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Abstract. We consider a rational triangular Bézier surface of degree n
and study conditions under which it is rationally parameterized by chord
lengths (RCL surface) with respect to the reference circle. The distin-
guishing property of these surfaces is that the ratios of the three distances
of a point to the three vertices of an arbitrary triangle inscribed to the
reference circle and the ratios of the distances of the parameter point to
the three vertices of the corresponding domain triangle are identical. This
RCL property, which extends an observation from [10, 13] about rational
curves parameterized by chord lengths, was firstly observed in the sur-
face case for patches on spheres in [2]. In the present paper, we analyze
the entire family of RCL surfaces, provide their general parameterization
and thoroughly investigate their properties.

1 Introduction

Recently, chord length parametrization has become an active research area in
Computer Aided Geometric Design. This approach was motivated by the use of
chord length parameterization for interpolation and approximation of discrete
point data. It can be seen as an alternative to arc-length parameterizations
because analogously to arc-length parameter, the chord-length parameter is also
uniquely given by the loci of the curve.

A geometric proof of the fact that rational quadratic circles in standard Bézier
form are parameterized by chord–length was done in [11]. An alternative proof
by Mathematica can be found in [6]. A thorough analysis followed in [10, 13],
where two independent constructions for general rational curves of this type were
presented. In some sense, rational curves with chord length parameterizations
(shortly RCL curves) are a chord-length analogy to the so called Pythagorean-
hodograph curves characterized by closed form expressions for their arc-lengths,
cf. [7, 9].

Curves with RCL property are worth studying mainly because of the fol-
lowing advantages. First they provide a simple inversion formula, which can be
e.g. used for computing their implicit equations. Second, it is simple to perform



point-curve testing. Finally, these curves do not possess self-intersections. In ad-
dition to straight lines and circles in standard form, this class of RCL curves also
contain e.g. equilateral hyperbola, Bernoulli’s lemniscate and Pascal’s Limaçon.
Curves with chord-length parameterization were also mentioned among remark-
able families of curves admitting a complex rational form in [12].

Motivated by RCL curves, it is natural to extend this approach also to ra-
tional surfaces. A promising result was presented in [2] where the equal chord
property of quadratic rational Bézier patches describing a segment of a sphere
was proved. For this, the well-known construction of spherical quadratic patches
by stereographic projection was used, cf. [1, 4, 5]. This result directly extends
the planar result for circles, see [6]. As a byproduct, it was shown in [2] how to
characterize this property using tripolar coordinates in space, which extend the
observations of [13] concerning the relation between bipolar coordinates (see [3,
8] for more details) and curves with chord-length parameterization.

The present paper is devoted to the equal chord property of rational triangu-
lar Bézier surfaces of degree n, thus extending the results of [10, 13] to the case
of surfaces. We present a general construction of rational chord length parame-
terizations (RCL surfaces) and study their attractive geometric properties. The
introduced approach is then demonstrated by several examples of RCL surfaces.

2 Preliminaries

We consider a rational surface of degree n, which is described by its triangular
Bernstein–Bézier representation

P(X) =

∑
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, X ∈ R2 (1)

with respect to a non-degenerate reference triangle 4(A1,A2,A3) ⊂ R2 with
vertices (A`)`=1,2,3. Its argument

X = λA1 + µA2 + νA3, λ+ µ+ ν = 1, (2)

is expressed by barycentric coordinates with respect to the reference triangle.
The shape of the surface is determined by the

(
n+1

2

)
control points bijk with

the associated weights wijk. In particular, the control net of the patch has the
three vertices

v1 = bn00, v2 = b0n0, and v3 = b00n (3)

which are the images of the vertices of the reference triangle.
Let

R`(X) = ||X−A`||2 and r`(X) = ||P(X)− v`||2 (4)



be the squared distances of the point X and its image P(X) to the vertices of
the domain triangle and to the vertices of the patch, respectively.

Definition 1. The surface (1) is a rational chord length parameterization
(RCL) with respect to the reference triangle, if

r1 : r2 : r3 = R1 : R2 : R3, or, equivalently,

∀(i, j) ∈ {(1, 2), (2, 3), (3, 1)} : riRj = rjRi (5)

holds for all points X ∈ R2.

We first analyze the relation between the reference triangle and the triangle
spanned by the vertices of the control net.

Lemma 1. If the surface is a rational chord length parameterization, then the
triangles 4(A1,A2,A3) and 4(v1,v2,v3) are similar.

Proof. We evaluate the three relations (5) at the three vertices A` of the domain
triangle. Six of these 9 equations are trivially satisfied, since one of the ri and Ri
vanish at each vertex. The remaining three equations guarantee the similarity of
the triangles. ut

In the remainder of the paper, we identify the reference triangle
4(A1,A2,A3) with the vertex triangle 4(v1,v2,v3) and the domain R2 con-
taining it with the plane spanned by the vertex triangle. Consequently, the do-
main of the surface is the plane spanned by the vertex triangle.

For any point Y ∈ R3, we denote with

%`(Y) = ||Y − v`||2, ` = 1, 2, 3, (6)

the squared distances to the vertices of the patch.

Lemma 2. The set of all points Y satisfying

∀(i, j) ∈ {(1, 2), (2, 3), (3, 1)} : %i(Y)Rj(X) = %j(Y)Ri(X) (7)

is a circle which passes through X and is perpendicular to any sphere containing
the vertices of the patch. If X lies on the circumcircle of the vertex triangle, then
the circle Y shrinks to the single point X.

Proof. Recall that for any two points M, N in the plane, the set of all points Z
satisfying

||Z−M||2 = c ||Z−N||2 (8)

for some positive constant c is a circle (Apollonius’ definition) which intersects
any circle through M and N orthogonally. Consequently, for a given point X,
the set of all points Y satisfying

%i(Y)Rj(X) = %j(Y)Ri(X) (9)



is a sphere whose center lies on the line through vi and vj . Moreover, any sphere
containing these two vertices intersects this sphere orthogonally. Indeed, if we
consider the intersection with the common symmetry plane of both spheres,
which is spanned by the sphere’s center and the line through vi and vj , then
we obtain the two families of circles which appear in Apollonius’ definition of a
circle.

Clearly, the three spheres (9) obtained for (i, j) ∈ {(1, 2), (2, 3), (3, 1)} inter-
sect in one circle, since the equations defining them are not independent. More-
over, since these spheres intersect any sphere through the three points v1,v2,v3,
orthogonally, so does the intersection curve, cf. Fig. 1.

If X belongs to the circumcircle of the vertex triangle, then any two of the
three spheres (9) touch each other at this point and the circle degenerates into
a single point. ut

Fig. 1. Examples of circles perpendicular to any sphere containing the reference circle.

Corollary 1. If P is a rational chord length parameterization, then its restric-
tion to the circumcircle of the reference triangle is the identity. Moreover, the
surface is a rational chord length parameterization with respect to any reference
triangle which possesses the same circumcircle.

Proof. The surface P is a RCL surface if and only if any point P(X) lies on the
circle described in Lemma 2. On the one hand, if X is on the circumcircle of



the reference triangle, then this circle shrinks to the point X itself. On the other
hand, the family of circles described in Lemma 2 does not depend on choice of
the reference triangle. ut

Consequently, the RCL surface always contains the circumcircle of its ref-
erence triangle, and its definition depends solely on this circle. The latter fact
can also be concluded from Corollary 4 of [2]. This observation motivates the
following extended definition.

Definition 2. A surface P is said to be a rational chord length parameterization
with respect to a circle, if it is a rational chord length parameterization with
respect to a reference triangle possessing this circle as its circumcircle.

3 Construction of RCL surfaces

In order to simplify the formulas, we choose the reference circle as the unit circle
C in the xy-plane. Consequently, the arguments of the rational surface P are all
points of the form X = (u, v, 0)>.

Theorem 1. A surface P is a rational chord length parameterization with re-
spect to the reference circle C if and only if there exists a rational function
q : (u, v) 7→ q(u, v) such that

P(u, v) =
(

(1 + q2)u
1 + q2(u2 + v2)

,
(1 + q2)v

1 + q2(u2 + v2)
,
q(1− u2 − v2)
1 + q2(u2 + v2)

)>
. (10)

Proof. Without loss of generality, we consider the reference triangle with the
vertices A1 = (1, 0, 0)>, A2 = (0, 1, 0)>, A3 = (0,−1, 0)> on the reference circle
C. The surface P is RCL if and only if there exists a rational function λ such
that the squared distances R` and r` are related by

∀(u, v) : λ(u, v)R`(u, v) = r`(u, v), ` = 1, 2, 3. (11)

A short computation confirms that the intersection points of the three spheres
with centers Ai and radii

√
ri has the coordinates

P±(u, v) =
1
4
(
− 2r1 + r2 + r3,−r2 + r3,

±
√

2 ·
√

4(r2 + r3)− [(r1 − r2)2 + (r1 − r3)2]− 8
)>
.

(12)

Using (11) and the identities R1 = (u − 1)2 + v2, R2 = u2 + (v − 1)2, R3 =
u2 + (v + 1)2, which follow from the definition (4), this can be rewritten as

P±(u, v) =
(
λu, λv,±

√
(1− λ)(λu2 + λv2 − 1)

)>
. (13)

This surface has a rational parameterization with respect to u, v if and only
if the argument of the square root is a perfect square. This is equivalent to the
condition on the existence of a rational function q(u, v) such that

1− λ = q2(λu2 + λv2 − 1). (14)



Solving (14) for λ we arrive at

λ(u, v) =
1 + q(u, v)2

1 + q(u, v)2(u2 + v2)
. (15)

Finally, we substitute λ into (13). The two possible choices of the sign of the third
coordinate can be obtained by specifying the sign of the rational function q. ut

We provide a geometric meaning for this result.

Proposition 1. Consider the angle α(u, v) ∈ [−π, π] which satisfies

tan
α(u, v)

2
= q(u, v). (16)

If u2 + v2 6= 1, then α is the angle between the xy-plane and the sphere which
passes through the point P(u, v) and the reference circle C. If u2 + v2 = 1, then
P(u, v) lies on the reference circle C and α is the angle between the xy-plane and
the tangent plane of the surface P at this point.

Proof. We consider a surface (10). In the first case, the unique sphere which
passes through the reference circle and through the point P(u, v) has the center
C = (0, 0, (q2− 1)/(2q))> and the radius r = (q2 + 1)/(2|q|). The oriented angle
α between the sphere and the xy-plane is equal to the angle between the vectors
(C−A1) and (0, 0, 1)>, which gives tanα = 2q

1−q2 . The second case can be proved
similarly by a direct computation. ut

Remark 1. The angle α is equal to the angle which is used in the definition of
tripolar coordinates, as introduced in [2].

The following observation provides an alternative geometric interpretation of
the characterization result (10).

Proposition 2. Any RCL surface (10) with the reference circle C can be ob-
tained by composing

(i) the inversion M with respect to the sphere centered at (0,−1, 0)> with radius√
2,

(ii) the rotation Rα about the x-axis through the angle α(u, v), where q satisfies
(16), and

(iii) the same inversion as in (i) ,

and applying this transformation to the parameterization (u, v, 0)> of the plane
containing C.

Proof. The rotation (ii) and the inversion (i,iii) are described by

Rα(x, y, z) =

1 0 0
0 1−q2

1+q2 −
2q

1+q2

0 2q
1+q2

1−q2
1+q2


x
y
z

 (17)



and

M(x, y, z) =
1

x2 + (y + 1)2 + z2

 2x
1− x2 − y2 − z2

2z

 . (18)

A direct computation now confirms that

P(u, v) = (M ◦Rα ◦M)(u, v, 0), (19)

cf. (16) and (10). ut

Remark 2. The characterization (19) of RCL surfaces can be derived directly, as
follows. The inversion M maps the reference circle to the x-axis and the circles
of constant chord-length ratios described in Lemma 2 to coaxial circles around
it. Consequently, M(P(u, v)) can be obtained by applying the rotation Rα to
the point M(u, v, 0). This leads to (19), since M = M−1. All RCL surfaces can
be obtained in this way, since M is a birational mapping. Proposition 1 can also
be derived from this construction, since the spherical inversion M is a conformal
transformation.

4 Properties and examples of RCL surfaces

In this section we will review some attractive properties of RCL surfaces and
demonstrate them on some interesting examples which are computed using (10)
for different choices of q(u, v). Obviously, by choosing a constant function q(u, v),
we obtain a sphere, cf. [2].

Proposition 3. Any RCL surface P(u, v) has a rational unit normal field along
the reference circle. On the other hand, any rational unit normal field along the
reference circle can be extended to an RCL surface. Finally, two RCL surfaces
given by (10) with functions q1, q2 have the same normals along the reference
circle if and only if

q1 − q2 = (1− u2 − v2)f, (20)

where f(u, v) is a rational function.

Proof. Under the condition u2 + v2 = 1, the unit normal of P can be computed
from (10) as (

2qu
1 + q2

,
2qv

1 + q2
,

1− q2

1 + q2

)>
. (21)

This gives also the second statement. Finally, the third part is a direct conse-
quence. ut

Let I denotes the circle inversion with respect to the reference circle in the
u, v plane, i.e.,

I(u, v) =
(

u

u2 + v2
,

v

u2 + v2

)>
.

The following proposition can be verified by a straightforward computation.



Proposition 4. The two surfaces P1(u, v), P2(u, v) obtained for q(u, v) and
−1/q(I(u, v)), respectively, are identical up to the reparameterization via I, i.e.,

P1(u, v) = P2(I(u, v)).

Definition 3. For a given q let us call the restriction of P1(u, v), or P2(u, v)
to the reference disc (i.e., to the interior of the reference circle) the first branch,
or the second branch of the associated RCL surface.

Fig. 2. Left: q(u, v) = 1− u2 − v2; Right: q(u, v) = 1/(1 + u2 + v2) + 1.

Figures 2 and 3 (left) present examples of the surfaces mentioned in Proposi-
tion 4, where red and blue patches correspond to P1(u, v) and P2(u, v), respec-
tively.

Fig. 3. Left: q(u, v) = u2 + v2; Right: q(u, v) = u + 1.



Proposition 5. If q(u, v) (or 1/q(I(u, v))) does not possess a pole at (0, 0), then
the first branch (or the second branch) is smooth and bounded. In particular,
if both these conditions hold, then the entire RCL surface is a closed bounded
smooth surface.

Proof. If there is no pole for q at (0, 0), then Pq(0, 0) = (0, 0, q)> is well defined
and finite. By a continuity argument the same holds for some neighborhood of
(0, 0). The remainder of the first branch is also bounded, since each point must
lie on the corresponding circle – see Lemma 2. The same argument holds for the
second branch and −1/q(I(0, 0)). ut

Proposition 6. The first branches P1, P̃1 of two RCL surfaces join with G1

continuity along the reference circle if and only if qq̃ = −1 for u2 + v2 = 1.

Proof. The first branches P1 and P̃1 join with G1 continuity along the reference
circle iff α̃ = −(180◦ − α). Hence, q̃ = tan α̃

2 = − tan
(
90◦ − α

2

)
= − cot α2 =

−1/q. ut

Figures 3 (right) and 4 show examples of surfaces described in Proposition 6,
where red and blue patches correspond to P1 and P̃1, respectively.

Fig. 4. Left: q(u, v) = 2u + v + 1; Right: q(u, v) = u2 − 2/3.

5 Conclusion

We described a class of rational triangular Bézier surfaces possessing a param-
eterization which preserves the distance ratios to the vertices of the domain
triangle inscribed to the reference circle. This extends the property of chord-
length parameterization of rational curves, which was studied in [10] and [13], to
the case of surfaces. We identified a family of RCL surfaces, characterized their
general parameterization and studied their properties. The future research will
be focused mainly on modeling with surface patches of this type.
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