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Abstract— We present a new type of oriented bounding
surfaces, which is particularly well suited for shortest dis-
tance computations. The bounding surfaces are obtained by
considering surfaces whose support functions are restrictions
of quadratic polynomials to the unit sphere. We show that
the common normals of two surfaces of this type – and
hence their shortest distance – can be computed by solving
a polynomial of degree six. This compares favorably with other
existing bounding surfaces, such as quadric surfaces, where
the computation of the common normals is known to lead to a
polynomial of degree 24.

I. I NTRODUCTION

The computation of the minimum distance between two
objects is a fundamental task in various applications. These
applications include collision detection in robotics [16], [25],
interference avoidance (Digital mock–up) in CAD/CAM,
interactions in virtual reality and computer games [3], and
even interference analysis of molecules in computational
physics and computational chemistry [14]. The problem
becomes even more challenging if one of the two objects is
subject to a motion. In order to obtain realistic simulations,
efficient techniques for shortest distance computations are
required.

Since it is computationally complicated to apply short-
est distance computation directly to general objects, it has
become a standard technique to use bounding volumes (or,
more generally, hierarchies of bounding volumes) instead.By
applying the shortest distance computation to these bounding
volumes first, the computational costs can greatly be reduced.

There exist some articles handling curved objects, but
they are restricted to some special kinds of surfaces since
the minimum distance computation involves a system of
non–linear equations. Instead, the majority of the existing
literature dealing with minimum distance computation is
dedicated to the distance between two polyhedral objects.
If the objects of interest have curved boundaries, then they
are often approximated by polyhedra.
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The simplest bounding polyhedra are axis–aligned bound-
ing boxes (AABBs), which are easy to construct for a given
object and provide a fast and simple intersection test. On the
other hand, the approximation quality is relatively low and
the recomputation for moving objects is required.

The use of oriented bounding boxes (OBBs) avoids the
recomputation and provides better approximation quality.
However, the data volume needed for representing OBBs is
larger than for AABBs and the intersection test is relatively
complicated. See [4] for more information.

Klosowski et al. [9] proposed to use collections of discrete
orientation polytopes (DOPs) as bounding volumes. But
generally speaking, one needs a large data volume, which
may entail problems with the efficiency, in order to obtain
precise results. For avoiding this blow–up of data volume, it
has been proposed to use bounding ellipsoids and piecewise
quadric objects [22], as well as other geometric primitives.

Using enclosing ellipsoids, the problems of collision
avoidance and detection are studied in [7], [18], [24]. Sohn
et al. [21] formulate the task of distance computation as a
surface–surface intersection problem in the space of lines.
Lennerz and Schömer [10] provide a method for distance
computation of generalized polyhedra bounded by patches
of quadratic surfaces trimmed by quadratic curves. Their
main result states that the distance between two faces of
quadratic complexes can be computed by solving a univariate
polynomial equation of degree at most 24, which is found
using a Lagrangian mutliplier technique.

Seong et al. [20] compute the distance between two simple
surfaces i.e. surfaces of revolution and surfaces of linear
extrusion, generated by slope–monotone curves. The main
advantage of these simple surfaces is the simplicity of their
Gauss maps, which makes the normal matching relatively
easy to determine.

Chen et al. [1] compute the distance of two implicit
algebraic surfaces by using an offsetting technique. They
reduce the problem of distance computation between a
quadric surface in implicit representation and (a) a cylinder,
(b) a cone, (c) an elliptic paraboloid, (d) an ellipsoid and
(e) a torus to the problem of solving a univariate polynomial
of degree (a) 4, (b) 8, (c) 16, (d) 36 and (e) 16. This paper
presents a detailed comparison of the methods from [8], [10],
[21] and of the offsetting–based method.

Lee et al. [11] replace the problem of finding the minimum
distance between two sphere–swept surfaces by computing
the distance between two moving spheres. The resulting non–
linear system of multivariate rational functions is solved
iteratively by a special subdivision method.

Odehnal [13] provided a solution for finding all common



normals of two tori via line geometry. In general two
different tori possess 8 common normals, but in some special
cases, they can have infinitely many. Detailed analysis of
these special tori positions is presented.

Choi et al. [2] solved the problem of collision detection
of two moving ellipsoids under rational motions. Their
method is based on an algebraic condition that arises from
the characteristic polynomial of two ellipsoids, which is a
polynomial of degree 4. By just determining the existence
of negative roots, without computing them explicitly, it is
possible to determine, whether the ellipsoids are separateor
not. If the ellipsoids collide during the rational motion, then
they can report the collision intervals by computing zero–sets
as well.

In this paper we propose a new type of oriented bounding
surface for distance–distance computation. It is a special
surface with polynomial support functions, which were ana-
lyzed in more detail in [19]. Support functions are a special
concept from convex geometry [6], and their application to
problems of geometric computing can be traced back to a
classical paper of Sabin [17], see also [5]. We restrict our
attention to surfaces with a polynomial support function of
degree two, which are called quadratically supported surfaces
(QSS). Using Hermite interpolation with spherical Powell–
Sabin elements, segments of such surfaces are capable of
approximating general support functions [19].

The class of surfaces is closed under important geometric
operations (translation, rotation, offsetting) and it includes
both convex and non–convex objects. In particular it provides
an interesting type of non–convex surface of revolution,
which may provide a tight bound of manipulator–type ob-
jects.

In a recent paper we demonstrated that these surfaces are
potentially interesting for kinematics and robotics, since the
characteristic curves forming the envelope of a moving QSS
can be computed exactly [12]. In the present paper we ex-
plore the potential of QSS for shortest distance computation.

Figure 1 introduces an example, to be treated in more
detail in Section VI, which demonstrates the potential of the
new type of bounding volumes. The manipulator has been
modeled as a collection of two non–convex QSS of revolu-
tion and three spheres and the shortest distance problem has
been solved by determining the common normals between
these QSS.

Fig. 1. Shortest distance (black line segment) between a moving manipu-
lator (yellow) and an obstacle (red), both represented by QSS.

The remainder of this paper is organized as follows. First
we recall the support function representation of surfaces and

analyze the shapes which can be obtained from the class
of QSS. Then we address the problem of shortest distance
computation and show that all common normals can be found
by solving a univariate polynomial equation of degree 6.
Finally we provide some examples, additional information
about the planar case and we conclude the paper.

II. SUPPORTFUNCTIONS

We recall the support function representation of surfaces,
which is a classic concept from the field of convex geometry
(see e.g. [19]). Consider a given functionh ∈ C∞(S2, R),
whereS

2 denotes the unit sphere inR3. We use this function
to associate with each pointn ∈ S

2 the plane

{p ∈ R
3 : p · n = h(n)} (1)

which has the unit normaln and possesses the oriented
distanceh(n) to the origin.

A surface can now be defined as the envelope of the two–
parameter family of planes, which is obtained by varyingn

in S
2. Along with the surface we get an oriented unit normal

vector at each point, hence we get an oriented surface.
The given functionh is called thesupport functionof

this surface. For anyh ∈ C∞(S2, R), a parameterization
xh ∈ C∞(S2, R) of the surface is given by its inverse Gauss
map,

xh(n) = h(n)n + (∇S2h)(n), (2)

where(∇S2h) is the intrinsic gradient of the support func-
tion h with respect to the unit sphereS2. If the support
function h is obtained by restricting a suitable function
h0 ∈ C∞(R3, R) to the unit sphereS2, then

(∇S2h)(n) = (∇h0)(n) −
[

(∇h0)(n) · n
]

n, (3)

where∇ is the usual nabla operator inR3. This parameter-
ization, whose domain is the unit sphere, can now be com-
posed with any parameterization ofS

2, e.g., with spherical
coordinates. This gives a representation of the surfacexh as
a parametric surface.

In this paper we are particularly interested in the case
where the support function is the restriction of a trivariate
quadratic polynomial toS2,

h(n) = a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz +

a7x + a8y + a9z + a10 (4)

wheren = (x, y, z). We call the corresponding envelopes
quadratically supported surfaces (QSS).

A translation of the envelope surface by a vectorv

corresponds to the addition of the homogeneous linear poly-
nomial v · n to the support function, while a rotation can
immediately be composed with it. Moreover, addition of
constants corresponds to offsetting. Finally, the QSS with
the opposite orientation has the support function

h∗(n) = −h(−n) . (5)

We note that the class of QSS is closed under translations,
rotations, offsetting and orientation reversal.



A QSS depends on9 free parameters, hence it has the same
number of degrees of freedom as a general quadric surface.
Indeed, the support function in Eq. (4) has 10 coefficients,
but the coefficient of the constant term can be multiplied by
n2 = x2 + y2 + z2, which gives 1 when restricted to the
unit sphere. Consequently, only the coefficients of the linear
and of the quadratic terms represent independent degrees of
freedom.

III. T HE SHAPES OFQSS

We analyze the possible shapes which can be obtained
from quadratic QSS. First we observe that any quadratic
support function has the normal form

h(n) = x2 + ay2 + bz2 (6)

with constant coefficientsa, b ∈ R. Indeed, the linear terms
of h can be eliminated by a translation, the constant term
can be added to the quadratic ones by multiplying it with
1 = x2+y2+z2 and the quadratic terms can be diagonalized
by a rotation. Finally, a scaling can be applied to normalize
the coefficient ofx2.

Consequently, the shapes of the QSS depend on two
coefficientsa and b. In order to classify these shapes, we
analyze the set of singular points on a QSS. We compose
a quadratic rational parameterization of the unit sphere with
the inverse Gauss map. This gives the parameterization

qh(u, v) = xh

(

1 − u2 − v2

1 + u2 + v2
,

2u

1 + u2 + v2
,

2v

1 + u2 + v2

)

of the QSS which is defined by the support function (6). The
parameters(u, v) vary in R

2.
The singular points of this parameterization are character-

ized by

fh(u, v) =
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= 0. (7)

This equation defines an algebraic curve of degree 8 in the
uv plane, whose coefficients depend polynomially ona and
b. We will call this curve the singularity curveS of the QSS
given by the parameterizationqh.

The study of the different shapes that can be obtained from
a quadratic QSS is guided by the analysis of the singularity
curve. Figure 2 shows the singularity curveS together with
the corresponding QSS whena = 2 andb = 5.

Fig. 2. Singularity curve (left) and QSS (right) whena = 2 andb = 5.

Next we include several relevant cases showing how the
study of the singularity curveS produces the desired shapes.

We refrain from presenting a complete classification of all
available shapes, since this is beyond the scope of the present
paper.

A. Convex and non–singular QSS:(a, b) ∈ (1

2
, 2) × (1

2
, 2)

such thata ≤ 2b ∧ b ≤ 2a

In this case the curvefh(u, v) = 0 is empty and the
corresponding QSS is free of singularities and convex (see
Figure 3). In particular, we obtain a sphere ifa = b = 1.

Fig. 3. Shape of the
convex and non–singular
QSS whena = 31/16
andb = 3/2.

B. QSS which are surfaces of revolution:a = b = k ∈ R,
a = 1 ∧ b ∈ R and b = 1 ∧ a ∈ R

Let us consider the casea = b = k ∈ R, where the cor-
responding QSS are surfaces of revolution. The singularity
curvefh(u, v) factors
(

(2k − 1)(u2 + v2)2 + 2(u2 + v2) + (2k − 1)
)

·
·
(

(2k − 1)(u2 + v2)2 + 2(5 − 4k)(u2 + v2) + (2k − 1)
)

providing seven possible configurations for the singularity
curve (circles and points). The different classes of shapesof
the QSS whena = b = k ∈ R can be seen in Figure 4. The
two other symmetric cases give similar shapes of QSS.

IV. COMMON NORMALS AND SHORTEST DISTANCES

We consider two quadratic support functions

g(n) = a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz +

a7x + a8y + a9z + a10 and

h(n) = b1x
2 + b2y

2 + b3z
2 + b4xy + b5xz + b6yz +

b7x + b8y + b9z + b10 ,

with constant coefficientsai, bi ∈ R for i = 1 . . . 10. They
define two QSS

xg(n) = g(n)n + ∇g(n) − [∇g(n) · n]n and (8)

xh(n) = h(n)n + ∇h(n) − [∇h(n) · n]n .

Definition 1: Both QSSpossess a common normalif the
two vectors

(

xg(n) − xh(n)
)

and n (9)

are linearly dependent.
Note that the unit normals (both aren) at the two surface

points xg(n) and xh(n) are required to be parallel and to
possess the same orientation.

Consequently, if one computes the shortest distance of two
convex QSS, then their orientation has to be chosen such
that the normal vectors of one surface point inward, while
the normal vectors of the other surface point outward. Then



Fig. 4. Shapes of QSS fora =
b = k ∈ R: k ∈ (−∞, 0), k = 0,
k ∈ (0, 1

2
), k = 1

2
, k ∈ ( 1

2
, 2),

k = 2, k ∈ (2, +∞) (from top
left to bottom right).

the shortest distance will be realized at one of the common
normals in the sense of this definition.

In the case of non–convex QSS, both possible orientations,
which are related by (5), have to be analyzed. In addition, the
singular curves on the surface have to be dealt with separately
(unless they can be excluded by other reasons).

Since the first and third terms in (8) are all linearly
dependent onn, the condition of Definition 1 is equivalent
to

(

∇g(n) −∇h(n)
)

× n = 0. (10)

In the case of two QSS, this equation gives the system

0 = c4(−x2 + y2) + 2(c1 − c2)xy − c6xz + c5yz

−c8x + c7y

0 = c6(−y2 + z2) − c5xy + c4xz + 2(c2 − c3)yz

−c9y + c8z (11)

0 = c5(−x2 + z2) − c6xy + 2(c1 − c3)xz + c4yz

−c9x + c7z ,

of three quadratic equations, whereci = (ai − bi) for i =
1 . . . 9. Together with the condition

n · n = x2 + y2 + z2 = 1 (12)

for normalization, we arrive at a system of 4 quadratic
equations in 3 unknowns. Due to the special position of
the quadrics described by the three equations (11), one
may expect to find not more than23 = 8 solutionsnj ,
j = 1, . . . , 8. These solutions are the unit normals of the
common normals, which pass through the surface points
xg(nj) andxh(nj).

The number of solutions, which is always less than8, will
be analyzed in the next section.

V. NUMBER AND COMPUTATION OF COMMON NORMALS

We denote the three quadratics in Eq. 11 byQ1, Q2 and
Q3, respectively. Recall that two general quadrics intersect
in a quartic space curve, see e.g. [23]. In our case, however,
we have the following result.

Lemma 1:Any two of the three quadricsQ1, Q2 andQ3

intersect in a cubic curve and in a line.
Proof: It suffices to show that each of the three

intersection curves contains a line. The two quadricsQ1 and
Q2 intersect in the line

y = 0 and c4x + c6z + c8 = 0, (13)

the two quadricsQ2 andQ3 intersect in the line

z = 0 and c5x + c6y + c9 = 0 (14)

and the remaining two quadricsQ1 andQ3 intersect in the
line

x = 0 and c4y + c5z + c7 = 0. (15)

Consequently, each of the three intersection curves splitsinto
a cubic curve and a line.

As the next step we analyze the three cubic curves and
show that they are all identical.

Lemma 2:The three quadricsQ1, Q2 andQ3 intersect in
one cubic curve.

Proof: In order to simplify the notation we shall use
homogeneous coordinates(d0, d1, d2, d3)

⊤ defined by

1 : x : y : z = d0 : d1 : d2 : d3 (16)

to represent points. Letl1 and l2 be the line (13) contained
in Q1 and Q2 and the line (14) contained inQ2 and
Q3, respectively. In homogeneous coordinates, two possible
parametric representations of these two lines are

p(s) = p0 + sp1, s ∈ R and q(t) = q0 + tq1, t ∈ R

with the pointsp0 = (−c6, 0, 0, c8)
⊤, p1 = (−c4, c8, 0, 0)⊤

and q0 = (−c6, 0, c9, 0)⊤, q1 = (−c5, c9, 0, 0)⊤. For any
point p(s) on the first line, we can find a unique pointq(t)
on the second line such that the line spanned by them

r(s, t, u) = p + uq (17)



is completely contained in the second quadricQ2. In homo-
geneous coordinates, the second quadric has the representa-
tion 0 = x⊤C2x with the 4 × 4–matrix

C2 =
1

2









0 0 −c9 c8

0 0 −c5 c4

−c9 −c5 −2c6 2c2 − 2c3

c8 c4 2c2 − 2c3 2c6









.

The line (17) is contained in it if and only ifp⊤C2q = 0.
This condition is equivalent to

0 = (−c5c
2

8 + c4c8c9)t + (c4c
2

9 − c5c8c9)s

+2(c2 − c3)c9c8 + (c2

9
− c2

8
)c6 ,

which is bi–linear in(s, t). We can solve it directly fort =
t(s). Now, by intersecting the linẽr(s, t(s), u) with the other
two quadricsQ1 andQ3 we arrive at two quadratic equations
which can be solved foru = u(s). After eliminating the
trivial solutions p(s) and q(t(s)), respectively, we obtain
for each of these two quadratic equations thesamesolution
u(s). Thus, we have found a parameterization of the common
cubic intersection curver(s, t(s), u(s)) of the three quadric
surfaces.

Now we formulate the main result of this section.
Theorem 1:Two quadratically supported surfaces possess

at most six common normals.
Proof: Two QSS possess a common normal if and only

if the equations (11) and (12) hold. According to lemma 2,
the intersection of the three quadrics of Eq. 11 is a cubic
curve. Consequently, by intersecting it with the unit sphere
(i.e., equation (12)) we get at most six common normals.

The proofs suggest the following algorithm for computing
the joint normals of two QSS:

1) Generate a cubic rational parameterization of the joint
intersection curve of the three quadric surfaces (11),
according to the proof of Lemma 2.

2) Compose the parameterization with (12) in order to
find a degree 6 polynomial.

3) Use an appropriate numerical method to find all roots
of this polynomial.

4) Evaluate the parameterization of the cubic at these
roots and apply the envelope operators (8) to the
resulting unit normals.

VI. EXAMPLES

As a first example we consider two convex QSS (see
Figure 5), denoted byC1 (blue) andC2 (orange). They are
defined by their coefficientsa andb according to section III

C1 : a =
2

3
, b = 1 , C2 : a =

5

7
, b =

6

7

and some additional translation, rotation and scaling. Com-
puting the minimum distance via our presented algorithm
above leads us to the polynomial equation

0 = x6 − 7983

886
x5 + 48439

1772
x4 − 12933

443
x3+

+ 425

886
x2 + 23877

1772
x − 12635

3544
,

Fig. 5. Shortest (green) and longest distance (black) between two convex
objects represented by QSS.

which has been solved numerically. It yields exactly two real
roots, that correspond to the longest and the shortest distance
of the two convex QSS.

In the second example we compute the shortest distances
between a moving manipulator–type object and a convex
obstacle (see Figure 1). The manipulator has been modeled
as a collection of two non–convex QSS of revolution and
three spheres (also described by QSS). Due to the geometry
of these surfaces, the shortest distances are always realized
at normals intersecting the surfaces at regular points, hence
it is not necessary to check the singularities (which are
located along circles) of the non–convex QSS separately. The
obstacle is modeled as a convex QSS.

The manipulator performs a motion, and we computed
the shortest distance to the obstacle for several positionsof
the motion, see Figure 1. For each position, the roots of
5 polynomials of degree 6 each had to be found, and the
common normal corresponding to the shortest distance was
then identified.

VII. T HE PLANAR CASE

Finally we discuss the case of planar objects with
quadratic polynomial support functions. In the planar case
any quadratic support function has the normal formh(n) =
x2 + ay2 with a ∈ R. We call the corresponding envelopes
quadratically supported curves (QSC). They possess the
trigonometric parameterization

xh(cosφ, sin φ) =

(

(2 − a + (a − 1) cos2 φ) cos φ

(a + (a − 1) cos2 φ) sin φ

)

.

The possible shapes of the QSC depend on the parametera

and can be found in the Figure 6.
Let us consider two quadratic support functions

g(n) = a1x
2 + a2y

2 + a3xy + a4x + a5y + a6 and

h(n) = b1x
2 + b2y

2 + b3xy + b4x + b5y + b6 ,

with constant coefficientsai, bi ∈ R for i = 1 . . . 6. By
using the same arguments introduced in Section IV, both
QSC posses a common normal if and only if∇g(n)−∇h(n)
and n are linearly dependent. This leads to the following
non–linear system of equations

0 = c3(x
2 − y2) − 2(c1 − c2)xy + c5x − c4y

1 = x2 + y2



Fig. 6. Shapes of a QSC:a ∈ (−∞, 0), a = 0, a ∈ (0, 1

2
), a = 1

2
, a ∈ ( 1

2
, 2), a = 2, a ∈ (2, +∞) (from left to right).

whereci = ai − bi for i = 1 . . . 5. The change of variables

x =
1 − u2

1 + u2
, y =

2u

1 + u2

produces the quartic equation inu

0 = (c3 − c5)u
4 + 2(2c1 − 2c2 − c4)u

3 − 6c3u
2

−2(2c1 + c4 − 2c2)u + c3 + c5

whose real solutions provide the common normals between
the considered QSC after applying the envelope operators (8)
to the resulting unit normals.

VIII. C ONCLUSION

We presented a new and promising geometric primitive
which can be used as a bounding volume for applications re-
lated to collision detection and shortest distance computation.
It has the same number of degrees of freedom as a general
quadric surface (9). However, while the computation of the
shortest distance of two quadric surfaces leads to a degree
24 polynomial, and examples with 16 common real normals
have been reported [21], the same computation for our new
bounding primitive requires only to solve a polynomial of
degree 6.

Based on these theoretical results, we have implemented
an algorithm for minimum distance computation between
free form objects, which are represented as a union of QSS.
The results are described in the forthcoming paper [15]. As
shown there, the shortest distance computation between pairs
of QSS requires roughly 30µs on standard hardware. This
compares well with analogous results for pairs of ellipsoids,
which were reported in [2].
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