j+1cj + Q̂j+1dj||l2
≤M2m2n||(cj,dj)||l2.

On the other hand,

||Φ̂j,dcj + Ψ̂j,ddj ||L2 ≥M1||P̂ j+1cj + Q̂j+1dj ||l2 ≥M1m1||(cj,dj)||l2. (28)

Therefore we can find positive constants S1, S2 with S1 = M1m1 and S2 =
M2m2n such that

S1||(cj,dj)||l2 ≤ ||Φ̂j,dcj + Ψ̂j,ddj||L2 ≤ S2||(cj,dj)||l2 (29)

for all sequences (cj ,dj) ∈ R
dimV j,d+dimW j,d

and for j ∈ N0. �

Remark 4 Let P̂ j = 1√
2
P j, Q̂j = 1√

2
Qj , Âj =

√
2Aj and B̂j =

√
2Bj. The

matrices Q̂j are a stable completion (cf. [4, 10]) of the matrices P̂ j, i.e.

||[P̂ j|Q̂j]||, ||[ Â
j

B̂j
]|| = O(1), for all j ∈ N0. (30)

This is equivalent to the fact that the scaled lazy spline wavelets are uniformly
stable (cf. [4, Corollary 2.1]). Numerical experiments indicate that Riesz sta-
bility is not to be expected.

4 Lifting biorthogonal wavelets

The lifting scheme provides a tool for modifying biorthogonal wavelets, see
[25, 26]. We use it in order to obtain biorthogonal wavelets which are “more
orthogonal” with respect to the weighted inner product.

According to Theorem 8 in [25] one may modify the synthesis and analysis
matrices of an existing biorthogonal wavelet construction according to

[P j
lift|Qj

lift] = [P j|Qj − P jSj ] and [
Aj

lift

Bj
lift

] = [
Aj + SjBj

Bj
], (31)

where Sj is an arbitrary dimV j−1,d ×dim V j−1,d matrix. If Sj is banded, then
the new analysis and synthesis matrices are still banded, but with increased
bandwidths.
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Depending on the choice of Sj one may construct biorthogonal wavelets with
different desirable properties like increased orthogonality, higher vanishing mo-
ments etc. We use it to increase the orthogonality of the lazy wavelets.

More precisely, let ψj,d
k and ψ̃j,d

k be biorthogonal spline wavelets such that

V j,d ⊕W j,d = V j,d ⊕ span{ψj,d
k } = V j,d ⊕ W̃ j,d = V j,d ⊕ span{ψ̃j,d

k }.(32)

We say that the spline wavelets ψ̃j,d
k have an increased orthogonality compared

with the spline wavelets ψj,d
k if

min
vj∈V j,d,w̃j∈W̃ j,d

∠(vj, w̃j) > min
vj∈V j,d,wj∈W j,d

∠(vj, wj), (33)

where the ∠ is measured with the help of the inner product. We use the lifting
scheme in order to increase the orthogonality of the lazy spline wavelets with
respect to the weighted inner product.

Let βj be a lower bound on the angle between any two vectors in vj , w̃j, and
let f j−1

0 ∈ V j−1 be the best approximation of f j ∈ V j , while f j−1 is the
approximation of f j generated by wavelet analysis. Then

‖f j−1
0 − f j−1‖ ≤ cosβj ‖f j − f j−1‖, (34)

i.e., the deviation from the best approximation can be bounded by the constant
mutiple of the approximation error. In the orthogonal case (βj = π/2), this
implies f j−1

0 = f j−1.

If the lifted wavelets were perfectly orthogonal, one would have that

[〈Φj−1,d|Ψj−1,d
lift 〉wj ] = 0, (35)

where Ψj−1,d
lift = Φj,dQj

lift. The system of linear equations (35) is generally over-
determined. Instead we find an approximate solution for Sj by minimizing the
double-sum of the squared errors 〈φj−1,d

i , ψj−1,d
k,lift 〉2,

Sj = arg min
Sj

dim V j−1,d−1
∑

i=0

dimW j−1,d−1
∑

k=0

〈φj−1,d
i |ψj−1,d

k,lift 〉2wj . (36)

Since the values of one column of Sj have an effect on exactly one wavelet
ψj−1,d

k,lift we can also compute the matrix Sj by solving the following minimization

11
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Fig. 3. The one-dimensional weighted wavelet transform

problems

sj
k = arg min

s
j

k

dimV j−1,d−1
∑

i=0

〈φj−1,d
i |ψj−1,d

k,lift 〉2wj (37)

for each k ∈ {0, . . . , dimW j−1,d − 1} where sj
k is the (k + 1)-th column of

Sj. Depending on the choice of the biorthogonal wavelet construction and the
region Dj , we get a constant number of different minimization problems (37).

We will denote the spline wavelets constructed with the help of lifting and
a standard inner product from the lazy spline wavelets as weighted spline
wavelets. If the weight functions is constant, i.e., if the usual L2 inner product
is used, then we will refer to them as standard lifted spline wavelets. If the
region Dj and the support of a particular wavelet are mutually disjoint, then
this wavelet is the standard lifted wavelet.

If the analysis matrices Aj , Bj and synthesis matrices P j, Qj are banded, then
the lifted matrices Aj

lift,B
j
lift,P

j
lift,Q

j
lift are still banded, but with increased band-

widths. The inner products in (36) and (37) are evaluated with the help of
numerical integration. One may use Gaussian quadratures in order to obtain
exact results.

Fig. 3 visualizes the one-dimensional wavelet transform using weighted spline
wavelets. At each level, the information about the region of interest Dj has to
be kept too, since it is needed for generating the synthesis matrices.

Example 5 Various weighted biorthogonal wavelets for 1-periodic uniform
B-splines of degree 3 are visualized in Fig. 4. We constructed them by lifting
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Fig. 4. Various weighted biorthogonal wavelets ψ
j−1,d
i for 1-periodic

uniform B-splines of degree d = 3 for j = 3 for u = 0.1 (dashed), u = 1
(black) and u = 10 (grey).The two dots mark the boundaries of Dj.
For u = 0.1 and u = 10, only 5 wavelets differ from the standard lifted
wavelet (u=1).

Table 1
Minimum angle between the spaces V 4,3 and W̃ 4,3 for different values of
the bandwidth b.

lazy (b = 0) b = 2 b = 4 b = 6

4.4◦ 29.6◦ 55.1◦ 69.8◦

lazy spline wavelets using a band matrix Sj with bandwidth 2. The region Dj

is chosen as [4·2
j−2

4·2j−1 ,
4·2j−2+1
4·2j−1 ]. The support of the lifted spline wavelets has the

length 10
4·2j .

Example 6 Table 1 compares the orthogonality of different spline wavelet
spaces W̃ j,3 for different bandwidths of the matrix Sj. We have computed
numerically the minimal possible angle between functions of the function space
V j,3 and the wavelet spaces W̃ j,3 for lazy spline wavelets of degree d = 3 and
standard lifted spline wavelets with bandwidths 2, 4 and 6. The orthogonality
of the standard lifted spline wavelets increases with the bandwidths b.

5 Image compression

We demonstrate the possibility of adapting the region of interest to the prob-
lem by performing image compression with weighted spline wavelets. We con-
sider a black-and-white image P which is represented by pixels pi,j with values
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0 for white and 1 for black. In order to compress this image, we represent it as
a tensor-product spline function and apply the so-called non-standard tensor-
product wavelet transform.

Let m,n, d ∈ N0. A tensor-product spline function f (m,n) of bi-degree (d, d)
which is both 1-periodic with respect to x and y is defined by

f (m,n) =
dimV m,d−1

∑

k=0

dimV n,d−1
∑

l=0

c
(m,n)
k,l φm,d

k (x)φn,d
l (y), (38)

with coefficients c
(m,n)
k,l ∈ R. The upper indices (m,n) refer to the level of detail

of representation. The coefficients c
(m,n)
k,l ∈ R form a matrix with dimensions

(dimV m,d − 1) × (dimV n,d − 1). We consider functions with uniform dyadic
knots.

We use the so-called non-standard decomposition [1, 23] for constructing spline
wavelet constructions for tensor-products. We apply alternately one analysis
step of the one-dimensional (weighted) wavelet transform (see Fig. 3) to all
rows and all columns of our coefficient matrix. Starting with a tensor-product
function f (m,m), we obtain a hierarchical sequence f (m,m), f (m−1,m), f (m−1,m−1),
f (m−2,m−1), . . ., f (0,0) of functions.

More precisely, using weighted spline wavelets, the function f (m,m) is decom-
posed as

f (m,m)(x, y) = f (m−1,m)(x, y) + g(m−1,m)(x, y), (39)

where g(m−1,m) is a tensor-product spline function of bi-degree (d, d) of the
following form:

g(m−1,m)(x, y) =
dim V m−1,d−1

∑

k=0

dim V m,d−1
∑

l=0

d
(m−1,m)
k,l ψm−1,d

k,l (x)φm,d
l (y), (40)

with coefficients d
(m−1,m)
k,l ∈ R which are called wavelet coefficients. Further-

more ψm−1,d
k,l are the weighted spline wavelets ψm−1,d

k depending on l. This
means, that we can have different weighted spline wavelets for each row or
column of the coefficient matrix. Therefore we can adapt the approximation
power of the non-standard tensor-product spline wavelets to the region of in-
terest. For example, in the case of implicitly defined curves we can adapt these
two-dimensional wavelets to the shape of the curve (cf. [15]).

In order to compress the black and white image, we represent it as tensor-
product spline function f (m,m) of degree (e.g.) (3, 3), where we choose the
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coefficients c
(m,m)
i,j as the values of the pixels pi,j. Then we apply alternately

one analysis step of the one-dimensional weighted wavelet transform to all
rows and all columns of the coefficient matrix [c

(m,m)
i,j ]ij .

The advantage of the weighted non-standard tensor-product spline wavelet
construction is that for each row or column we can choose different regions
Dj of interest. We wish to preserve the parts of the image P where the color
changes black to white or vice versa. We describe these parts of the image
with the help of the level curve of f (m,n) at 0.5, i.e.

{(x, y) ∈ [0, 1]2|f (m,n)(x, y) = 0.5}. (41)

In each step the regions Dj are automatically chosen, as follows. Each row
or column is considered as coefficient vector of a univariate spline function.
Now we choose for each of this function the region Dj as union of intervals
with a length of 1

4·2j−1 which contain the points where this function attains
the value 0.5. In our implementation, these points are computed numerically
by sampling. For more advanced methods we refer to the method in [18] for
computing roots of a spline function.

Furthermore we choose the weight u between 2.5 and 10. Numerical experi-
ments indicated that this is a reasonable choice for the weight u. If u is too
high, then analysis may produce additional intersection points and therefore
we can obtain additional white or black pixels. On the other hand if u is too
low, then the effect of the weighted spline wavelets is too small.

Applying these analysis steps lead to a decomposition of the coefficients [c
(m,m)
i,j ]ij

into the coefficients [c
(0,0)
i,j ]ij in the coarsest level of detail and the wavelet co-

efficients [d
(m−1,m)
i,j ]ij , . . . [d

(0,0)
i,j ]ij in the different levels of detail.

Now, in order to perform image compression, we represent the image by using
only some of the wavelet coefficients. That means we delete a certain per-
centage of the wavelet coefficients, namely the coefficients with the smallest
absolute values. We replace the values of these coefficients by zero. This leads
to wavelet coefficients [d̂

(m−1,m)
i,j ]ij , . . . , [d̂

(0,0)i,j ]ij with an increased number of
zeros. We use these wavelet coefficients to reconstruct the image.

The reconstruction of the image is done by applying the inverse steps of our
weighted non-standard decomposition, namely by applying weighted synthesis.
That means we obtain for each level of detail the corresponding coefficients
[ĉ

(r,s)
i,j ]ij with the help of the coefficients and wavelet coefficients of one coarser

level of detail and the region of interest of the level of detail (r, s). These
reconstruction steps are applied from the coarsest level of detail (0, 0) up to

the finest level of detail (m,m) to obtain the coefficient matrix [ĉ
(m,m)
i,j ]ij. Finally
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we use thresholding to compute the pixels p̂i,j for the resulting image P̂ .

Example 7 Fig. 5, top row, shows the weighted wavelet transform of a simple
black-and-white image. The lower rows of the figure shows the result after
image compression by retaining only a certain percentage of the non-zero
coefficients. These figures also visualize the pixels which are added (black)
or deleted (grey) from the original image. It can clearly be seen that the
weighted spline wavelets (right two columns) with adaptive choice of the region
of interest performs better than standard lifted wavelets (left two columns).

6 Conclusion

After extending the notion of “lazy wavelets” to periodic splines of higher
degree, we applied lifting in order to obtain wavelets which are more orthog-
onal with respect to weighted inner products. Finally we demonstrated the
potential of these non-uniform wavelets, which can be adapted to the spe-
cific problem, by performing – as a model problem – image compression for a
simple black-and-white image.

A weighted inner product of the form (10) can also be used to generate
non-uniform semiorthogonal wavelets. This is described in more detail in the
PhD thesis of the first author [14], which also presents another application of
weighted inner product to structure recognition.

The paper leaves several open problems which deserve further investigation.
For instance, the increased orthogonality of lifted wavelets should be discussed
on a more theoretically level, and the question of an optimal choice of the
weight u for the weight function – and of the region of interest – requires
additional studies. This may be topics of future research.

Acknowledgments. The authors thank the referees for their constructive
comments which have helped to improve the paper. They were supported by
the Austrian Science Fund (FWF) through the SFB F013 “Numerical and
Symbolic Scientific Computing”, subproject 15.
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Fig. 5. Top: Weighted wavelet transform of a simple black-and-white image.
Bottom: Image compression with standard lifted spline wavelets (left) and
weighted spline wavelets (right) for three different compression rates.

A Existence and uniqueness of lazy spline wavelets

Lemma 8 Let Gk be the coefficient matrix of the system of equations (15)
or (21), respectively. Then

det(2k−1Gk) =











2
(k−1)k

2 if k is odd

(−1)
k
2 2

(k−1)k
2 otherwise

(A.1)
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Proof: We proceed by induction with respect to k. For k = 2 and k = 3 we
have det(2G2) = −2 and det(22G3) = 23, respectively. For the induction step
k − 1 → k we will distinguish between the cases k is even and k is odd.

Case 1: k is even We have

det(2k−1Gk) = det
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(We add all other rows to the first row.)
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(We add the first column to the second one, the second column to the third
one, etc. and develop the result after the first row, which has only one non-zero
entry left.)
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(...and add the rows 2 to k−2
2

to the first row, the rows 3 to k−2
2

to the second
row, etc. Further we add the rows k− 3 to k

2
to the (k− 2)-th row (last row),

the rows k − 4 to k
2

to the (k − 3)-th row, etc).
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This (k − 2) × (k − 2)-matrix is the matrix 2k−2Gk−1 which gives

= (−1)
k
2 2k−1 det(2k−2Gk−1) = (−1)

k
2 2k−12

(k−2)(k−1)
2 = (−1)

k
2 2

(k−1)k
2 .

using the induction hypothesis.

Case 2: k is odd. The computation is similar to the first case. Finally we
obtain

det(2k−1Gk) = (−1)
k−1
2 2k−1 det(2k−2Gk−1)

= (−1)
k−1
2 2k−1(−1)

k−1
2 2

(k−2)(k−1)
2 = 2

(k−1)k
2 .
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[6] C. K. Chui and J. Wang. On compactly supported spline wavelets and a
duality principle. Trans. Amer. Math. Soc., 330(2):903–915, 1992.

19



[7] C. K. Chui and J. Wang. A study of compactly supported scaling func-
tions and wavelets. In Wavelets, images, and surface fitting (Chamonix-
Mont-Blanc, 1993), pages 121–140. A K Peters, Wellesley, MA, 1994.

[8] A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of
compactly supported wavelets. Comm. Pure Appl. Math., 45(5):485–560,
1992.

[9] A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast
wavelet transforms. Appl. Comput. Harmon. Anal., 1(1):54–81, 1993.

[10] W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline wavelets on
the interval—stability and moment conditions. Appl. Comput. Harmon.
Anal., 6(2):132–196, 1999.

[11] W. Dahmen and C. A. Micchelli. Banded matrices with banded inverses.
II. Locally finite decomposition of spline spaces. Constr. Approx., 9(2-
3):263–281, 1993.

[12] G. Farin. Curves and surfaces for computer-aided geometric design. Aca-
demic Press, 1997.

[13] J. Hoschek and D. Lasser. Fundamentals of computer aided geometric
design. A K Peters Ltd., Wellesley, MA, 1993.

[14] M. Kapl. A multiresolution analysis for tensor-product splines using
weighted inner products and its application to algebraic spline curves.
PhD thesis, Johannes Kepler University,Linz, 2008.
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