
Circular Spline Fitting Using an
Evolution Process

Xinghua Song a,b , Martin Aigner b , Falai Chen a

and Bert Jüttler b

aDepartment of Mathematics, University of Science and Technology of China,

Hefei, Anhui, P.R.China

bJohannes Kepler University Linz, Institute of Applied Geometry, Austria

Abstract

We propose a new method to approximate a given set of ordered data points by
a spatial circular spline curve. At first an initial circular spline curve is generated
by biarc interpolation. Then an evolution process based on a least-squares approx-
imation is applied to the curve. During the evolution process, the circular spline
curve converges dynamically to a stable shape. Our method does not need any tan-
gent information. During the evolution process, the number of arcs is automatically
adapted to the data such that the final curve contains as few arc arcs as possible.
We prove that the evolution process is equivalent to a Gauss-Newton type method.

Keywords: Circular spline, biarc, organized points, spatial curve fitting

1 Introduction

A circular spline curve consists of circular arcs and line segments which are
pieced together with G1 continuity. This simple but powerful class of curves
offers a number of remarkable advantages.

• The arc-length function of a segment of a circular spline curve can be evalu-
ated in closed form. Moreover, also the inverse operation is explicitly avail-
able: one can easily find the point on the curve which possesses a given

Email addresses: xhsong@mail.ustc.edu.cn (Xinghua Song),
martin.aigner@jku.at (Martin Aigner), chenfl@ustc.edu.cn (Falai Chen),
bert.juettler@jku.at (Bert Jüttler).

arc-length distance to a given point, without any need for numerical approx-
imation. Consequently, circular splines are especially useful for numerically
controlled (NC) machining.

The first observation is also valid for the interesting class of Pythagorean
hodograph curves, where the arc-length function is simply a polynomial,
see [5]. The second observation, however, is not true for PH curves, since it
requires the solution of a polynomial root finding problem.

• The offsets of arc-splines (i.e., constant radius pipe surfaces generated by
them, see e.g. [3]) have simple closed-form parameterizations, since they
consist of segments of tori and cylinders.

• The use of arc splines provides a simple and non-iterative method for closest
point computation. More precisely, for a set of given points in space, the
associated closest points on the curve can be computed by solving quadratic
equations. For polynomial or rational spline curves, the same problem leads
to non-linear optimization problems, which require iterative solution tech-
niques.

• As observed by Wang and Joe [16], arc spline curves are very useful for
sweep surface modeling, since they provide high-quality approximations of
rotation-minimizing frames.

• Circular arcs are useful as geometric primitives for algorithms from compu-
tational geometry. They combine simplicity of elementary operations with
a relatively high geometry approximation power, see [1].

Various computational methods for constructing circular spline curves in the
plane and in three–dimensional space from given data (e.g., sequences of
points, or a given smooth curve in another representation) have been described
in the literature. Two classical references are a VTO report by Sabin [15] and
a textbook by Nutbourne and Martin [13]. In particular, curves composed of
biarcs (i.e., G1 smooth curve segments consisting of two circular arcs) were
used in a large number of algorithms for approximation or interpolation of
given point (and possibly tangent) data.

The problem of approximating scattered points in the plane by circular splines
has been discussed by Hoschek [6]. He presents an approximation algorithm
which is based on a non-linear least-squares method.

Meek and Walton discussed arc splines in a number of publications. In [9], they
propose a method that does not make use of a the least-squares approach.
Instead, the discrete data are partitioned and then approximated by biarcs
using standard algorithms. In a later paper [10], they partition a smooth planar
curve and match the curve segments by biarcs. Since the curve and the biarcs
are bounded by some bounding circular arcs within a given tolerance, the
biarcs form an arc spline that approximates the smooth planar curve within the
given tolerance. In another paper [11], they describe a method for generating
planar osculating arc splines, which interpolate, match unit tangents, and

2

match curvatures at the interpolation points. In [12] they use arc splines to
approximate the clothoid.

Yang and Du [18] use techniques from optimization theory to approximate
planar digitized curves by arc splines. An arc spline is constructed such that
it exhibits G0 or G1 continuity at each joint point and that its maximum
approximation error is not bigger than a given tolerance.

Piegl and Tiller [14] describe an algorithm for data approximation with biarcs
in the plane. They use a specific formulation of biarcs which is appropriate for
parametric curves in Bézier or NURBS formulation and apply a base curve to
obtain tangents and anchor points for the individual biarcs.

Recently, circular splines have been used for reconstructing pipe surfaces from
unorganized measurement data by Bauer and Polthier [3]. A moving least-
squares based technique is used to reconstruct the spine curve of a pipe sur-
face from surface samples and approximate the spine curve by G1 continuous
circular arcs and line segments.

In the present paper, we present a novel method for approximating spatial
point data by an arc spline curve. We interpret the intermediate solutions
generate by a non-linear optimization method as instances of a continuous
evolution process.

This approach to circular spline fitting is motivated by related results from the
field of Computer Vision [4, 7]. Wang et al. [17] extended them by using cur-
vature information and used them for curve and surface fitting with B-splines.
In particular, they analyzed the relation to Gauss-Newton-type techniques.
These papers describe certain geometrically motivated non-linear optimiza-
tion techniques which generate a sequence of approximate solutions. Recently,
Liu et al. [8] studied various extensions of the Gauss-Newton-type techniques
described in [17] to the case of space curves.

In the case of planar curves, the corresponding continuous evolution process
which corresponds to the non-linear optimization has been studied in [2], and
it was also extended to a larger class of curves which can be described an
arbitrary set of shape parameters. This has been made explicit for the class
of Pythagorean-hodograph spline curves.

In the present paper makes the following contributions. First we derive an
independent set of shape parameters, which uniquely describe a circular spline
curve. Second, we formulate an evolution process (governed by a differential
equation) for circular spline curves in three-dimensional space which drives
an initial curve towards a limit shape, which approximates a given sequence
of points. This extends the framework of [2] to the case of space curves. We
also show how the discretized version of the evolution process is related to the

3

h2

h2

k
a

b

c

m

φ
φ

Ue1
Ue2

Ue3

Fig. 1. Rational Bézier representation of a circular arc.

Gauss-Newton-type techniques described in [8]. Third, we demonstrate that
the use of circular spline curve for curve fitting has the unique advantage of
simple and explicit closest point computation. This makes them particularly
useful for orthogonal distance regression, where one minimizes the shortest
distances between the points and the approximating curve.

2 Shape parameters

We introduce a special representation of an arc spline curve. First we discuss
single arcs, and then we use biarcs in order to extend this to the case of spline
curves.

2.1 Single arcs

A circular arc in space has the rational Bézier representation

y(u) =
(1 − u)2a + 2u(1 − u)ωc + u2b

(1 − u)2 + 2u(1 − u)ω + u2
, u ∈ [0, 1], (1)

with the control points a,b, c, where c lies in the bisector plane of the line
segment ab. The weight ω satisfies ω = cos φ, where

φ =
1

2
(π − ∠(a, c,b)) (2)

is half the sweep angle of the circular arc, see Fig. 1. The representation (1)
has 10 free parameters. However, only 8 of these parameters can be chosen
independently, as follows.

The vector
(mx, my, mz, h, k, α, β, γ) (3)

4

is said to be the vector of shape parameters of the circular arc. The first three
parameters are the coordinates of the midpoint m = (mx, my, mz) of the line
segment ab. The control points a, b, c and the weight w are computed from

a = m + h2Ue1, b = m − h2Ue1, c = m + kUe2, ω =
h2

√
h4 + k2

(4)

with the special orthogonal matrix

U(α, β, γ) =

cos γ sin γ 0

− sin γ cos γ 0

0 0 1

1 0 0

0 cos β sin β

0− sin β cos β

cos α sin α 0

− sin α cos α 0

0 0 1

(5)

and the two unit vectors e1 = (1, 0, 0) and e2 = (0, 1, 0).

The vector a − m is restricted to be a positive multiple of Ue1, by using the
square of h in (4). We did not apply the same constraint to c−m, in order to
allow the curve to change the orientation of its normal and binormal vector
without having to perform a complete change of the angles controlling the
matrix U. Consequently, there are in general four vectors of shape parameters
which describe the same circular arc.

If k = 0, then Eq. (4) describes the control points of a line segment, which is
represented as a degree-elevated linear curve segment. One of the three angles
becomes redundant in this situation, as a line segment is invariant under a
rotation.

In Eq. (5), the special orthogonal matrix U is represented by zxz-Euler angles,
i.e. by the composition of three rotations around the z, the x and the z–axis.
If β = 0, then this representation has a singularity and other Euler angles
should be used instead.

2.2 Biarcs connecting two circular arcs

Any two arcs y(t) and ŷ(t) with control points and weights a,b, c, ω and
â, b̂, ĉ, ω̂, respectively, which we refer to as primary arcs, can be joined by one
biarc (i.e. two arcs with G1 continuity at the joint point) connecting x(1) = b

and x̂(0) = â, such that the overall curve is G1 smooth, see Fig. 2. Note that
the figure shows the planar case, while the method applies to spatial arcs as
well.

5

a

b

c

â

b̂

ĉ

A B C

Fig. 2. Joining two primary arcs (dashed) by one biarc (dotted)

More precisely, there exists a one-parameter family of such biarcs. Referring to
Fig. 2, the unknown points A,B,C are sought for. Since A,B,C are collinear,
we get

A = b + ℓT, C = â − ℓ̂ T̂, ||A −C||2 = (ℓ + ℓ̂)2 (6)

where

T =
b − c

||b− c|| , T̂ =
ĉ − â

||ĉ− â|| . (7)

The first three equations imply

V · V + 2ℓV · T + 2ℓ̂V · T̂ + 2ℓℓ̂ (T · T̂ − 1) = 0 (8)

where V = b − â. The only unknowns in this equation are ℓ and ℓ̂. Almost
any value of ℓ uniquely determines a biarc. We call ℓ the shape parameter of

the biarc.

Remark 1 Negative value of ℓ or ℓ̂ correspond to the case when the sweep
angle of the first or second arc is bigger than π. Semicircles are excluded,
since they require ℓ or ℓ̂ to take infinite values. In practice, if the number of
segments is sufficiently small, the sweep angles are smaller than π, hence ℓ
and ℓ̂ are both positive.

2.3 Circular splines

Given a sequence of K + 1 primary arcs (y3k)k=0,...,K , every two consecutive
arcs can be joined by one biarc. This leads to a circular spline curve which
consists of K + 1 primary arcs and K biarcs. We represent it as a rational
Bézier spline curve with the parameter domain [0, 3K + 1] which is piecewise
defined as

x(t, s) = yj(uj, s) for t ∈ [j, j + 1], j = 0, . . . , 3K, (9)

6

where uj = t − j and

yj(uj, s) =
(1 − uj)

2aj(s) + 2uj(1 − uj)ωj(s)cj(s) + u2
jbj(s)

(1 − uj)2 + 2uj(1 − uj)ωj(s) + u2
j

. (10)

The global shape parameter vector s = (s1, ..., sm), where m = 9K+1, consists
of the shape parameters of all arcs and all biarcs. Each primary arc contributes
its 8 parameters of the form (3), while each biarc contributes one additional
length ℓ. This vector of shape parameters uniquely determines the control
points and the weights of the Bézier arcs.

3 Evolution-based fitting

We consider the following problem: Given a sequence of points (pi)i=0,...,n, find
a circular spline curve which approximates these points. In order to solve this
problem, we generalize the method introduced in [2] to the case of space curves.
The approximate solutions generated by an iterative solution algorithm for the
non-linear fitting problem are seen as instances of a continuous evolution of
an initial curve towards its final position.

3.1 Initial circular spline

We assume that the initial number K + 1 of primary arcs is specified by the
user. In order to construct the initial spline curve, we consider the subset

p̂j = p⌈i·n/(6K+2)⌉, j = 0, . . . , 6K + 2. (11)

The k–th primary arc y3k, where k = 0, . . . , K, is now found as the unique arc
connecting p̂6k and p̂6k+2 via p̂6k+1. Next, every pair of consecutive primary
arcs is joined by one biarc as described in the last section, simply by setting
ℓ = ℓ̂ in Eq. (8). We obtain a circular spline x(t, s0) which is described by an
initial vector s0 of shape parameters. The choice of the subset (11) of points
guarantees that each arc corresponds to roughly the same number of points.

Remark 2 In order to obtain a closed circular spline curve, the last primary
arc has to be identified with the first one. Consequently, a circular spline with
K primary arcs has 3K segments.

7

3.2 Defining the evolution

Starting with the initial circular spline, we set up an evolution process which
drives the curve towards the given data points, until they are approximated
sufficiently well. More precisely, we assume that the shape parameters s depend
on a time-like parameter τ , which gives us an evolving circular spline curve in
space. The final curve is then defined by the shape parameters

sfinal = lim
τ→∞

s(τ). (12)

If we consider a fixed point x(t∗, s(τ)) with parameter t∗ on the curve, then it
travels with the velocity

~v(t∗, s(τ)) = ẋ(t∗, s(τ)) =
m

∑

j=1

∂x(t∗, s(τ))

∂sj
ṡj(τ) = [∇sx(t∗, s(τ))] ṡ(τ), (13)

where ∇s = (∂
∂s1

, . . . , ∂
∂sm

) and the dot ˙ denotes the derivative with respect to
the time variable τ . In order to keep the notation simple, we shall omit the
time parameter τ from now on.

For each data point pi, we consider the associated closest point x(ti, s) on the
curve (or one of them, in case that several such points exist). The evolution
of the curve will guided by the following principle: The normal component

of the velocity of a curve point x(ti, s) shall be equal to the residual vector

pi − x(ti, s).

In order to express this condition, we choose for each closest point x(ti, s)
two arbitrary unit vectors ~ni and ~mi, which are mutually orthogonal and
perpendicular to the tangent vector x′(ti, s), where the prime ′ indicates dif-
ferentiation with respect to the curve parameter t. These two vectors form an
orthonormal basis of the normal plane of the curve at x(ti, s). The condition
is then equivalent to the two equations

~v(ti, s) · ~ni = (pi − x(ti, s)) · ~ni

~v(ti, s) · ~mi = (pi − x(ti, s)) · ~mi, (14)

see Fig. 3.

In the case of an open curve, some data points pi may have one of the two
curve end points as their associated closest points, i.e., ti = 0 or ti = 3K + 1.
If this is the case, then we consider the entire velocity vector and not only
its normal component, by replacing the two equations (14) with the three
equations

~v(ti, s) = pi − x(ti, s). (15)

8

pi

~vi

x(ti, s)

~mi ~ni

normal plane at x(ti, s)

Fig. 3. Each data point pi attracts the associated closest point x(ti, s). This is
expressed with the help of two auxiliary vectors ~mi and ~ni

In order to keep the presentation simple, we exclude this case from now on.

In general, the number of data points exceeds the degrees of freedom of the
curve which is to be fitted to these data. Hence, Eq. (14) cannot be fulfilled
exactly for all data points. We use a least-squares approach to compute ṡ by
minimizing

E =
n

∑

i=1

(

[(~v(ti, s) − pi + x(ti, s)) · ~ni]
2 + [(~v(ti, s) − pi + x(ti, s)) · ~mi]

2
)

+λ||ṡ||2

(16)
where λ << 1 is a non-negative weight and ||ṡ||2 is a regularization term which
ensures the existence of a unique minimizer of (16).

The value of E does not depend on the choice of the vectors ~mi and ~ni.
These two vectors form an orthogonal basis of the normal planes. Hence, the
contribution of the velocity vector of each closest point is equal to the squared
length of the projection into the normal plane.

Since the velocities ~v(ti, s) depend linearly on the time derivatives ṡ of the
shape parameters, see Eq. (13), this is a quadratic optimization problem which
can be solved easily. A short computation shows that the solution is found by
solving the linear system

H(s)ṡ + r(s) = 0 (17)

with

H(s) = 2
n

∑

i=1

∇sR
⊤
i (~mi ~m

⊤
i + ~ni~n

⊤
i)∇sRi + 2λI (18)

and

r(s) = 2
n

∑

i=1

R⊤
i ∇sRi. (19)

where we use the abbreviation

xi = x(ti, s) (20)

9

The residual vector

Ri = pi − xi = pi − x(ti, s) (21)

lies in the normal plane of the curve at xi. Its gradient with respect to the
shape parameters satisfies ∇sRi = −∇sxi.

Note that the derivative ∇sxi of the closest point xi with respect to the
shape parameters does not take the dependency of ti on these parameters
into account; it is solely the derivative of x(ti, s) with respect to its second
argument.

The system (17) is equivalent to the differential equation ṡ = −(H(s) +
2λI)−1r(s) for the unknowns s(τ). The shape parameters are updated via

s(τ + ∆τ) = s(τ) + ṡ(τ)∆τ (22)

by using an explicit Euler step, where ṡ is found by solving the linear system
(17). We choose the step size ∆τ as

∆τ = min{1, {D/||~v(ti, s)||}i=1,..,n } (23)

where D is a user defined value. This shall ensure that the traveling distance
of each point xi of the curve, which is approximately equal to

||~v(ti, s) ∆τ || (24)

is constrained to be approximately less or equal than the constant D. This
constant can be chosen, e.g., as 5% of the diameter of the bounding box.

3.3 Closest point computation

In each step of the evolution, we have to find the closest point fi = x(ti, s)
on the curve which is associated with every given point pi. More precisely, we
have to find

ti = arg min
t∈[0,3K+2]

||pi − x(t, s)|| (25)

The shortest distance from a data point to the curve is the minimum of the
shortest distances to all arcs. First, consider a fixed circular arc yj , and let mj

be its center. The parameter ti realizing the shortest distance can be computed
as follows.

(1) We project pi orthogonally into the plane which contains the arc yj(t).
The projected point is denoted with qi.

(2) If qi lies inside the sweep angle of yj(t), then the candidate values ti of
the global curve parameter t = j+uj are found by adding j to the root(s)

10

of the quadratic equation

(qi − mj) · y′
j(uj, s) = 0, uj ∈ [0, 1], (26)

where the prime ′ denotes the derivative with respect to the local curve
parameter uj. Otherwise, the shortest distance is not realized by this
circular arc (but see the next remark).

In the case of an open spline curve, the closest point of pi can also be one
of the two boundary points. Hence, the two end points have to be checked
separately.

Remark 3 In order to keep the algorithm as simple as possible, we com-
pute the closest point by first finding the closest points in all circular arcs,
and then selecting the point with the minimum distance among them. One
may improve the efficiency of the algorithm by using a suitable hierarchy of
bounding volumes. Of course, this hierarchy has to be updated in each time
step.

3.4 Adaptive refinement

The evolution drives the circular spline x(t, s) towards a stationary point of
the evolution process (see next section for a theoretical analysis). However, if
the number of arcs is too small, then the curve does not approximate the data
points sufficiently well. In order to improve the quality of the fit, we apply a
refinement operation to this curve, as follows:

1) Compute the error which is associated with every arc yj(t, s) of the circular
spline x(t, s),

εj =
∑

i∈Ij

||pi − fi||

where Ij = {i | ti ∈ [j, j + 1] :}. Let ε > 0 be the error threshold of error
and hj = |Ij | be the number of elements in the set Ij.

2) If the average error
εj

hj
6 ε for every circular arc yj(t, s), or the number

of iterations is larger than a given constant δ, then terminate the process;
Otherwise, choose the three arcs with the largest error εj and subdivide
each arc into two parts at the midpoint.

3) Since the number of arcs of the circular spline has increased by three, we
re-arrange the circular arcs and choose the arcs with indices 3k as primary
circular arcs. The remaining arcs form the biarcs which connect the primary
circular arcs.

4) Apply the evolution process as described in the last section until the circular
arcs converge to a stable curve (if the average error decreased less than a
given threshold after one step iteration) and return to Step 1).

11

4 Relation to Gauss-Newton-type techniques

In the following we analyze the relation of the circular spline evolution to a
Gauss-Newton-type method for orthogonal distance regression.

Proposition 4 The Euler update for the shape parameters s for the curve

evolution defined via (22) with λ = 0 is equivalent to one step of a Gauss-

Newton method for the objective function

n
∑

i=1

||pi − x(ti, s)||2 → min, (27)

where the ti are parameter values associated with the closest points, in the

sense that the Hessian is simplified by omitting all second order derivatives.

Proof. We follow the discussion in [8] and compute the Gauss-Newton system
directly from

F =
n

∑

i=1

‖Ri‖2. (28)

The gradient is found to be

∇sF = 2
n

∑

i=1

R⊤
i ∇sRi + ∇stiR

⊤
i R′

i] = 2
n

∑

i=1

R⊤
i ∇sRi (29)

where we used that R⊤
i R′

i = 0, which is due to the fact that the parameter
values ti correspond to the closest points associated with the given points.
Next we obtain the Hessian via

∇s(∇sF
⊤) = 2

n
∑

i=1

(∇sR
⊤
i +∇st

⊤R′
i)∇sRi +(∇s(∇sR

⊤
i)) ◦Ri +∇st

⊤Ri∇sR
′
i,

(30)
where

[

∇s(∇sR
⊤
i) ◦ Ri

]

l,k
=

2
∑

i=1

[

∂

∂sl

∂

∂sk

[Ri]i

]

[Ri]i. (31)

By omitting the second order derivatives (∇s(∇sRi) and ∇sR
′
i we arrive at

the simplified Hessian

H∗
F = 2

n
∑

i=1

∇sR
⊤
i ∇sRi + ∇st

⊤
i R′

i∇sRi (32)

An expression for ∇sti is obtained by differentiating the identity R⊤
i R′

i = 0,

R′⊤
i ∇sRi + ∇stiR

′⊤
i R′

i + ∇stR
′′⊤
i Ri + R⊤

i ∇sR
′
i = 0, (33)

which gives

∇sti = −R⊤
i ∇sR

′
i + R′⊤

i ∇sRi

R′′⊤
i Ri + R′⊤

i R′
i

. (34)

12

Omitting again second order derivatives and substituting the result into H∗
F

gives

H∗
F = 2

n
∑

i=1

[∇sR
⊤
i ∇sRi −

∇sR
⊤
i R′

iR
′⊤
i ∇sRi

R′⊤
i R′

i

]. (35)

Finally, we use the identity

~ni~n
⊤
i + ~mi ~m

⊤
i +~ti

~t⊤i = E, (36)

where ~ti denotes the unit tangent vector at xi and E is the 3 × 3 identity

matrix. Together with
R′

i

‖R′

i
‖

= ±~ti we get

H∗
F =2

n
∑

i=1

[∇sR
⊤
i ∇sRi −∇sR

⊤
i (E− ~ni~n

⊤
i − ~mi ~m

⊤
i)∇sRi] (37)

=2
n

∑

i=1

∇sR
⊤
i (~ni~n

⊤
i + ~mi ~m

⊤
i)∇sRi. (38)

Finally we observe that the system

H∗
F (s)∆s + ∇sF = 0 (39)

which is solved for computing the update vector ∆s, is equivalent to (17) with
λ = 0 and ∆s = ṡ. �

This result has several important consequences.

• The minimization of (16) provides a direction of descent for the objective
function (28). Hence, with a suitable stepsize control, the circular spline
curve is driven towards a local minimum of this non-linear objective func-
tion.

• In the case of a zero-residual problem, where Ri = 0 in the limit, the
approximate Hessian H∗

F converges to the exact one, since all omitted terms
contain Ri as a factor. Consequently, one obtains quadratic convergence in
this case.

• For small residuals, the approximate Hessian is still a fairly accurate ap-
proximation of the exact one, which leads to good convergence properties.

5 Examples

The first 5 figures in this section (Fig. 4-8) present five examples which demon-
strate the performance of our algorithm. All computations were done on a
PIV-1.73GHz PC with 1.0GB RAM. In the figures, the white points are the
input data points. The blue and red curve segments are the biarcs and the pri-
mary circular arcs, respectively. The error threshold ε and maximum iteration
number δ are specified by 0.001 and 100, respectively.

13

data points initial curve intermediate result final curve
(100 points) (4 arcs) after 15 iterations (13 arcs)

Fig. 4. Example 1 (“spline”): 100 data points were sampled from a cubic spline
curve. The approximating circular spline was computed in 0.968 seconds.

data points initial curve intermediate result final curve
(174 points) (7 arcs) after 15 iterations (28 arcs)

Fig. 5. Example 2 (“glasses”): 174 points were sampled from a space curve which
consists of several line segments and quadratic curve segments. The approximating
circular spline was computed in 1.875 seconds.

data points initial curve intermediate result final curve
(100 points) (10 arcs) after 15 iterations (25 arcs)

Fig. 6. Example 3 (“helix”): 100 points were sampled from a helix. The approxi-
mating circular spline was computed in 1.375 seconds.

The error reduction during the evolution is shown in Fig. 10, where the error
is scaled with the diameter of the bounding box.

Finally, we discuss how the computational cost of the algorithm increases with
the number of data points and with the number of arcs.

First, we sample the data points from the helix curve which is used in Ex-
ample 6, and increase the number of data points from 100 to 10, 000 with

14

data points initial curve intermediate result final curve
(150 points) (9 arcs) after 15 iterations (36 arcs)

Fig. 7. Example 4 (“knot”): 150 points were sampled from a closed space curve.
The approximating circular arc spline curve was computed in 1.657 seconds.

data points initial curve intermediate result final curve
(90 points) (7 arcs) after 15 iterations (28 arcs)

Fig. 8. Example 5 (“corner”): 90 data points were sampled from a curve with two
sharp corners. The approximating circular spline was computed in 0.798 seconds.

data points initial curve intermediate result final curve
(250 points) (13 arcs) after 15 iterations (28 arcs)

Fig. 9. Example 6 (“noisy helix”): 100 points were sampled from a helix and artificial
noise was added. The approximating circular spline was computed in 4.078 seconds.

roughly the same number of arcs. Given the same control threshold of error,
the computation time depends approximately linearly on the number of data,
see Table 1. This is due to the fact that the computational effort is dominated
by the closest point computation, whose effort grows linearly with the number
of points, provided that the number of arcs remains constant.

Second, we study the effect of an increasing number of arcs, by sampling
data from a helix with an increasing number of turns, sampled with constant
density. The number of arcs grows linearly with the number of data points.
The approximation process becomes slower for a larger number of points, since

15

-1.5

20

-2

-2.5

0
-3

corner

helixN

spline

helix

100

knot

80

glasses

6040

-1

log10(error)

iteration

Fig. 10. Reduction of the average error per point during the evolution for the 5
examples in Fig. 4-8. The small boxes indicate the refinement events.

Table 1
Computation times in the helix example for increasing number of points but con-
stant number of arcs

points 100 1,000 10,000

time (sec) 1.4 17.7 142.0

Table 2
Computation times in the helix example for increasing number of points and in-
creasing number of arcs.

points 100 200 300 400 500 600 700 800 900 1000

arcs 25 49 76 100 124 151 175 199 226 250

time (sec) 1.4 3.3 6.7 15.1 20.7 28.4 39.1 50.3 58.9 74.6

the closest point computation needs more time, see Table 2. The computation
time grows superlinear with the number of points.

This is again due to the fact that the computational effort is dominated by the
closest point computation. In the current implementation, in order to compute
the closest point associated with a given one, we test all arcs whether or not
they contain the closest point. This should be accelerated by using a suitable
hierarchy of bounding volumes, which helps to identify a smaller number of
candidate arcs for each point. This, however, has not yet been implemented,
and the computation is also relatively fast without it.

16

6 Conclusion

We proposed an evolution method for approximating a given set of organized
space points by a circular spline curve. During the evolution process, the
circular spline curve converges dynamically to a stable limit shape. We proved
the evolution process is in fact a Gauss-Newton type method. The technique
of constructing a closed circular spline curve has also been discussed.

References

[1] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jüttler, M. Oberneder, and Z. Š́ır.
Computational and structural advantages of circular boundary representation.
In F. Dehne, J.-R. Sack, and N. Zeh, editors, WADS, volume 4619 of Lecture

Notes in Computer Science, pages 374–385. Springer, 2007.

[2] M. Aigner, Z. Š́ır, and B. Jüttler. Evolution-based least-squares fitting
using Pythagorean hodograph spline curves. Comput. Aided Geom. Design,
24(6):310–322, 2007.

[3] U. Bauer and K. Polthier. Parametric reconstruction of bent tube surfaces. In
CyberWorld 2007 Conference Proceedings, Workshop New Advances in Shape

Analysis and Geometric Modeling, IEEE 2007, 2007. to appear.

[4] A. Blake and M. Isard. Active Contours. Springer, New York, 1998.

[5] R. T. Farouki. Pythagorean-hodograph curves: algebra and geometry inseparable,
volume 1 of Geometry and Computing. Springer, Berlin, 2008.

[6] J. Hoschek. Circular splines. Comput.-Aided Des., 24:611–618, 1992.

[7] M. Kass, A. Witkin, and Terzopoulos. D. Snakes: active contour models. Int.

J. Comput. Vis., 24:321–331, 1987.

[8] Y. Liu and W. Wang. A revisit to least squares orthogonal distance fitting of
parametric curves and surfaces. In F. Chen and B. Jüttler, editors, Advanves in

Geometric Modelling and Processing, volume 4975 of Lecture Notes in Computer

Science, pages 384–397. Springer, 2008.

[9] D. S. Meek and D. J. Walton. Approximation of discrete data by G1 arc splines.
Comput.-Aided Des., 24:301–306, 1992.

[10] D. S. Meek and D. J. Walton. Approximating smooth planar curves by arc
splines. J. Comput. Appl. Math., 59(2):221–231, 1995.

[11] D. S. Meek and D. J. Walton. Planar osculating arc splines. Comput. Aided

Geom. Design, 13(7):653–671, 1996.

[12] D. S. Meek and D. J. Walton. An arc spline approximation to a clothoid. J.

Comput. Appl. Math., 170(1):59–77, 2004.

17

[13] A. W. Nutbourne and R. R. Martin. Differential geometry applied to curve and

surface design, Vol. 1. Ellis Horwood, Chichester, 1988.

[14] L. A. Piegl and W. Tiller. Data approximation using biarcs. Eng. Comput.,
18:59–65, 2002.

[15] M. A. Sabin. The use of circular arcs to form curves interpolated through
empirical data points. Technical Report VTO/MS/164, British Aircraft
Corporation, 1976.

[16] W. Wang and B. Joe. Robust computation of the rotation minimizing frame
for sweep surface modeling. Comput.-Aided Des., 29(5):379–391, 1997.

[17] W. Wang, H. Pottmann, and Y. Liu. Fitting B-spline curves to point clouds
by curvature-based squared distance minimization. ACM Trans. Graph.,
25(2):214–238, 2006.

[18] S. N. Yang and W. C. Du. Numerical methods for approximating digitized
curves by piecewise circular arcs. J. Comput. Appl. Math., 66(1-2):557–569,
1996.

18

