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Abstract. We present an algorithm generating a collection of fat arcs
which bound the zero set of a given bivariate polynomial in Bernstein–
Bézier representation. We demonstrate the performance of the algorithm
(in particular the convergence rate) and we apply the results to the
computation of intersection curves between implicitly defined algebraic
surfaces and rational parametric surfaces.

1 Introduction

Bounding geometric primitives which enclose segments of planar curves are fre-
quently needed for various geometric computations, e.g., for solving the intersec-
tion problem between two planar curves. Axis-aligned bounding boxes (min-max
boxes), which can easily be generated both for planar parametric curves and for
implicitly defined curves, are one of the simplest instances. Other useful primi-
tives include fat lines (bounding strips, see e.g. [1]), the convex hull of the control
polygon, or fat arcs [2].

The performance of a bounding primitive depends on the approximation
order. For a bounding primitive with approximation order k, the number of
primitives needed to bound a curve with a given tolerance ε grows like k

√

1/ε.
Consequently, the use of geometric primitives with higher approximation order
may provide computational advantages. Bounding boxes have only approxima-
tion order k = 1, while both the convex hull of control polygons and fat lines
provide approximation order 2, and fat arcs even have approximation order 3.

Clearly, it is possible to define bounding primitives with an even higher ap-
proximation order. Fat arcs seems to be particularly useful since they provide
a reasonable trade-off between geometry flexibility and the computational sim-
plicity of elementary geometric operations. For instance, the computation of the
intersection of two circular arcs requires solely the solution of quadratic equa-
tions, while this becomes far more complicated for higher order objects.

Various methods for generating an arc spline curve which approximate a
given parametric curve with a prescribed tolerance have been described in the
literature, see e.g. [3] for many related references. The use of arc splines for
geometric design applications can be traced back to a classical VTO report of
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Sabin [4]. Marciniak and Putz dealt with the minimization of the number of
arcs to approximate a curve under a give tolerance [5]. Later Qiu et al. improved
their method [6]. In a number of papers, Meek and Walton applied arc splines
to approximate parametric curves [7–9]

Yong used arc splines for quadratic Bézier curve approximation [10]. Fe-
ichtinger et al. compared various biarc interpolation schemes [11]. Held and
Eibl approximated with biarcs simple planar polygons either for symmetric and
asymmetric tolerance bounds [12].

Fat arcs as bounding geometric primitives were introduced by Sederberg [2].
Algorithms which generate bounding fat arcs for parametric curves are described,
e.g., in [13]. Of course, any arc spline approximation technique can also be used to
generate bounding fat arcs, simply by offsetting the obtained curve. The existing
techniques for fat arc generation deal exclusively with the case of parametric
curves.

In this paper we present an algorithm which generates a collection of fat
arcs bounding an implicitly defined curve with a prescribed tolerance. First
we describe how to find a fat arc for a single curve segment in a box. Then
we combine this technique with adaptive subdivision in order to find a global
approximation. As an application, we apply the fat arcs to approximate the
intersection curve between implicitly defined and parametric surfaces.

2 Preliminaries

We recall the construction of fat arcs for parametric curves. In addition, we
present a result concerning distance bounds and a criterion which guarantees
single arcs.

2.1 Approximation by arcs and fat arcs

In the case of planar parametric curves, the construction of fat arcs has been
discussed in [13, 2]. The methods described there generate an approximating
arc which possesses a finite thickness. First, a median arc through three points
of the original parametric curve segment is defined, see Fig. 1. For instance,
these three points can be chosen as the two endpoints of the curve segment and
the intersection point of the curve and the bisector of the endpoints. As the
second step, the method computes (an upper bound of) the distance between
the original curve segment and the median arc. Finally, an offset of the median
with this distance is defined. The boundaries of the offset are concentric arcs,
whose radii are the sum and the difference of the median arc radius and the
distance of the curves. They define a bounding domain for the original curve
segment. This bounding region is called a fat arc. Since the approximation order
of circular arcs is equal to three, the offset distance behaves as O(h3), where h
is the length of the given curve segment (or of its parameter interval).
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Fig. 1. Fat arc generation

2.2 Distance estimate

In order to construct fat arcs for an implicitly defined curve, we shall use the
properties of the defining function. We assume that the bivariate polynomial
is given by its tensor-product Bernstein-Bézier (BB) representation of degree
(m, n):

f(x) =

m
∑

i=0

n
∑

j=0

dijβ
m
i (x1)β

n
j (x2), (1)

with respect to the domain Ω = [0, 1]2 and with certain coefficients dij ∈ R,
where

βn
i (t) =

(

n

i

)

ti(1 − t)n−i, t ∈ [0, 1]. (2)

More generally, (x1, x2) will also be used as local coordinates

x1 =
ξ1 − a1

h
, x2 =

ξ2 − a2

h
, (3)

with respect to the general axis-aligned box B = [a1, a1 +h]× [a2, a2 +h] of size
h × h in the (ξ1, ξ2)-plane.

The implicitly defined curve is given as the zero set of the bivariate polyno-
mial,

F = {x : f(x) = 0 ∧ x ∈ [0, 1]2}. (4)

Clearly, the curve may be empty, or it may consist of more than one curve
segment.

In order to construct a fat arc, we need to bound the distance between the
median arc and the curve using a result from [14], see also [15]. On the one hand,
we consider the medial arc as a parametric curve g : t 7→ g(t) with parameter
domain t ∈ [a, b], which traces the point set

G = {g(t) : t ∈ [0, 1]} (5)



where we assume that G ⊂ [0, 1]2. On the other hand, in order to avoid certain
technical difficulties, we consider the set

F∗ = F ∪ ∂Ω (6)

which is obtained by adding the boundary of the domain to the curve F . The
one-sided Hausdorff distance of F∗ and G is defined as

HD(G,F∗) = sup
t∈[0,1]

inf
x∈F∗

‖x− g(t)‖. (7)

We recall the following result from [14]:

Lemma 1. If there exist positive constants c, η such that

∀x ∈ Ω : c ≤ ‖(∇f)(x)‖ and ∀t ∈ [0, 1] : |(f ◦ g)(t)| ≤ η (8)

hold, then the one-sided Hausdorff distance is bounded by

HD(G,F∗) ≤ η

c
. (9)

Consequently, the parametric curve is contained in ε–neighborhood of F∗, where
ε = η/c. However, it should be noted that this distance bound does not guaran-
tee that the implicitly defined curve is then also contained in an ε–neighborhood
of the parametric curve. The algorithm presented below uses an additional test
to guarantee this property. Nevertheless, in all computed examples the above
distance bound provided a safe and conservative estimate for the two-sided Haus-
dorff distance of the implicitly defined and the parametric curve.

2.3 Evaluation of the constants

In order to find the constants c and η in Lemma 1, we represent the median arc
as a quadratic rational Bézier curve,

c(t) =

2
∑

i=0

ci

w̃iβ
2
i (t)

∑2
j=0 w̃jβ2

j (t)
, t ∈ [0, 1]. (10)

The composition f ◦ c is a rational function of degree 2(m + n) which can be
represented by its BB representation with certain coefficients di and weights wi.
The weights are found by evaluating the (m + n)th power of the denominator
in (10). If all weights and coefficients are positive, then

|(f ◦ c)(t)| =
2m+2n
∑

i=0

diwiβ
2n+2m
i (t)

∑2m+2n

j=0 wjβ
2m+2n
j (t)

≤
max

i
diwi

min
i

wi

= η. (11)

In order to find the second constant c, we generate the tensor–product BB rep-
resentation

(

∂f(x1, x2)

∂x1

)2

+
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)2
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which can be found using differentiation, product, and degree elevation formulas,
see [16]. If all coefficients hij are positive, then

‖∇f(x)‖ ≥
√

min
i,j

hij = c. (13)

2.4 Identifying boxes with single segments

In order to generate a fat arc approximation in a box, we need to ensure that the
box contains only one segment of the implicitly defined curve segment. Various
criteria for isolating a regular segment of an algebraic curve have been discussed
in the literature. For instance, different types of discriminating curve families
have been used in [17]. These discriminating families are particularly useful in
combination with algorithms that trace the algebraic curve segments.

In our case, we are interested in a criterion which guarantees that the box Ω
contains a single curve segment with exactly two intersections with the bound-
aries.

Lemma 2. Consider an algebraic curve segment defined by the polynomial (1).
We say that the coefficients exhibit a corner event, if

– the coefficient at one of the corners is equal to zero and

– the first non-zero coefficients along the two neighboring boundaries have a

different sign.

We say that the the coefficients exhibit an edge event, if

– the control polygon along one the box boundaries has exactly one sign change

from plus to minus or vice versa.

If the number of the corner and edge events is equal to two and if the positive

constant c of Lemma 1 exists, then the box contains a single curve segment,

which is regular, connected, and which intersects the box boundary in exactly two

points.

For the proof it suffices to observe that each event guarantees that the im-
plicitly defined curve crosses the box boundary in exactly one point. Moreover,
the curve does not contain any closed loops, since the gradient vector does not
vanish in Ω.

The conditions of Lemma 2 are sufficient, but not necessary. For example, the
lemma excludes the case of a single arc of the implicitly defined curve crossing
the same edge twice.

3 Approximation of a single curve segment

This section focuses on the approximation of a single segment of the algebraic
curve. We describe the algorithm and demonstrate its performance.



Algorithm 1 FatArcSegment(f, B, ε)

Require: The conditions of Lemma 2 are satisfied.
1: b = {b1,b2} ← approximate boundary points of the implicitly defined curve
2: c = {c} ← approximate inner point of the implicitly defined curve
3: if #b = 2 and #c = 1 then

4: M← circle through b1, c,b2 {median circle}
5: d← upper bound of HD(M∩ B,F∗) {see Lemma 1}
6: if d 6 ε and d 6 radius of M then

7: Cd ← offset ring of M with distance d {fat circle}
8: C+, C− ← inner and outer circle of ∂Cd

9: if there is no sign change of f along C+ ∩B or C− ∩B then

10: return B ∩ Cd {fat arc has been found}
11: end if

12: end if

13: end if

14: return ∅ {no fat arc has been found}

3.1 Outline

The algorithm FatArcSegment (see Alg. 1) is based on the corresponding tech-
niques in the parametric case, but it uses the bounds which are obtained with
the help of Lemma 1. It assumes that the conditions of Lemma 2 are satisfied.

The algorithm is successful, if it finds three points b1,b2, c of the median
arc, the fat arc thickness is smaller then the prescribed tolerance ε and if there
is no sign change of f along the boundaries of the fat arc. It the returns the fat
arc which bounds the curve segment.

It may happen, that there are no fat arc boundaries, or only one of the
bounding arcs can be generated (e.g. when the distance bound of the median arc
and the implicitly defined curve is greater then the radius of the meridian circle,
or one of the bounding arcs does not intersect the box). The local algorithm fails
if no fat arcs are generated. The algorithm then returns the empty set.

Figure 2 presents three examples of fat arcs which have been generated with
the help of the algorithm. The individual steps of the algorithm are described in
the next section.

3.2 Details

We describe the generation of approximate points of the curve (lines 1 and 2 of
the algorithm), the segmentation of the fat arc boundaries and the sign change
analysis along the segmented boundaries (line 9).

Approximate intersection points In order to construct the median arc
(line 5), we approximate three points of the implicitly defined curve. Two of
them are the intersections with the boundaries of the box, while the third point
is the intersection with the bisector of the first two points.



Fig. 2. Examples for fat arc generation with the help of algorithm FatArcSegment.The
red curves are the implicitly defined curves. The median circles are shown in green.

In the case of a corner event, the corner is a boundary point of the curve.
In the case of an edge event, the corresponding edge contains an intersection of
the curve with the boundary of the box. It is then approximated as follows: We
consider the restriction of f to the edge and generate its best L2 approximation
by a quadratic polynomial q∗ which additionally interpolates the values of f
at the two neighboring corners. The root of q∗ then defines the approximate
intersection of F with the edge. If no simultaneous corner event occurs at the
neighbouring two corner points, then there is exactly one root, since the BB
coefficients of f possess exactly one sign change from plus to minus or vice
versa.

After generating the first two points, we restrict the function f to the inter-
section of the bisector with the box. Again we generate its best L2 approximation
by a quadratic polynomial q∗ which additionally interpolates the values of f at
the two end points. The root of q∗ then defines the approximate intersection of
F with the bisector.

Using similar arguments as in [18] it can be shown that the distance of the
approximate points to the curve behaves as O(h3), where h is the size of the box
in global coordinates, cf. Eq. (3).

Analysis of fat arc boundaries The fat arc in line 10 of the algorithm is
obtained by intersecting the circular ring Cd with the box. Its boundaries consists
of segments of circular arcs and of segments of box boundaries. See Fig. 3 for
several examples. We create the segments of the circular arcs and represent them
by rational quadratic Bézier curves. These segments will be referred to as the
boundaries of the fat arc.

Since the diameter d of the fat arc is only a bound on the one–sided Haus-
dorff distance HD(G,F∗), we need to verify that the fat arc indeed contains the
implicitly defined curve segment. This is done by analyzing the sign of f along
the fat arc boundaries.

For each segment of the fat arc boundary, we compose f with the quadratic
rational parametrization and obtain a rational function in Bernstein-Bézier form.
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Fig. 3. Fat arc segmentation with a box: the thick black curves are the segmented fat
arc boundaries

If all weights and all coefficients of the numerator have the same sign, respec-
tively, then no sign changes of f are present (see line 9 of the algorithm).

3.3 Approximation order

Since the approximation order of curves by segments of circular arcs is three
(see [2]), the same result is anticipated for the results produced by algorithm
FatArcSegment. We confirm this approximation order by numerical examples.
Consider the three bivariate polynomials

f1(x) = x4
1 + x3

1x
2
2 + 2x2

1x2 − 6x1x2 + x4
2 − 8x2

2 − 12x2

f2(x) = −x3
1 − x2

1x2 + x1x2 − x3
2 + x2

2 − 2x2

f3(x) = −4x3
1 − 5x2

1 + 2x2

(14)

with the domains (in global coordinates)

Bk = [−10−k, 10−k] × [−10−k, 10−k], k ∈ R. (15)

In the case of the first polynomial, Fig. 4 shows the result of the fat arc con-
structions for several values of k. The implicitly defined curve is the red one, the
median arc denoted with green and the fat arcs are represented with black.

Fig. 5 visualizes the relation between the width of the fat arc and the size
of the box for the three polynomials in (14). For sufficiently large values of k,
the slopes of the three curves in the doubly-logarithmic plot are all three, thus
confirming the expected approximation order.



Fig. 4. Left: The graph of f1. Right: Fat arcs for k = 0.5, 0.75, 1.0
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Fig. 5. Dependency between diameter and box size

4 Approximation of an implicitly defined curve

We describe an algorithm which generates a collection of fat arcs bounding a
given implicitly defined curve in a box. We present several examples and compare
the performance of fat arcs with bounding boxes.

4.1 The global algorithm

The algorithm GenerateFatArcs (see Alg. 2) combines FatArcSegment with re-
cursive subdivision. First it analyzes the signs of the Bernstein–Bézier coefficients
with respect to the current box. If no sign changes are present, then the current
box does not contain any components of the implicitly defined curve. Otherwise
it tries to apply the algorithm for a single segment. If this is not successful, then
the algorithm either subdivides the current box into four squares or returns the
entire box, if its diameter is already below the user-defined threshold ε.

Note that the algorithm may return boxes which do not contain any segments
of the implicitly defined curve (“false positive boxes”). However, it is guaranteed
that it returns a region which contains the implicitly defined curve.

4.2 Examples

We illustrate the performance of the algorithm by four examples.



Algorithm 2 GenerateFatArcs(f, B, ε)

1: if min dij > 0 or max dij < 0 then

2: return ∅ {the box is empty}
3: end if

4: if f satisfies the assumptions of Lemma 2 then

5: A← FatArcSegment(f, B, ε) {single fat arc generation}
6: if A 6= ∅ then

7: return A {... has been successful}
8: end if

9: end if

10: if diameter of B > ε then

11: subdivide the box into 4 subboxes B1, . . . , B4 {quadsection}
12: return

S

4

i=1
GenerateFatArcs(f, Bi, ε) {recursive call}

13: end if

14: return B {current box is small enough}

Example 1. The first example (see Fig. 6) visualizes the entire algorithm. We
apply the algorithm to a bivariate polynomial of degree (1, 4) which has only one
arc in the region of interest and choose a relatively large tolerance ε. The first call
of the algorithm produces four subboxes which are then analyzed independently.
The first box contains an arc which can be approximated by a single fat arc. The
second box produces other four subboxes, while the third and the fourth boxes
do not contain any points of the implicitly defined curve. Finally, analyzing the
four second-generation subboxes leads to three additional fat arcs and one empty
box. The output is generated by collecting all boxes in the leaves of the tree.

Example 2. We consider a polynomial f of degree (6,9) with randomly generated
BB coefficients in [−1, 1]. Figure 7(a) shows the surface and the implicitly defined
curve segments. Figure 7(b) and (c) demonstrate the behavior of the algorithm
for different tolerances ε. The upper row shows the entire domain, while the
lower row shows a zoomed view of the lower left corner of the box. In the case
of ε = 0.1, which is shown in (b), some boxes are returned as bounding boxes,
since FatArcSegment fails and the diameter of the boxes is smaller than ε. For
the smaller value of ε = 0.01, the fat arc generation succeeded in all generated
boxes.

In the next two examples we compare fat arcs with (recursively generated)
bounding boxes. In the latter case we accepted boxes with a diameter less than
the prescribed tolerance.

Example 3. We approximate an implicitly defined curve, see Figure 8, by fat arcs
(a) and by bounding boxes (b). Clearly, the use of fat arcs leads to a much smaller
number of bounding geometric primitives. This becomes even more dramatic for
smaller tolerances. The plot in (c) shows the relation between the number of
generated primitives (fat arcs or boxes) and the tolerance ε =

√
2/2k.
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Fig. 6. Example 1: The decision tree of algorithm GenerateFatArcs.

Example 4. This example is based on an implicitly defined curve which possesses
a singular point, see Figure 9. In this situation, the fat arc generation will fail
for any box which contains the singular point, since no positive lower bound c
on ||∇f || exists. Consequently, the algorithm always returns a box containing
this point. Still, the results generated by our method (left) compare favorably
with the use of bounding boxes (right).

5 Approximation of surface-surface intersections

As an application we apply the fat arc generation algorithm to the intersection
problem between implicitly and parametrically defined surfaces. The computa-
tion of surface-surface intersections is a potential application of bounding region
generation methods. In practice, intersection computation of a parametric and
an implicitly defined surface is one of the most frequently encountered cases [19].
A good survey is given by [20, 21] in this topic.

Consider an implicitly defined surface h(x, y, z) = 0 and a parametric sur-
face patch r(ξ1, ξ2) with domain Ω = [0, 1]2. Then the implicitly defined curve
f = h ◦ r = 0 describes the intersection curve in the domain of the parametric
surface patch.



a) b) c)

Fig. 7. Example 2: Fat arc generation for different tolerances. The graph of f and the
implicitly defined curve (a), and The fat arcs (top) and a zoomed view (bottom) for
ε = 0.1 (b) and for ε = 0.01 (c).

Using Algorithm GenerateFatArcs one may now construct a collection of
fat arcs with maximum width ε in Ω. The region described by them corresponds
to a certain subset (a strip) on the parametric surface patch.

Recall that the coefficients of the first fundamental form are defined as

gij(ξ1, ξ2) =
∂

∂ξi

r(ξ1, ξ2) ·
∂

∂ξj

r(ξ1, ξ2). (16)

In order to relate the thickness of the bounding fat arcs to the thickness of the
corresponding strip on the parametric surface, we present the following observa-
tion.

Lemma 3. We assume that there exists a constant C such that

g11(ξ1, ξ2) cos2 φ + 2g12(ξ1, ξ2) cosφ sin φ + g22(ξ1, ξ2) sin2 φ ≤ C (17)

holds for all φ ∈ [0, 2π] and (ξ1, ξ2) ∈ Ω0. Consider a single fat arc with width

ε in the parameter domain. Then the width of the corresponding region on the

parametric surface patch is bounded by 2ε
√

C.

Proof. The length L of a curve on the surface which corresponds to any straight
line segment

(ξ1(t), ξ2(t)) = (ξ0
1 , ξ0

2) + t(cosφ, sin φ), t ∈ [a, b] (18)
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Fig. 8. Example 3: Comparison of fat arcs (a) and bounding boxes (b). The relation
between tolerance and number of bounding primitives (c)

Fig. 9. Example 4: Fat arcs (left) and bounding boxed (right) for an implicitly defined
curve with a singular point, where ε =

√
2/25.

in the parameter domain satisfies

L =

∫ b

a

√

g11 cos2 φ + 2g12 cosφ sin φ + g22 sin2 φ dt ≤ (b − a)
√

C. (19)

This observation can now be applied to the lines which pass through the center
of the fat arc.

If r is a rational surface patch, then the constant C in (17) can be found by
found by replacing (cos φ, sin φ) by a rational parametrization of a semicircle1,
say with a parameter τ ∈ [0, 1]. Then the left–hand side of (17) defines a trivari-
ate rational function which depends on the three parameters (ξ1, ξ2, τ) ∈ [0, 1]3

and the bound C can be found with the help of the rational BB representation.

Example 5. We consider the intersection of a cubic implicitly defined surface
with a biquadratic surface patch. Fig. 10, upper row, shows the intersecting
surfaces and the implicitly defined intersection curve in the parameter domain.

1 A semicircle is sufficient, due to the symmetry of the quadratic form in (17).



ε = 0.1 ε = 0.01 ε = 0.001

Fig. 10. Example 5: Intersection of a cubic implicit and a biquadratic parametric
surface, represented by fat arcs in the parameter domain. The number of fat arcs
grows from 10 for ε = 0.1 to 25 for ε = 0.01. For the larger two tolerances, we also
zoomed into a segment of the surface patch.

The lower row shows the region on the surface which correspond to fat arcs in
the parameter domain for three different values of the tolerance ε.

6 Conclusion

We have presented an algorithm which generate a collection of bounding fat arcs
for a given planar curve. In contrast to the existing techniques, which mostly
assume that parametric representations are given, the algorithm can be applied
to implicitly defined curves.

The planned future work includes the extension to surfaces and to space
curves, which can be bounded by toroidal surface segments. We also plan to
use the results for solving systems of polynomial equations, where bounding
primitives of higher approximation order may help to accelerate the convergence
[18, 22]. Finally it might also be interesting to apply the algorithm to the problem
of analyzing and certifying the topology of an algebraic curve, see e.g. [23].

As another possible extension, one might consider other types of median
curves, such as conic sections or algebraic curves of degree higher than two.
While this may provide an even higher rate of convergence (cf. [24]), it makes
the generation of the fat curve more difficult (since e.g. the class of conic sections,
unlike circular arcs, is not closed under offsetting). As an advantage, the use of
circular arcs leads to simpler algorithms for intersection computation.
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