Oriented Bounding Surfaces with at most Six Common Normals
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Abstract—We present a new type of oriented bounding
surfaces, which is particularly well suited for shortest ds-
tance computations. The bounding surfaces are obtained by
considering surfaces whose support functions are restriains
of quadratic polynomials to the unit sphere. We show that
the common normals of two surfaces of this type — and

hence their shortest distance — can be computed by solving

a polynomial of degree six. This compares favorably with otbr
existing bounding surfaces, such as quadric surfaces, wher
the computation of the common normals is known to lead to a
polynomial of degree 24.

I. INTRODUCTION

The simplest bounding polyhedra are axis—aligned bound-
ing boxes (AABBSs), which are easy to construct for a given
object and provide a fast and simple intersection test. @n th
other hand, the approximation quality is relatively low and
the recomputation for moving objects is required.

The use of oriented bounding boxes (OBBs) avoids the
recomputation and provides better approximation quality.
However, the data volume needed for representing OBBs is
larger than for AABBs and the intersection test is relativel
complicated. See [4] for more information.

Klosowski et al. [9] proposed to use collections of discrete
orientation polytopes (DOPs) as bounding volumes. But

The computation of the minimum distance between tw
objects is a fundamental task in various applications. &he

applications include collision detection in robotics [1£5], precise results. For avoiding this blow—up of data volurhe, i

?nterfere.:nce .avo'idanlce (IE_)igitaI mock-up) in CADICAM, poq peen proposed to use bounding ellipsoids and piecewise
mteraqtmns In virual rea ,'W and computer_ games [3], ,an%uadric objects [22], as well as other geometric primitives
even interference analysis of molecules in computational Using enclosing ellipsoids, the problems of collision
physics and computational 9“9'_“'5”3’ [14]. The pr_Obleeroidance and detection are studied in [7], [18], [24]. Sohn
becf’mes even more challenging if one of It.he. th) Otl)le,CtS & al. [21] formulate the task of distance computation as a
S“F’J?Ct toa m'ot|on. In order 1o obfcam realistic 5|mu.a$|pn surface—surface intersection problem in the space of.lines
efficient techniques for shortest distance computatioes af o\narz and Schomer [10] provide a method for distance

required. computation of generalized polyhedra bounded by patches

Since it is computationally complicated to apply shorts g adratic surfaces trimmed by quadratic curves. Their

est distance computation directly to general objects, & Ngn,in result states that the distance between two faces of

become a standard technique to use bounding volumes (gf,,qratic complexes can be computed by solving a univariate
more generally, hierarchies of bounding volumes) instBgd. polynomial equation of degree at most 24, which is found
applying the shortest distance computation to these bogndiusing a Lagrangian mutliplier technique.

volumes first, the computational costs can greatly be retluce Seong et al. [20] compute the distance between two simple

There exist some articles handling curved objects, by, ifaces i.e. surfaces of revolution and surfaces of linear
they are restricted to some special kinds of surfaces singgr,sion, generated by slope—monotone curves. The main
the minimum distance computation involves a system Qfgyantage of these simple surfaces is the simplicity of thei

non-linear equations. Instead, the majority of the existing ;g5 maps, which makes the normal matching relatively
literature dealing with minimum distance computation i%asy to determine.

dedicated to the distance between two polyhedral objects.chen et al. [1] compute the distance of two implicit
If the objects of interest have curved boundaries, then th%fgebraic surfaces by using an offsetting technique. They

enerally speaking, one needs a large data volume, which
ay entail problems with the efficiency, in order to obtain

are often approximated by polyhedra.
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reduce the problem of distance computation between a
quadric surface in implicit representation and (a) a cydmd
(b) a cone, (c) an elliptic paraboloid, (d) an ellipsoid and
(e) a torus to the problem of solving a univariate polynomial
of degree (a) 4, (b) 8, (c) 16, (d) 36 and (e) 16. This paper
presents a detailed comparison of the methods from [8], [10]
[21] and of the offsetting—based method.

Lee et al. [11] replace the problem of finding the minimum
distance between two sphere—swept surfaces by computing
the distance between two moving spheres. The resulting non—
linear system of multivariate rational functions is solved
iteratively by a special subdivision method.

Odehnal [13] provided a solution for finding all common



normals of two tori via line geometry. In general twoanalyze the shapes which can be obtained from the class
different tori possess 8 common normals, but in some special QSS. Then we address the problem of shortest distance
cases, they can have infinitely many. Detailed analysis @bmputation and show that all common normals can be found
these special tori positions is presented. by solving a univariate polynomial equation of degree 6.
Choi et al. [2] solved the problem of collision detectionFinally we provide some examples, additional information
of two moving ellipsoids under rational motions. Theirabout the planar case and we conclude the paper.
method is based on an algebraic condition that arises from
the characteristic polynomial of two ellipsoids, which is a Il. SUPPORTFUNCTIONS
polynomial of degree 4. By just determining the existence We recall the support function representation of surfaces,
of negative roots, without computing them explicitly, it iswhich is a classic concept from the field of convex geometry
possible to determine, whether the ellipsoids are separate(see e.g. [19]). Consider a given functibne C>°(S? R),
not. If the ellipsoids collide during the rational motiohgh  whereS? denotes the unit sphere R?. We use this function
they can report the collision intervals by computing zestss to associate with each poimte S? the plane
as well.
In this paper we propose a new type of oriented bounding {peR’: p-n=h(n)} 1)

surface for distance—distance computation. It is a specCi@hich has the unit normah and possesses the oriented
surface with polynomial support functions, which were aNdgistanceh(n) to the origin.

lyzed in more detail in [19]. Support functions are a special A ¢ rface can now be defined as the envelope of the two—

concept from convex_geometry_ [6], and their application t‘barameter family of planes, which is obtained by varying
problems of geometric computing can be traced back t0ig 52 Ajong with the surface we get an oriented unit normal

classical paper of Sabin [17], see also [5]. We restrict OUYfacior at each point, hence we get an oriented surface.
attention to surfaces with a polynomial support function of 1,4 given functionk is called thesupport functionof

degree two, which are called quadratically supported saga this surface. For anyy € C(S2,R), a parameterization

(QSS). Using Hermite interpolation with spherical PoweII—Xh € 0>(S?,R) of the surface is given by its inverse Gauss

Sabin elements, segments of such surfaces are capablerr%{p
approximating general support functions [19]. ’ _ ,

The class of surfaces is closed under important geometric xn(n) = h(n)n + (Vs2h)(n), 2)
operations (translation, rotation, offsetting) and itluttes where(Vgs:1h) is the intrinsic gradient of the support func-
both convex and non—convex objects. In particular it presid tion » with respect to the unit spher§?. If the support
an interesting type of non—convex surface of revolutiorfunction h is obtained by restricting a suitable function
which may provide a tight bound of manipulator-type ob#° ¢ C°>°(R3,R) to the unit spher&?, then
jects.

In a recent paper we demonstrated that these surfaces are (Vs2h)(n) = (VA®)(n) = [(VA®)(n) -n]n,  (3)

potentially interesting for kinematics and robotics, sithe |\ hereV is the usual nabla operator i&?. This parameter-
characteristic curves forming the envelope of a moving Qsi§ation, whose domain is the unit sphere, can now be com-
can be computed exactly [12]. In the present paper we eXyseq with any parameterization 8¢, e.g., with spherical

plor.e the pot'ential of QSS for shortest distance Compmatiocoordinates. This gives a representation of the surfacas
Figure 1 introduces an example, to be treated in mor,

It _ _ _ & parametric surface.
detail in Section VI, which demonstrates the potential & th In this paper we are particularly interested in the case

new type of bounding volumes. The manipulator has begf,are the support function is the restriction of a trivagiat
modeled as a collection of two non—convex QSS of reVO'“duadratic polynomial G2

tion and three spheres and the shortest distance problem has
been solved by determining the common normals betweel(n) = a12% + axy® + a3z + aszy + asrz + agyz +

these QSS. arx + agy + agz + aio 4)

wheren = (x,y, z). We call the corresponding envelopes
guadratically supported surfaces (QSS)

A translation of the envelope surface by a vector
corresponds to the addition of the homogeneous linear poly-
nomial v - n to the support function, while a rotation can
immediately be composed with it. Moreover, addition of
constants corresponds to offsetting. Finally, the QSS with
the opposite orientation has the support function

Fig. 1. Shortest distance (black line segment) between angaaanipu-
lator (yellow) and an obstacle (red), both represented b$.QS h*(n) — —h(—n) . (5)

The remainder of this paper is organized as follows. FirdlVe note that the class of QSS is closed under translations,
we recall the support function representation of surfacek arotations, offsetting and orientation reversal.



A QSS depends onfree parameters, hence it has the sam@/e refrain from presenting a complete classification of all
number of degrees of freedom as a general quadric surfae@ailable shapes, since this is beyond the scope of thergirese
Indeed, the support function in Eq. (4) has 10 coefficientpaper.
but the coefficient of the constant term can be multiplied b . 1 1
n? = 22 4+ 9% + 22, which gives 1 when restricted to theécﬁiﬂ\;jjgc; Ancl))n<—52|ngular QSELb) € (3.2) x (3,2)
unit sphere. Consequently, only the coefficients of thealine = = ca

and of the quadratic terms represent independent degrees ofn this case the curvef,(u,v) = 0 is empty and the
freedom. corresponding QSS is free of singularities and convex (see

Figure 3). In particular, we obtain a sphereuit=b = 1.
Ill. THE SHAPES OFQSS

We analyze the possible shapes which can be obtained
from quadratic QSS. First we observe that any quadratic
support function has the normal form

h(n) = 2% + ay® + b2* (6)

Fig. 3.  Shape of the
convex and non-singular
QSS whena = 31/16

with constant coefficients, b € R. Indeed, the linear terms andb = 3/2.

of h can be eliminated by a translation, the constant term
can be added to the quadratic ones by multiplying it with
1 = 22442+ 2% and the quadratic terms can be diagonalized
by a rotation. Finally, a scaling can be applied to normaliz8. QSS which are surfaces of revolutian= b = k£ € R,
the coefficient ofx2. a=1AbeRandb=1Aa€R

Consequently, the shapes of the QSS depend on oy ¢ s consider the case= b = k € R, where the cor-

coefficientsa and . In order to classify these shapes, Weesponding QSS are surfaces of revolution. The singularity
analyze the set of singular points on a QSS. We COMPOgGrve f, (u,v) factors
a quadratic rational parameterization of the unit sphetl wi Y ) . , ,
the inverse Gauss map. This gives the parameterization ((2k — 1)(u T )2 ;FQ(U +v%) + (2% —21)) :

1— w2 — o2 o o (26 — 1)(u? + v?)% + 2(5 — 4k) (u? + v?) + (2k — 1))
an(u,v) = xp

I+l +02 14w +02 1+ w2 + 02 providing seven possible configurations for the singufarit
S ) . curve (circles and points). The different classes of shapes
of the QSS which is defined by the support function (6). Thﬁ1e QSS whem = b — k € R can be seen in Figure 4. The

parametersu, v) vary in R”. two other symmetric cases give similar shapes of QSS
The singular points of this parameterization are character y 9 P QSS.

ized by IV. COMMON NORMALS AND SHORTEST DISTANCES
9 9 2 We consider two quadratic support functions
fn(u,v) = H—qh X —qp|| =0. (7) ) ) )
ou ov gn) = ax® +agy” + asz” + agxy + aszz + agyz +
This equation defines an algebraic curve of degree 8 in the arx + agy + agz + a9 and

uv plane, whose coefficients depend polynomiallycoand _ 2 2 2
b. We will call this curve the singularity curvg of the QSS () = b1z”+bay” +bsz” + bazy + bowz + beyz +
given by the parameterizatiag,. b7z + bsy +boz + bio

The study of the different shapes that can be obtained frofith constant coefficients,,b; € R for i = 1...10. They
a quadratic QSS is guided by the analysis of the singularigfefine two QSS
curve. Figure 2 shows the singularity cur§etogether with
the corresponding QSS when= 2 andb = 5. xg(n) = g(n)n+Vg(n)—[Vg(n) njn and (8)

xp(n) = h(n)n+ Vi(n)— [Vi(n) njn.

Definition 1: Both QSSpossess a common norrmifithe
two vectors

(xg(n)—xh(n)) and n 9

. " are linearly dependent.
‘ Note that the unit normals (both arg at the two surface
— > points x,(n) andx;(n) are required to be parallel and to

possess the same orientation.
Fig. 2. Singularity curve (left) and QSS (right) when= 2 andb = 5. Consequently, if one computes the shortest distance of two
convex QSS, then their orientation has to be chosen such
Next we include several relevant cases showing how trtbat the normal vectors of one surface point inward, while
study of the singularity curvé produces the desired shapesthe normal vectors of the other surface point outward. Then




Fig. 4. Shapes of QSS far =

b=keRké€(-x,0),k=0,
ke (0,3), k=3 ke(32),
=2, k € (2,+00) (from top

left to bottom right).

the shortest distance will be realized at one of the common Lemma 1:Any two of the three quadric®:, Q2 andQs
normals in the sense of this definition. intersect in a cubic curve and in a line.

In the case of non—convex QSS, both possible orientations, Proof: It suffices to show that each of the three
which are related by (5), have to be analyzed. In additias, thntersection curves contains a line. The two quadflgsand
singular curves on the surface have to be dealt with sepyrate), intersect in the line
(unless they can be excluded by other reasons).

Since the first and third terms in (8) are all linearly y=0 and cqz+cez+cg =0, (13)
dependent om, the condition of Definition 1 is equivalent
to the two quadricg), and (@3 intersect in the line
Vg(n) — Vh(n)) xn=0. 10
( 9(n) ( )) (10) z=0 and csz+cgy+cg =0 (14)

In the case of two QSS, this equation gives the system
and the remaining two quadri¢g; and Qs intersect in the

0 = c(-2"+1y%) +2(c1 — )y — coxz + csyz line
—CsT +cry =0 and cqy+csz+cy =0. (15)
0 = co(—y*+2°) — csay + cawz + 2(c2 — c3)yz
—coy + 82 (11) Conse_:quently, each o_f the three intersection curves $plas
0 = ¢ (_xQ +22) oy + 2c1 — e3)z + cayz a cubic curve and a line. [ |
> oLy e B As the next step we analyze the three cubic curves and
—Cox + 7z, show that they are all identical.
of three quadratic equations, whete= (a; — b;) for i = Lemma 2:The three quadric®:, Q2 andQs intersect in
1...9. Together with the condition one cubic curve.
s o o Proof: In order to simplify the notation we shall use
n-n=z"+y +2°=1 (12)  homogeneous coordinatédy, d,, ds, d3) T defined by

for normalization, we arrive at a system of 4 quadratic
equations in 3 unknowns. Due to the special position of

the quadrics described by the three equations (11), one : . .
may expect to find not more thaz? — 8 solutionsn,, tO represent points. Lét andl, be the line (13) contained

j = 1,....,8. These solutions are the unit normals of the . @1 and @; and the line (14) contained i), and

common normals, which pass through the surface poin@’” respectively. In homogeneous coordinates, two possible
%, (n;) andxs(n )’ parametric representations of these two lines are
g\t h\1Lj )

The number of solutions, which is always less tigamill
be analyzed in the next section.

l:z:y:z=dp:dy:dy:ds3 (16)

p(s) =po+sp1, s€R and q(t) =qo+tqi, teR

with the pOintSpo = (—CG,0,0, Cg)T, P1 = (—64, Cg,O,O)—r
. . and qo = (_0670’69’0)T’ qQ1 = (_057 Cg,O,O)T. For any
We denote the three quadratics in Eq. 11®y, Q2 and  pointp(s) on the first line, we can find a unique poigtt)

Qs3, respectively. Recall that two general quadrics intersegl, the second line such that the line spanned by them
in a quartic space curve, see e.g. [23]. In our case, however,

we have the following result. r(s,t,u) =p+uq a7

V. NUMBER AND COMPUTATION OF COMMON NORMALS



is completely contained in the second quadpic In homo-
geneous coordinates, the second quadric has the representa
tion 0 = x " Cyx with the 4 x 4—matrix

0 0 —Cg Cg

C, = 1 0 0 —Cs Cq
2= —Cg9 —Cs —206 262 - 263

Cg C4 262 - 263 266

The line (17) is contained in it if and only " Coq = 0.
This condition is equivalent to
5 9 Fig. 5. Shortest (green) and longest distance (black) letviewo convex
0 = (—c5¢5+ cacseg)t + (cacy — csesc9)s objects represented by QSS.
+2(ca — c3)eocs + (cg — c§)06 ,
which is bi-linear in(s, t). We can solve it directly for = Which has been solved numerically. It yields exactly twd_ rea
t(s). Now, by intersecting the ling(s, ¢(s), u) with the other  "00tS, that correspond to the longest and the shortesndista

two quadricg); andQs; we arrive at two quadratic equations©f the two convex QSS. _
which can be solved for = u(s). After eliminating the In the second example we compute the shortest distances

trivial solutions p(s) and q((s)), respectively, we obtain P&€tween a moving manipulator-type object and a convex
for each of these two quadratic equations saenesolution obstacle (sge Figure 1). The manipulator has been' modeled
u(s). Thus, we have found a parameterization of the commd?$ @ collection of two non—convex QSS of revolution and

cubic intersection curve(s, t(s), u(s)) of the three quadric three spheres (also described by QSS). Due to the geometry
surfaces. m Of these surfaces, the shortest distances are alwaysemaliz

Now we formulate the main result of this section. at normals intersecting the surfaces at regular pointsgéen

Theorem 1:Two quadratically supported surfaces posseds S not necessary to check the singularities (which are
at most six common normals. located along circles) of the non—convex QSS separately. Th
Proof: Two QSS possess a common normal if and onl¢PStacle is modeled as a convex QSS.
if the equations (11) and (12) hold. According to lemma 2, 1h€ manipulator performs a motion, and we computed
the intersection of the three quadrics of Eq. 11 is a cubi@e shortest distance to the obstacle for several posibéns

curve. Consequently, by intersecting it with the unit sghertn® motion, see Figure 1. For each position, the roots of
(i.e., equation (12)) we get at most six common normais. 5 polynomials of degree 6 each had to be found, and the

The proofs suggest the following algorithm for computin ommon nqrmal corresponding to the shortest distance was
the joint normals of two QSS: hen identified.

1) Generate a cubic rational parameterization of the joint VII. THE PLANAR CASE
intersection curve of the three quadric surfaces (11), Finally we discuss the case of planar objects with
according to the proof of Lemma 2. quadratic polynomial support functions. In the planar case
2) Compose the parameterization with (12) in order tany quadratic support function has the normal fdra) =
find a degree 6 polynomial. % 4 ay? with a € R. We call the corresponding envelopes
3) Use an appropriate numerical method to find all rootguadratically supported curves (QSCThey possess the
of this polynomial. trigonometric parameterization
4) Evaluate the parameterization of the cubic at these 9
roots and apply the envelope operators (8) to the xj,(cos ¢,sin¢) = < (2-a+(a—1)cos”¢) COS¢>
’ (a+ (a — 1) cos? ¢) sin ¢ ’

resulting unit normals.
The possible shapes of the QSC depend on the parameter
VI. EXAMPLES and can be found in the Figure 6.

As a first example we consider two convex QSS (see Let us consider two quadratic support functions

Figgre 5), denpted b@ (blue) andCs (or.ange). Thgy are  g(n) = ax?+ asy® + azry + asx + asy + ag and
defined by their coefficients andb according to section Il h(n) = bia? + boy? + bsay + baz + bsy + be
CL:a= Z b=1,Cy:a= 3 b= 6 with constant coefficients;,b; € R for i = 1...6. By
3 7 7 using the same arguments introduced in Section IV, both

and some additional translation, rotation and scaling. ConQSC posses a common normal if and onlyif(n) — Vh(n)
puting the minimum distance via our presented algorithrand n are linearly dependent. This leads to the following

above leads us to the polynomial equation non-linear system of equations
7983 48439 .4 12933 _ 2 2
0 = 26— D835 4 880,14  12988,3 4 0 = c3(x®—y°)—2(c1 — e2)zy + c5x — Cuy

425 2 | 23877, 12635 _ 2.2
+3886%° T T2 3544 ! L = a7+y




-\

/ N\

~_ \\V,// /i&

Fig. 6. Shapes of a QSG € (—00,0),a=0,a € (0,3), a =3

wherec; = a; — b; for i = 1...5. The change of variables [9]

1 —u? 2u
eI YT irae
1+u 1+u (10]
produces the quartic equation in
0 = (c3-— 05)u4 +2(2¢1 — 2¢9 — 04)u3 — 6esu® [11]

—2(2¢1 + ¢4 — 2¢c2)u+ c3 + ¢

whose real solutions provide the common normals betweéH]
the considered QSC after applying the envelope operatprs (8

to the resulting unit normals.
[13]
VIII. CONCLUSION
[14]

We presented a new and promising geometric primitive
which can be used as a bounding volume for applications rﬁ'5]
lated to collision detection and shortest distance contjmunta
It has the same number of degrees of freedom as a general
quadric surface (9). However, while the computation of thé&'6]
shortest distance of two quadric surfaces leads to a degree
24 polynomial, and examples with 16 common real normalg?]
have been reported [21], the same computation for our new
bounding primitive requires only to solve a polynomial of
degree 6. [18]

Based on these theoretical results, we have implemented
an algorithm for minimum distance computation between
free form objects, which are represented as a union of QS[E9]
The results are described in the forthcoming paper [15]. As
shown there, the shortest distance computation betwees pajg)
of QSS requires roughly 30s on standard hardware. This
compares well with analogous results for pairs of ellipspid

which were reported in [2]. [21]
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