Fast Distance Computation Using Quadratically
Supported Surfaces
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Abstract We use the class of surfaces with quadratic polynomial stpioctions
in order to define bounding geometric primitives for shdrtistance computation.
The common normals of two such surfaces can be computed biynga single
polynomial equation of degree six. Based on this obsemati@ formulate an al-
gorithm for computing the shortest distance between enoéssof two moving or
static objects by surfaces of this type. It is demonstrated the performance of
this algorithm compares favourably with methods for corimuthe distance be-
tween two ellipsoids, which can also be used as boundingitprés for distance
computation and collision detection.

1 Introduction

Collision detection and shortest distance computatiowéen static or dynamic ge-
ometric objects is one of the fundamental problems in rals@thd computer graph-
ics, especially for applications such as path planning,masr games, simulation
of machining processes and animation, see e.g. [4, 5, 8,]9lrnlarder to formu-
late efficient algorithms, the objects are often replacethirarchies of) geometric
primitives, such as axis-aligned or oriented bounding Bq#BBs or OBBs), or
k-DOPS. The computational effort for collision detectiomalistance computation
depends on the number of these primitives, on the compuogdijoeffort for an-
alyzing a pair of two primitives, and on the costs for adaptimese primitives to
dynamic objects (which may require a frequent re-companiae.g. in the case of
AABBs for a moving body).

The majority of the existing methods relies on geometrimjtives with piece-
wise linear boundaries, since then the elementary opesatibinterference detec-
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tion and distance computation between them become patiguidimple. These
simple primitives, however, do not represent free-formeoty very well, and al-
ternative approaches have been explored. On the one haadnpay use hybrid
techniques which combine bounding primitives with the éxapresentations [3].
On the other hand, it seems to be promising to explore othendiag primitives
with non-linear boundaries.

In particular, the use of ellipsoids (and more general algietsurfaces) has been
proposed in the literature [1, 2, 7, 10]. Methods for genegatollections of bound-
ing ellipsoids for 3D objects have been discussed in [12]oBserved there, for
certain types of objects (in particular with free-form bdaries), the use of bound-
ing ellipsoids leads to a smaller number of bounding priregicompared to OBBs.
However, the distance computation between two ellipscédsld to an algebraic
problem of high degree [10] - it can eventually be formulaésdthe problem of
finding all roots of a polynomial of degree 24.

We present a new class of bounding geometric primitives isiadce computa-
tion which performs better than ellipsoids. As a first adaget these primitives can
represent both elliptic (locally convex) and hyperboligioms of free-form surfaces.
As another advantage, the computational costs of compthimghortest distance
between two of our primitives is much smaller than in the azsdlipsoids; it can
be formulated as a root finding problem for a polynomial ofréegs. This fact has
been established recently [14]. In the present paper wehisseliservation in order
to formulate an algorithm for shortest distance computatietween enclosures of
objects by the new geometric primitives. We demonstraggatformance by several
examples and compare it with the best available techniguekdtance computation
between ellipsoids.

2 Enclosing Moving Objects by QSS

We recall the notion of quadratically supported surface8%¥and discuss the com-
putation of common normals of two such surfaces.

We consider the function which is obtained by restrictingiadyatic polynomial
f : R3 — R to the unit spher&?,

f:S2—-R:n—f(n)=nTAn+a'n, (1)

wheren = (x,y,2) " denotes the unit normal, with coefficierats ..., ag € R,

2a; a4 as az
A= > a4 2a, ag | anda= | ag (2)
as ag 2a3 a9

Since we are only interested in the restriction to the urfiesp, we can assume that
the constant term in (1) has been incorporated into the atiadme, as a multiple
ofn'n=1.
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The envelope of the two-parameter family of planes with naimalsn € S? and
support distance$(n) (distances to the origin) defines a quadratically supported
surface (QSS), see [15, 16]. It can be parameterized as

X;:S% — R3:
n — x¢(n) = f(n)n+0f(n)— (Of(n)"n)n (3)
=—(nTAn)n+2An +a,

where the domain is the unit sphe§® More precisely, we obtain asriented sur-
face where each points has an associated unit normal veator

The class of QSS is closed under translations, rotatioafingg offsetting, and
orientation reversal. For instance, a rigid body displaeeim

5 :R® - R3: x> v+Ux (4)

with rotation matrixU € SO(3) and translation vectartransforms the support func-
tion (1) into
f'(n)=n"UAU "n+ (Ua+v)'n. (5)

Moving QSS have been analyzed in [13], where it was showntkiegt support an
exact computation of the characteristic curves on envedapfaces.

On the other hand, the reversal of the orientation of the atsmmodifies the
support function according to

f’(n)=—f(—n)=—-n"An+a'n. (6)

By combining a suitable rotation, translation and a scaling support of a QSS can
be transformed into the normal form

f(n) =3 + kyy? + ko2 )

with coefficientsks, ko, € R. Hence, any QSS can be identified with a point in the
(k1,ko)-plane. For instance, surfaces of revolution occiy = kp, k; =1 orky = 1.

In order to identify QSS without self-intersections, we lgmad their singulari-
ties and obtained the following results. If the QSS definedheysupport function
f has no self-intersections, then it is the boundary surfdee simply connected
subseF c R3. There exist two different types of simply connected QS$ ftroof
will be presented in the doctoral thesis of the first author):

e If the shape paramete(k;, k») lie in the interior of the hexagon bounded by the

six lines
1 1 1

k=5, k=sk, k=2 k=2 k=2 and k=5, (8)

2 2 2
then the bounded volume of the associated QSS is convexsabdundary pos-
sesses no singularities.

e If the shape parameters satisfy either
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1 1
§<k1<2/\ ko <0 or §<k2<2/\ ki <0 or ky > 2ky A ko > 2ky, (9)

then the volume which is enclosed by the QSS is non-conveweMer, the
boundary of the volume has singular curves, and the orientaf the unit nor-
malsn along the boundary may change along these singuldrities

Fig. 1 visualizes the four regions (8), (9) in tkle, ky)-plane, where simply con-
nected QSS are supported. Furthermore four examples of Q&%ponding to the
values indicated by circles are shown.

ke,

1.5 o

D
a

Fig. 1 Center: Parameter doma(ky, ko) of a support function in normal form. The grey domains
indicate shapes without self-intersections. Left andtri§imply connected QSS for different val-
ues of(ky, kz) (indicated by the small circles in the innermost figure). Smgyularities are located
on one circle, on two circles and along two non-planar cu¢resounterclockwise order from top
left). The top right QSS is convex and free of singularities.

Now we consider two QSS with the support functidnsee (1)) and
gn)=n'Bn+b'n (10)

with coefficientsby, ... ,bg € R. Two pointsxt(ng) andxg(ng) of the surfaces are
said to have a common normal, if their difference vector hassame direction as
no, i.e., if the vectors

Xt(Ng) —Xg(No) and ng (1)

are linearly dependent. Using (3) and the correspondingtézuforg, this condi-
tion leads to a system of three quadratic equationsgor

[2(A —B)ng+a—b]xng=0 (12)

1 The normals may point inside of the object on one side of auimgurve, and outside on the
other side.
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Fig. 2 A valid enclosure with outward-pointing
normals (two-dimensional sketch).

which have to be satisfied by a unit vecter As shown in [14], the three quadric
surfaces (12) (whenay = (x,y,2) ") intersect in a rational cubic curve, which can be
parameterized easily. The unit normals that correspongtird-pair with common
normals are then found by intersecting this rational cubree with the unit sphere,
leading to a polynomial equation of degree 6. Consequetnily, QSS possess at
most 6 point-pairs with common normadsd these point-pairs can be computed by
solving a polynomial equation of degree 6. This comparesfeably with (e.g.) two
quadric surfaces, where the same problem leads to a polahofrdegree 24 [10].

3 Valid enclosures by QSS and distance computation

In order to compute the approximate distance between twactd)jwe want to cover
them by a collection of QSS, such that the shortest distahtteedwo enclosures is
realized at a common normal of a pair of QSS. We describe tegstions in the
following definition.

Definition 1. A covering of an object’ by a collection% = U!‘:1F. of k simply
connected QS§& with support functiond; is called avalid enclosure with outward-
(resp.inward-) pointing normalsf

1. the object is contained in the interiar,C .7,
2. all singularities of the bounding QSS are contained inrterior of .# and
3. the outermost boundary has outward- (resp. inward-)tp@mormals.

These conditions ensure, that the smallest distance of alvd enclosures can
be found by checking all common normals.

Lemma 1. Consider two disjoint objects which are covered by validlesres
F =L R and¥ = }_, G; of QSS, which have inward-pointing and outward-
pointing normals, respectively. Then the minimum distdhsatisfies

> i . .
D=, N, )

=
j=1,...

where dj is the minimum distance of any point-pair on two Q$S&utd G with
common normals. Moreover, if the two objects are equal to #reclosures# and
¢, then the inequality becomes an equation.
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Fig. 3 Common normals and
shortest distance (red) between
two static simply connected QSS.
Left: two separate non-convex
QSS with 4 common normals.
Right: Two nested convex QSS
with 6 common normals.

Proof. It suffices to observe that all edges of the outermost boynafathe valid
enclosures are concave edges. The minimum distance betheéno enclosures
is never realized at one of these edges. Consequently,lit®at a point-pair with
common normals between two QESandG;. O

Lemma 1 suggests the following algorithm for computing thertest distances
between two valid enclosure® and¥.

Input: two valid enclosures with support functiofisandg;.
1. For all pairg(i, j):
Find all common normalsg.
For all common normalsg:
Evaluate the distances between the poitio) andxg; (No).
Compute the minimurdj; of these distances.
2. Compute the minimum of adl; .
Output: the minimum distance and the corresponding pait-p

We implemented this algorithm in C++, where we used the Jeakraub algo-
rithm [6] for computing the roots of the polynomial equatwidegree 6. The roots
are computed with machine precision. So far, we do not ek{iei possible tem-
poral or spatial coherence. This could be done by using etlwefinding methods,
such as a Newton-type solver.

The performance of our algorithm is demonstrated by two gtam

Example 1: Common normals of two static QSS

First we consider only two QSS, which do not necessarily featid enclosures of
disjoint objects (this would require both of them to be cony&igure 3 presents
two examples with 4 and 6 common normals, respectively. Tmepuitation times
are reported in Table 1.

Table 1 Running times for distance computation between two QSS.

number of common normals 2 4 6
computation time on a 2 GHz R20— 22us{29— 31us| 38— 40us
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For our method, the computation time is currently domindigdhe Jenkins-
Traub algorithm for root finding. The time needed for settipgthe cubic equation
is negligible. This also explains the large variations @& tdomputing time, which
depends on the number of common normals. Typically, the coatipn time is
around 3@s. So far, the case of six common normals has only been obséved
nested QSS which are not relevant for distance computdtiecompare our results
to those obtained by [1], for computing the distance betweenquadric surfaces.
They use a Newton-type algorithm to find the common normadsreaed 5&5us,
composed of 4Qs preprocessing and 1&bus “main algorithm” on a 1.7 GHz PC,
which corresponds to approximately.8Tus on our hardware. Quadric surfaces
have the same number of geometric degrees of freedom (i&s 9SS, but the
shortest distance computation is much slower, even whempaed with our non-
optimized method.

Example 2: Common normals and shortest distances between aaving
enclosure and an obstacle.

We consider a moving object covered by two convex and onecoomex QSS that
is subject to a rigid body motion. For each position, we cotaaulower bound of
the distance between the moving object and a static obstalleh is bounded by
a collection of three convex QSS (Fig. 4).

Fig. 4 Shortest distance
(green line  segments)
between a moving object
(red) and an obstacle
(blue), both enclosed by a
collection of QSS.




Margot Rabl and Bert Juttler

For each time step of the motion, we have to compute 9 timealimon nor-

mals of a pair of QSS. We applied the algorithm ta Q@ time steps, where the
computation took Z5son a 2 GHz PC. This corresponds to an average computa-
tion time of about 3(bus per QSS-pair and time step. The time needed for trans-
forming the QSS bounding the moving object (twa 3 matrix multiplications and
one vector addition) is negligible.

Clearly, the application of our method requires a (prefgrabtomatic) method for
creating valid enclosures of 3D objects by QSS, similar ®rtiethod in [12] for
ellipsoids. This may be a topic for future research.
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