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Abstract

Isogeometric analysis based on NURBS (Non-Uniform Rational B-Splines) as basis
functions preserves the exact geometry but suffers from the drawback of a rectan-
gular grid of control points in the parameter space, which renders a purely local
refinement impossible. This paper demonstrates how this difficulty can be overcome
by using T-splines instead. T-splines allow the introduction of so-called T-junctions,
which are related to hanging nodes in the standard FEM. Obeying a few straight-
forward rules, rectangular patches in the parameter space of the T-splines can be
subdivided and thus a local refinement becomes feasible while still preserving the
exact geometry. Furthermore, it is shown how state-of-the-art a posteriori error
estimation techniques can be combined with refinement by T-Splines. Numerical
examples underline the potential of isogeometric analysis with T-splines and give
hints for further developments.
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1 Introduction

Simulation methods that are able to exactly represent free-form shapes and
that circumvent the bottleneck of mesh generation hold great promise. Though
the idea of bridging the gap between Computer Aided Design (CAD) and the
Finite Element Method (FEM) can be traced back a long time, it has only
recently reached significant momentum by the introduction of the so-called
Isogeometric Analysis by Hughes et al.[14].
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By extending the isoparametric concept of the standard FEM to more gen-
eral basis functions such as B-Splines and NURBS (Non-Uniform Rational
B-Splines) that are common in CAD approaches, it is possible to fit exact
geometries at the coarsest level of discretization and eliminate geometry er-
rors from the very beginning. Moreover, improved convergence and smoothness
properties of the numerical solution have been shown [3], and recent results for
vibrational analysis [7] and bloodflow simulations [20] underline the potential
of isogeometric analysis.

Several key issues, on the other hand, are still open in this new and emerging
field, among them the development of competitive codes and adaptive mesh
refinement based on a posteriori error estimation techniques. In this paper, we
concentrate on the latter issue and present a local refinement method that uses
the T-splines introduced by Sederberg et al. [16,17] as appropriate function
space.

Due to the research progress of the last two decades, the methodology for
Adaptive Finite Element Methods (AFEM) is well-developed today. For a
survey see, e.g., Carstensen [6]. Sophisticated algorithms and specific analysis
techniques have demonstrated the advantages of locally refined meshes. How-
ever, though being well understood and available in various academic codes
[2,18], adaptive methods with a posteriori error control have so far not become
widespread in commercial software. One of the reasons for this shortcoming is
supposedly the complex task of mesh generation, in particular for 3D shapes
where the practitioners have little trust in automatic refinement procedures
and prefer to rely on their hand-designed meshes.

Within the framework of isogeometric analysis, refined meshes preserve the
exact geometry. Using the NURBS as basis functions, however, suffers from the
drawback of a rectangular grid of control points in the parameter space, which
renders a purely local refinement impossible. In CAD, the idea of using locally
refinable tensor-product splines was pioneered by Forsey and Bartels [10], who
introduced hierarchical splines as an accumulation of tensor-product splines
with different knots and domains. Weller and Hagen [19] discussed tensor-
product splines with knot segments. They defined a spline space over a general
mesh, but the basis functions are induced by semiregular ones. The work in
this paper is based on the new notion of T-splines which was established in
[16,17]. In particular, T-splines allow the introduction of so-called T-junctions,
which are related to hanging nodes in the standard FEM. Obeying a few
straightforward rules, rectangular patches in the parameter space of the T-
splines can be subdivided and thus a local refinement becomes feasible.

Based on this observation, we combine here a state-of-the-art error estimation
technique by Bank and Smith [1] with refinement by T-Splines. Starting with a
coarse rectangular grid and a NURBS basis, the approach successively converts
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the mesh into a so-called T-mesh. Numerical results for standard 2D examples
illustrate the approach and confirm the expected superior performance of an
adaptive isogeometric analysis.

The paper is organized as follows. In Section 2, we give a short introduction to
the basic idea of isogeometric analysis and compare the NURBS with standard
isoparametric finite elements. Section 3 is devoted to a discussion of NURBS
and T-Splines, with particular emphasis on local refinement strategies. The a
posteriori error estimator is presented in Section 4, and finally, computational
examples are given and analysed in Section 5.

2 Galerkin Projection: Piecewise Polynomials versus NURBS

In this section we define the problem class and summarize the most important
features of NURBS as ansatz functions in isogeometric analysis. To keep the
presentation simple, we restrict ourselves to linear stationary problems in d =
2 dimensions.

Let L be a second order elliptic operator on the Lipschitz domain Ω with
boundary Γ = ΓD ∪̇ ΓN . We want to solve the partial differential equation

Lu = f in Ω (1)

with the boundary conditions

u = 0 on ΓD and 〈∇u, n〉 = h on ΓN

for the unknown u : Ω → R with given data f and h and outer normal vector
n on ΓN . Without loss of generality, we assume in this section zero Dirichlet
boundary conditions on ΓD.

The weak form of (1) takes the standard form: Find u ∈ V such that

a(u, v) = l(v) for all v ∈ V (2)

where the appropriate function space is given by

V := {u ∈ H1(Ω), u|ΓD
= 0}.

As usual, a : V ×V → R denotes the symmetric bilinear form that corresponds
to the operator L and l : V → R a linear functional that contains the right
hand side term f and the Neumann term h. The bilinear form a is assumed
to be continuous and coercive such that a unique solution of (2) exists (see [5,
Chapt. 2] for definitions and proofs). It defines the so-called energy norm for
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all v ∈ V
‖v‖E =

√
a(v, v).

As indicated in the definition of the space V , the Sobolev space H1(Ω) ⊂ L2(Ω)
provides the basic setting in the following; it consists of those functions in
L2(Ω) that possess weak and square-integrable derivatives.

The Galerkin projection replaces the infinite-dimensional space V by the fi-
nite dimensional subspace S ⊂ V that is spanned by n basis functions φi,
i = 1, . . . , n. Thus, the approximate solution uh ∈ S has to satisfy

a(uh, vh) = l(vh) for all vh ∈ S.

We write uh =
∑n

i=1 qiφi with unknown real coefficients qi and obtain in the
usual way the linear system

Aq = b (3)

where A is the stiffness matrix and b the load vector. They are defined by
Aij = a(φj, φi) and by bi = l(φi) for i, j = 1, . . . , n, respectively.

The choice of the subspace S in the Galerkin projection depends on several
criteria. Obviously, if the approximate solution uh is not sufficiently accurate,
there should be a straightforward and efficient way to enlarge S. This issue of
refinement will be enlightened in the next section. For the moment, we discuss
the various choices from a more general point of view.

The following properties are desirable in our context:

(i) Convergence: If we refine, the approximative solution should converge to
the exact solution. While local refinement is preferred in practice, uniform
refinement is the basis for standard convergence proofs.

(ii) Regularity: We aim at conforming methods with basis functions at least
in H1(Ω); in contrast to conventional FEM wisdom, additional global
smoothness is regarded as beneficial.

(iii) Support: The basis functions should have a small and compact support.
(iv) Accurate representation of geometry: complex geometries should be ex-

actly resolved already on coarse grids.

We now briefly discuss these items for the well-established isoparametric FEM
and the isogeometric analysis based on NURBS.

2.1 Isoparametric Approach

In standard FEM the basis functions φ are chosen as piecewise polynomials,
and the concept of isoparametric elements is invoked to approximate curved
boundaries. Assume we have m shape functions Nj, e.g. polynomials, defined

4



over a standard geometry Ω0 ⊂ R2 like a triangle or a square – in d = 3
dimensions a tetrahedron or a hexahedron. We call Ω0 the parameter domain
or parameter space. The computational domain Ω is partitioned into a mesh
of elements Tk that are subdomains of the same shape as Ω0. On each element
there are m specific grid points xk

j , e.g., the corners, that can be used to define
the geometry functions Gk : Ω0 → Tk by

Gk(ξ) := x(ξ) =
m∑

j=1

Nj(ξ)x
k
j ,

see also Fig. 1.

Fig. 1. The parameter space Ω0 is mapped with different local geometry functions
to the triangulation of the computational domain

The basis functions φi for the Galerkin projection are compositions of the
shape functions with the inverse of the geometry function. So for x ∈ Tk we
get the local representation

uh(x) =
m∑

j=1

Nj ◦G−1
k (x)qk

j . (4)

where qk
j stands for the unknown coefficients or nodal values. This local rep-

resentation offers a local evaluation of element stiffness matrices and load
vectors, and the linear system (3) is then assembled from these element con-
tributions. For the technical details we refer to [13].

Refinement in isoparametric FEM is either performed by splitting the elements
into smaller ones (h-refinement) or by using higher order polynomials as shape
functions in each element (p-refinement). Well-established a posteriori error
estimators as well as mesh refinement algorithms are available. Moreover, poly-
nomials as local basis functions can be easily evaluated and integrated. Note
that global smoothness is C0 in general.

The most obvious drawback of isoparametric FEM is the lack of an exact geom-
etry representation for complex engineering shapes. In this case the boundary
must be approximated and also the boundary conditions, which may lead to
additional errors or even wrong boundary layers, see [14].
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2.2 Isogeometric Analysis

Isogeometric analysis based on the NURBS as basis functions allows to exactly
map the unit square in the parameter space R2 to an arbitrary domain that was
designed in a (NURBS-based) CAD-program. The global geometry function
G : Ω0 := [0, 1]2 → Ω is element of a NURBS space Rp that will be described
in the next section. With the control points of the NURBS Pi ∈ R2 in linear
ordering (i = 1, . . . , n), the geometry function is defined for all ξ ∈ Ω0 by

G(ξ) := x(ξ) =
n∑

i=1

Ni(ξ)Pi,

see also Fig. 2.

Fig. 2. The parameter space Ω0 is mapped with one global geometry function to
the computational domain

The representation of the approximative solution uh stays the same as in the
isoparametric case, except we are now already in a global setting. So we have
for all x ∈ Ω

uh(x) =
m∑

i=1

Ni ◦G−1(x)qi. (5)

It is important to understand that this method does not use elements in the
classical sense but patches instead. The knot vectors defining a NURBS create
two-dimensional boxes in the preimage of G, their image under G is called a
patch.

Compared to the piecewise polynomials in the classical FEM, the basis func-
tions are now globally defined and have a larger support, including more
patches. Global smoothness can be easily increased to C1 or even higher.

Isogeometric analysis based on NURBS offers the possibility for h-refinement
by inserting new knots in the knot vectors and for p-refinement by increasing
the degree of the NURBS. Additionally, the so-called k-refinement is available
that combines the h- and p-refinement strategy. However, all three refinements
are global in nature, and it is clear that there is a need for more general basis
functions that feature local subdivision while still maintaining the favorable
properties of NURBS.
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3 From NURBS to T-Splines

In this section, we describe the NURBS in more detail and present the gener-
alization to T-splines. Moreover, the issue of local refinement is addressed.

3.1 NURBS as Basis Functions

NURBS were first used as ansatz functions in the isogeometric analysis by
Hughes et al. [14]. Referring to the standard reference by Piegl/Tiller [15], we
summarize here only the main properties. Since NURBS are defined by means
of B-splines, we firstly introduce these functions.

3.1.1 B-Splines

A family of univariate B-splines is defined by a degree p ∈ N0 and a knot
vector Ξ = {ξ1, . . . , ξm}. The latter is a monotonically increasing sequence of
real coordinates, the knots. We will use non-uniform and open knot vectors
where the first and the last knot are repeated p+1 times. All other knots have
a multiplicity between one and p.

The n = m − p − 1 basis functions Bi,p, which are called B(asis)-splines, can
be defined by the Cox-de Boor iteration (fractions with zero denominators are
considered zero):

Bi,0(x) =

 1 for ξi ≤ x < ξi+1

0 else

Bi,p(x) =
x− ξi

ξi+p − ξi

Bi,p−1(x) +
ξi+p+1 − x

ξi+p+1 − ξi+1

Bi+1,p−1(x)

Bivariate B-splines are defined by a tensor product of two univariate basis
functions with possibly different degrees p1 and p2 and knot vectors Ξ1 and
Ξ2. With the multi-indices i = (i1, i2), p = (p1, p2) and n = (n1, n2) we get for
all x = (x1, x2)

Bi,p(x) = Bi1,p1(x1) ·Bi2,p2(x2)

Finally we introduce B-spline surfaces. Assume that the control mesh is given,
which consists of n1 · n2 control points Pi ∈ R2. The B-spline surface CB is
defined as

CB(x) =
n∑

i=1

Bi,p(x)Pi for x ∈
[
ξ

(1)
1 , ξ(1)

m1

]
×

[
ξ

(2)
1 , ξ(2)

m2

]
. (6)
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Since the control points are in R2, the B-spline surface describes simply a
portion of the plane.

3.1.2 NURBS

Now we have all prerequisites to construct a NURBS surface. In addition to
the two knot vectors and the control points Pi ∈ R2, we need one weight wi

for each control point, which is often restricted to be positive wi > 0. The
weights and control points define the projective control points

Pw
i =

 wiPi

wi

 ∈ R3.

Using these points in R3 we construct a projective B-spline surface in R3 and
dehomogenize it. This gives the NURBS surface

CR(x) =

∑n
i=1 Bi,p(x)wiPi∑n
j=1 Bj,p(x)wj

.

which again parameterizes a segment of the plane R2. Analogously to (6) one
may write this formula with the rational basis (NURBS) functions

Ri,p(x) =
Bi,p(x)wi∑n
j=1 Bj,p(x)wj

.

They span the space

Rp[Ξ] = span
{
Ri,p, i ∈ {1, . . . , n1} × {1, . . . , n2}

}
.

We mention some properties of these bivariate basis functions since they are
relevant for isogeometric analysis:

(i) Convergence of isogeometric analysis for uniform h-refinement has been
proved by Bazilevs et al. [3].

(ii) The basis functions are continuous. To be more precise, (p − kil) direc-

tional derivatives in the lth direction at a knot ξ
(l)
i exist, where kil is the

multiplicity of ξ
(l)
i in the knot vector Ξl (l = 1, 2 and i = 1, . . . , number

of different knots in Ξl).
It follows that φi := Ri,p ◦G−1 is also continuous for all i, thus the span
of the φi is a subset of H1(Ω).

(iii) Their support contains a maximum of (p1 + 1)(p2 + 1) two-dimensional
boxes, which means that it is compact and relatively small.

(iv) They are capable of representing the geometry accurately if it was gen-
erated by NURBS-based CAD software.
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3.1.3 Refinement

The first refinement option for NURBS is the h-refinement where we can insert
arbitrary new knots in the knot vectors. For example, if we insert one knot in
the first knot vector, this operation changes (p1 + 1) ansatz functions in that
direction and adds a new one. Due to the tensor product construction of the
bivariate functions, a total of ((p1 + 2) · n2) NURBS functions are affected by
this operation. As we do not want to alter the geometry function, we need to
adjust also the corresponding control points. All required formulas and several
fast algorithms for this purpose can be found in [15].

The second option is p-refinement where we increase the order of the basis
functions in one coordinate direction. Because the NURBS surface should
again not change, we have to increase the multiplicity of the knots in the knot
vector and adjust the control points. Obviously, none of the functions remains
unaffected in this case, and if we have s different knots in the first knot vector
and increase the first degree to (p1 + t), this refinement leads to (st · n2) new
basis functions. See again [15] for formulas and algorithms.

Because these two options do not commute, we get various further refinement
methods if we connect them in different order. E.g., one can firstly perform
all the p-refinement steps and then the h-refinement steps, which is called
k-refinement, see [14].

Unfortunately, for dimension d > 1 all these refinement methods have a global
effect due to the tensor-product mesh structure. We illustrate this issue in Fig.
3a where two areas are marked in black to indicate a need for local refinement
caused, e.g., by discontinuous boundary values or reduced regularity of the
exact solution. Though local refinement is desirable, the NURBS can only be
refined in entire rows or columns, as shown in Fig. 3b.

(a) Areas of large estimated error (b) Mesh of the knot vectors

Fig. 3. Adaptive refinement with NURBS
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3.2 T-splines

In order to overcome the problem of local refinement, we shall now use T-
splines instead of NURBS. Initially, T-splines were defined by Sederberg in
[16,17] solely for the bivariate case and for degree p = 3.

Consider a bivariate NURBS with the same degree p = 3. Then each basis
function is defined by 5 knots of Ξ1 and 5 knots of Ξ2. If we now associate
these functions with grid points defined by the median coordinates of their
”small” knot vectors, we can visualize their location in the grid of the knot
vectors. To put it the other way round, each intersection of edges in that mesh
has thus also at least one corresponding function.

We return to the situation of Fig. 3a to demonstrate the construction of T-
splines. Fig. 4 shows the mesh for the NURBS where a filled box � marks
redundant functions that could be skipped whereas the desired functions are
highlighted by an empty box �.

Fig. 4. Mesh of the knot vectors with points corresponding to NURBS basis functions

Now we take only these desired NURBS of the refined mesh and combine them
with the NURBS of the original coarse mesh (Fig.5a). This yields a locally
refined mesh with the characteristic T-junctions, as shown in Fig. 5b.

(a) Functions of a coarse mesh (b) The resulting mesh

Fig. 5. Introducing the basic idea of T-splines
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3.2.1 T-mesh and Blending Functions

After this motivation of T-splines, we will next introduce them in a precise
way. Because of the different usage, some of our definitions and nomenclature
differ slightly from the original work by Sederberg et al. [16,17]. By that, we
also overcome the ambiguities in the edge insertion as shown in Fig. 9 in [16].

At first, we give a formal definition of the T-mesh as a mesh in an index space,
not in the parameter space as the mesh in Fig. 5b. With ν1 and ν2 denoting
integers greater or equal 4, the T-mesh consists of n grid points (or vertices)
pi ∈ {1, . . . , ν1}×{1, . . . , ν2} connected by horizontal and vertical edges ej. It
has to fulfill the following properties:

• If one edge intersects another, there must be a grid point.
• There is no possibility to connect two grid points with an additional hori-

zontal or vertical edge without intersecting an already existing edge.
• The T-mesh partitions the box ΩI := [1, ν1] × [1, ν2] into non-degenerated

polygons that we call index patches. Thus isolated grid points or lines are
prohibited.

An example of a T-mesh is shown in Fig. 6.

Fig. 6. Example of a T-mesh

In order to associate ansatz functions with the T-mesh, we next define two
global knot vectors in the parametric space, σ = {s1, . . . , sν1} and τ =
{t1, . . . , tν2} with double first and last knots, i.e. s1 = s2, sν1−1 = sν1 , t1 = t2
and tν2−1 = tν2 . All other knots have a multiplicity not higher than 3.

Usually we have a starting T-mesh where the corresponding knot vectors result
from the data of bicubic NURBS: We set

σ = Ξ1 \
{
ξ

(1)
1 , ξ

(1)
2 , ξ

(1)
m1−1, ξ

(1)
m1

}
and

τ = Ξ2 \
{
ξ

(2)
1 , ξ

(2)
2 , ξ

(2)
m2−1, ξ

(2)
m2

}
.
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Note that in this case ν1 = m1 − 4 and ν2 = m2 − 4.
Furthermore we set on every intersection of grid lines a grid point and every-
where edges connecting adjacent grid points.
In this regular mesh, the index-patches are two dimensional boxes. It can
then either be refined or coarsened by inserting or deleting grid points with
the only restriction that the resulting mesh preserves the previously mentioned
properties. The corresponding algorithms are discussed in [17].

Now we return to the construction of the ansatz functions and define for each
point pi a so-called blending function B̀ i. With the following two rules we ex-
tract for every grid point five–element knot vectors σi = {σi1, σi2, σi3, σi4, σi5}
and τi = {τi1, τi2, τi3, τi4, τi5} from the T-mesh:

Rule 1 The coordinates of the point pi = (p1, p2) are the indices of the knots
in the global knot vectors for the medians of the small knot vectors. Thus
σi3 = sp1 and τi3 = tp2.

Rule 2 The indices for the knots σi4 and σi5 are the first coordinates of
the first two points or vertical edges that intersect with the ray R(α) =
(p1 + α, p2), α > 0 in the T-mesh. If the ray leaves the T-mesh before the
coordinates are found, the knot vector is filled up with the last knot sν1 .
The remaining knots of σi and τi are found by analogous rays.

In order to make these rules clear, we construct the knot vectors for the func-
tions corresponding to p1 and p2 of Fig. 6. We get σ1 = {1, 2, 3, 4, 5} and
τ1 = {2, 3, 4, 5, 6} as well as σ2 = {4, 5, 7, 8, 9} and τ2 = {3, 4, 5, 6, 7}. They
are shown in Fig. 7.

Fig. 7. The knot vectors for p1 and p2 in the T-mesh

The blending functions are now defined as a product of the two univariate,
cubic B-splines Bσi

and Bτi
, where Bσi

uses the five knots of the knot vector
σi and Bτi

the ones of the knot vector τi. We get for s, t ∈ R

B̀ i(s, t) = Bσi
(s) ·Bτi

(t).

12



3.2.2 Normalized Blending Functions and T-Spline Surfaces

Analogously to isogeometric analysis, we do not use the polynomial blending
functions as ansatz functions but instead the rational, normalized blending
functions Ni, that we will also call T-spline functions. They are constructed
in the same way as the bivariate NURBS by dehomogenizing a projective
surface which is defined by the blending functions surface. For that purpose
we need again n control points Pi ∈ Rd and weights wi > 0 in linear order and
get for (s, t) ∈ Ω0 := [s1, sν1 ]× [t1, tν2 ]

Ni(s, t) :=
B̀ i(s, t)wi∑n

j=1 B̀ j(s, t)wj

.

These functions are well defined and span the function space

N := span{Ni, i = 1 . . . n}.

They define the T-spline C in the usual way,

C(s, t) =
n∑

i=1

Ni(s, t)Pi, for (s, t) ∈ Ω0.

Due to the analogous derivation, the bicubic NURBS are a special case of T-
spline functions. Every ”full” T-mesh like the one used as starting mesh creates
NURBS. Before we discuss the adaptive refinement, we list some properties of
the T-spline functions.

(i) A uniform insertion of the grid points into the starting T-mesh results
in NURBS and does not create additional blending functions. This also
means that the convergence analysis of [3] applies in this case.

(ii) The T-spline functions are continuous. Furthermore, the (3 − kj) direc-
tional derivatives of Ni in the s or t direction at an edge sj or tj exist,
where kj is the multiplicity of sj in σi, respectively of tj in τi.
It follows that φi := Ni ◦ G−1 is also continuous for all i, thus the FEM
ansatz functions are in H1(Ω).

(iii) They have a compact support with supp(Ni) = [σi1, σi5]× [τi1, τi5]. This
is possibly larger than the support of a NURBS built by the global knot
vectors σ and τ and leads to the effect that normally more than 16 ansatz
functions are non zero in a box as it is using bicubic NURBS. The upper
bound depends on the connectivity of the T-mesh – in our experience the
number lies between 16 and 20 ansatz functions.

(iv) They accurately represent the geometry. Like the NURBS the T-mesh
inherits the geometry.
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3.2.3 General Refinement Rules

So far, T-splines admit solely h-refinement, which is simply accomplished by
inserting grid points into the T-mesh. We just want to give a short overview
over this process - for a deeper understanding the reader should consult [16]
and [17].
If we insert a new grid point into the T-mesh, we have to refine the blending
functions, because after the insertion the old blending functions do not fit to
the new T-mesh. The following violations of the rules 1 and 2 may occur:

• Violation 1: A blending function skips a grid point in the T-mesh.
• Violation 2: In a knot vector of a blending function there is a knot that is

not induced by a grid point in the T-mesh.
• Violation 3: A grid point in the T-mesh has no blending function.

By inserting the new grid point we have to ensure that at least one of the
first two violation occurs - else we can not fix the inevitable violation 3. If we
insert the grid point on an edge, this problem does not arise.
For fixing the first violation, we have to refine the affected blending function
using the standard B-Spline refinement for the corresponding factor of the
blending function Bσi

or Bτi
. If the second violation arises, we have to insert

an additional (unwanted) grid point in the T-mesh at the relevant coordinates.
Both solutions may lead to new violations and thus to a recursive insertion of
new grid points (see Section 3.2.5 for an example).
But if there are none of the first two violations left, there is also no violation
of type 3 remaining (see [17]).
The last step in the refinement is the adjustment of the control points, again
analoguously to the B-spline refinement, in order to preserve the representa-
tion of the geometry (for more details see again [17]).

Note that in this context it is also possible to enlarge the global knot vectors
σ or τ and shift the T-mesh at the indices of the new knot before grid point
insertion is performed (see Fig. 8a). In this example, continuing the grid of
Fig. 6 and 7, we also want to show a case where a single additional knot
occurs (Fig. 8b). Due to the insertion the small knot vector τ2 of p2 changes
to {3, 4, 5, 6, 8}, but because of the simultaneous change of the global knot
vector τ the blending function belonging to p2 remains the same.

3.2.4 Adaptive Refinement

Suppose an error estimator or some other kind of automatic or manual refine-
ment indicator is available. There are various possibilities to select the points
for insertion based on these data. The following strategy turned out to give
good results for most cases, as we will demonstrate later in Section 5.1 and
5.2. However, in some special cases it leads to a too extensive refinement as
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(a) Shift of the indices in t-direction be-
cause of an insertion of ξnew

(b) The newly inserted point is at (2, 7),
the additional one at (3, 7)

Fig. 8. Continuing the example of Fig. 6: Enlargement of Ξ2 with ξnew ∈
[
ξ
(2)
6 , ξ

(2)
7

)
and grid point insertion leading to an unwanted additional grid point

we show in Section 3.2.5 and 5.3.

Refinement Strategy:
We insert grid points on every adjacent edge and at the centres of the
index patches marked by the error estimator. If one of the edges refers to
a multiple knot (e.g. at the beginning or the end of the knot vector), we
also insert a knot on the corresponding edge.

The second part ensures that it is possible to insert points on edges bordering
only on index patches where the two s- or (exclusive or) t-coordinates index to
the same knot value. This strategy is illustrated in Fig. 9a (remember that the
first two indices of a global knot vector must index to the same knot value).

The corresponding index patches are then subdivided into four parts. If the
algorithm inserts additional grid points in other index patches, these are han-
dled as if not subdivided to ensure that all of them remain two-dimensional
boxes. This rule is shown in Fig. 9b.

(a) Selection of grid points if
the grey box has been marked

(b) Subdividing the index patch

Fig. 9. Refinement strategy of the T-splines
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3.2.5 Cascadic Insertion of Grid Points in the Refinement Process

In this section we discuss a worst case scenario of the refinement process. We
start with a simple domain Ω = [0, 1]2 and choose as parametrization the
identity. Although we mark in every step only those patches containing the
diagonal from (0, 0) to (1, 1) (marked in grey in Fig. 10), substantially more
grid points are inserted due to the refinement algorithm.

Fig. 10. The T-mesh mapped on Ω: Refinement leads partially to nearly full refine-
ment in this worst case scenario

This is clearly a drawback of the present approach and calls for modifications
of the T-spline concept.
With the actual state of the art, the problem can only be fixed if we use
some knowledge on the problem at hand. E.g., if we know that there is a
boundary layer in diagonal direction, we can try to choose an appropriate
parametrization such that one parameter direction is parallel to the layer and
the other one normal to it.
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4 A Posteriori Error Estimator

In this section we extend a state-of-the-art a posteriori error estimation tech-
nique to isogeometric analysis. Let nT denote the cardinality of the index
patches in ΩI . Due to the construction and refinement of the T-mesh, all in-
dex patches are boxes and we can define patches in the computational domain
by

Tk = G
(
[sk1, sk2]× [tk3, tk4]

)
⊂ Ω for the index-patch [k1, k2]× [k3, k4].

Moreover, by T we denote the set of all patches Tk.

We next aim at refining only those patches Tk which contribute significantly to
the error u−uh. However, as the exact solution u of our problem is unknown,
we have to compute this information by an error estimator η : Ω → R which
satisfies

η(Tk) ≈ c ||u|Tk
− uh|Tk

||?
with a suitable norm ||.||?, typically the enery norm, and a real constant c > 0.
As the constant c indicates, we do not require an approximation of the error
itself – for practical reasons it is sufficient that the error estimator behaves like
the error. For that purpose it has to be reliable and efficient (see Carstensen [6]
for detailed definitions). The first property guarantees that the error estimator
does not systematically underestimate the true error while the second property
ensures that the estimator behaves asymptotically like the true error if the true
error tends to zero.
Assume we have an estimator with these properties available. We then mark
each patch Tk to be refined, if η(Tk) exceeds a certain threshold θ. Often this
threshold depends on the results of the estimator, e.g.,

θ =

 α ·maxk

{
η(Tk)

}
with α ≈ 0.5

α-quantilek

{
η(Tk)

}
with α < 1

Among the different approaches available, our choice for an error estimator to
be used in combination with T-splines takes up the idea of hierarchical bases
and bubble functions, introduced by Deuflhard/Leinen/Yserentant in [9]. In
this method we enlarge our Galerkin subspace S by another, disjunct subspace
W ⊂ V . This leads to a new subspace

S̄ = S ⊕W .

For a simple and efficient implementation, we choose W as the function space
spanned by the so-called bubble functions. The univariate bubble functions are
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defined with two real parameters a < b as

w[a, b](x) =


x− a

b− a
· b− x

b− a
, x ∈ (a, b)

0 , else

They have a small and compact support, the intervall [a, b]. For each patch Tk

they are now used to define a bivariate bubble function Wk : Ω → R,

Wk(x, y) = w[sk1, sk2](s) · w[tk3, tk4](t) with (s, t) = G−1(x, y).

Making use of these bubble functions, we can write the subspace W as

W = span {Wk, k = 1, . . . , nT } .

In order to estimate the error of uh, we have the straightforward choice of
creating a large system of equations for the Galerkin projection of ūh ∈ S̄,
similar to (3), and evaluating the difference uh − ūh. This approach, however,
has two drawbacks. One is the increased size of the linear system, and the
other one is compatibility of the basis functions in S and W . Though the
bubble functions also preserve the geometry by construction, it is not clear
how they match with the T-splines in terms of smoothness and approximation
properties.

A way out is to use the subspace W simply for error estimation purposes
and not for constructing a better approximation in an enlarged space S̄. As
suggested by Bank and Smith in [1], we are thus looking for an approximation
eh of the difference u−uh in W . This leads to the following weak form for the
error estimator: Find eh ∈ W such that

a(eh, v) = l(v)− a(uh, v) for all v ∈ W

Writing eh =
∑nT

k=1 εkWk, we get

AW,Wε = bW − AW,Sq

where q is the old coefficient vector of uh from the linear system (3) and
AW,W the stiffness matrix defined by AW,W

k,l = a(Wl, Wk) for k, l = 1, . . . , nT .
Moreover, bW is the right hand side vector and AW,S a rectangular matrix,
which are given by bWk = l(Wk) and AW,S

k,i = a(φi, Wk) for k = 1, . . . , nT
and i = 1, . . . , n. Because the bubble functions have disjoint supports, the
corresponding stiffness matrix AW,W is a diagonal matrix and therefore almost
for free to invert.

The error estimator η is now defined for Tk ∈ T by

η(Tk) := ||eh|Tk
||E = ||εkWk||E = εk

√
a(Wk, Wk) = εk

√
AW,W

k,k .
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It is reliable and efficient, if the saturation assumption on S̄ and the strict
Cauchy inequality for a|S×W hold with fixed constants in the whole refinement
algorithm (for definitions and proofs see [1]). Numerical tests revealed that the
first assumption is the critical one – its validity depends on the example.

5 Computational Examples

In this section we present results of our adaptive refinement algorithm for
three two-dimensional examples. We compare the adaptive T-splines solution
with the solution achieved by bicubic NURBS (degree p = 3) and uniform
h-refinement. We start with the stationary heat conduction on an L-shaped
domain that leads to a local decrease of regularity. The second example is from
linear elasticity and features stress peaks that should be detected. Finally, the
last example is an advection dominated flow with discontinuous boundary
conditions that introduce sharp layers in the interior and near the boundary
of the domain.

In all examples we also compute the condition number κ of the stiffness ma-
trix. It turns out that this number is only moderately increasing due to the
adaptive refinement, which indicates that the T-spline functions are linearly
independent. However, no formal proof is available yet.

5.1 Stationary Heat Conduction: L-Domain

We consider the L-shaped domain Ω = [−1, 1]2 \ [0, 1]2 and use the function
f : R+ × (0, 2π],

f(r, ϕ) = r
2
3 sin

(
2ϕ− π

3

)
as exact solution. After transformation to Cartesian coordinates, f satisfies
the Laplace equation ∆f = 0. Accordingly, we solve ∆u = 0 on Ω with
zero Dirichlet conditions at the part of the boundary that lies on the axes
0 = f

(
r, π

2

)
= f

(
r, 3π

2

)
and Neumann conditions determined by the exact

solution f elsewhere. See also Fig. 11 for the problem definition.

We do not model the geometry with double control points and use instead
ansatz functions that are continuous but not differentiable at the straight line
connecting the corners (−1,−1) and (0, 0). Global smoothness is thus C0 in
the isogeometric analysis, which leads here to better performance of the Gaus-
sian quadrature and the error estimation. The corner singularity implies that
the solution is not in H2(Ω), and thus classical convergence theory [4,5] does
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Fig. 11. Setup for the stationary heat conduction - n is the outer normal vector

not hold. On the other hand, a good error estimator should detect the singu-
larity and initiate appropriate local refinement steps. In Fig. 12a we can see
the resulting T-mesh where we used the error estimator and the refinement
strategy of the last section. The area of interest is detected and resolved lo-
cally. The condition of the stiffness matrix increases from κ0 = 110.0 from the
initial NURBS mesh to κT8 = 949.9.
Because we know where the refinement needs to be done, we compare the
adaptive results not only to isogeometric analysis with uniform refining strat-
egy, but also with a ’rule of thumb’ refinement strategy. The preimage of the
reentrant corner under G is (0.5, 1), and thus we only insert new knots in Ξ1

in the intervalls with start or end knot 0.5 and in Ξ2 in the last two intervalls.
The resulting mesh is shown in Fig. 12b, the condition of the stiffness matrix
increases to κrot7 > 3 · 105.

(a) The T-mesh after 8 refinement
steps, mapped on Ω – 652 DOF

(b) The ’rule of thumb’ refined
NURBS mesh after 7 refinement steps,
mapped on Ω – 475 DOF

Fig. 12. Refinements for the heat example

In Fig. 13 we measure the convergence of the numerical methods in the L2-
and energy norm. As foreseen, the uniform refinement decreases the error
only slightly, while the adaptive refinement with the T-splines performs best.
The manual ’rule of thumb’ refinement is suitable for the very first refinement
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steps where it can compete with the adaptive strategy. After this initial phase,
however, no further error reduction can be observed for this manual approach.

(a) The exact L2 error (b) The exact energy error

Fig. 13. Comparison of the convergence of the adaptive algorithm versus the two
non-adaptive ones

5.2 Linear Elasticity: Plate with a Circular Hole

This example is taken from the initial paper on isogeometric analysis [14]. We
consider the plate with circular hole in its center and study the linear elastic
behavior of the displacement field u : Ω → R2 described by

div σ(u) = 0.

The boundary conditions model an in-plane force in x-direction applied at
both sides of the plate. Due to this force we get a peak stress in x-direction
at the upper side of the hole. For a homogeneous and isotropic material this
problem features an exact solution that can be found in [12]. Due to symme-
try, it suffices to simulate solely one quarter of the plate. We have Dirichlet
boundary conditions along the coordinate axes, a free boundary at the hole
and the exact solution applied as a Neumann condition at the rest of the
boundary. The setup is displayed in Fig. 14.

As in the first example, we model the geometry without a double control
point to improve the Gaussian quadrature. Hence the ansatz functions are not
differentiable at the straight line connecting the upper lefthand corner with
the middle of the quarter hole, and global smoothness is again C0. In the two
subdomains divided by the straight line, however, we have locally C1 ansatz
functions.
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Fig. 14. Setup for the plate with a circular hole

In this example we study the maximal stress in x-direction σx within the plate.
The exact solution predicts this value at the upmost point of the quarter
hole to be σmax

x = 3Tx = 30. Fig. 15a shows the error σh
x − σmax

x where σh
x

is the actual result achieved by the adaptive respectivly the non-adaptive
isogeometric analysis. We see again that the adaptive algorithm leeds to a
faster error reduction.
However if we compare the errors in the energy norm, we get only a slight
improvement.

(a) The error of the stress σx at the
upmost point of the quarter hole

(b) The exact energy error of the solu-
tion

Fig. 15. Comparison of adaptive and non-adaptive solution

The resulting T-mesh is shown in Fig. 16. Here we can see that the algorithm
detects the critical areas nicely where the stress in x-direction is maximal (at
(0, 1)) and minimal (near (−1, 0)). The condition of the stiffness matrix grows
from κ0 = 9.1 · 105 to κT5 = 1.9 · 106.
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Fig. 16. The T-mesh after 5 refinement steps, mapped on Ω – 4302 DOF

5.3 Fluid Analysis: Advection Dominated Advection-Diffusion Problem

This example is also adopted from [14]. We solve the advection-diffusion equa-
tion

κ∆u + a · ∇u = 0

in the unit square with discontinuous Dirichlet boundary conditions as shown
in Fig. 17. In order to optimally resolve this discontinuity we use ansatz func-
tions that are not differentiable at the horizontal line starting from (0, 0.2).
The diffusion coefficient is set to κ = 10−6, and the advection velocity is
a = (sin θ, cos θ), which yields a high Peclet number. Thus the problem is
advection-dominated and sharp layers arise that start at the discontinuity of
the boundary condition.

Fig. 17. Setup for the advection dominated advection-diffusion problem - the esti-
mated position of the sharp layers is marked in grey for θ = 45o

The strong advection requires the use of SUPG stabilization (see [11]) with

stabilization factor τT = hT /2a and hT = diam(T )/
(√

2 ·max(cos θ, sin θ)
)
.

Since there is no exact solution, we skip a comparison between the adap-
tive and the non-adaptive algorithms and give in Fig. 18 solely data from
the adaptive runs. On the left, the T-meshes mapped on Ω are displayed, in
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the middle the numerical solutions at different refinement levels, and on the
right the patches that were marked by the a posteriori error estimator at the
corresponding level.

(a) The starting T-
mesh

(b) Initial solution with 575
DOF κ0 = 2656

(c) Patches to be re-
fined in step 1

(d) The second T-
mesh

(e) Refined solution with
1540 DOF κ1 = 7559

(f) Patches to be re-
fined in step 2

(g) The third T-mesh (h) Refined solution with
3115 DOF κ2 = 20212

(i) Patches to be refined
in step 3

(j) The last T-mesh (k) Refined solution with
6891 DOF κ3 = 90811

(`) Patches suggested
to be refined after the
last step

Fig. 18. Solving the advection diffusion problem with T-splines

We can see that the error estimator detects the internal layer as well as the
boundary layer. However, the refined patches above and below the diagonal
layer do not stem from the refinement strategy but from the insertion of ad-
ditional grid points in the T-mesh grid point insertion algorithm (as shown in
Section 3.2.5). Note that we refine our blending functions firstly in the hori-
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zontal direction and then in the vertical one, which leads to more refinement
in the s-direction than in the t-direction.

6 Conclusion

In this paper, we have shown that T-splines have the potential to overcome the
tensor-product mesh structure of NURBS in isogeometric analysis. Combined
with a straightforward a posteriori error estimator, we obtain an adaptive al-
gorithm that generates locally refined meshes and leads to substantial gains
in efficiency.
However, as one observes by comparing the first and the last column in Fig.
18, in some cases the refinement of T-splines is not as local as one would hope,
since the insertion of grid points may trigger a whole chain of additional re-
finement steps. We anticipate that this problem might become more severe for
the three–dimensional case.
Also, we remark that several theoretical questions concerning T-splines are
open, among them criteria for the linear independence of the blending func-
tions and the precise characterization of the corresponding function spaces.

Recently, the dimension of certain polynomial spline spaces over T-meshes has
been analyzed in [8]. If the degree is higher than (2s + 1, 2s + 1) for splines of
smoothness s, this dimension can be computed and a basis of the space can be
constructed. As a potential advantage of this approach, local refinement with-
out triggering additional knot insertions is supported. We feel that this latter
notion of spline spaces over T-meshes is promising for isogeometric analysis
though important issues such as the choice of a suitable (non-negative) basis
still need to be addressed.
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A Data for the examples

In this section we briefly summarize the data that is necessary for constructing
the basic geometry of the examples presented in Section 3.2.5 and 5. The
starting T-mesh is then obtained by p-refinement until p1 = p2 = 3 and , for
the examples in Section 5, additional knot insertions to obtain an already finer
mesh for the starting computations.

A.1 Worst Case Scenario: Unity Square

For the worst case scenario in Section 3.2.5 we used p1 = p2 = 1,

Ξ1 = {0, 0, 0.5, 1, 1} and

Ξ2 = {0, 0, 0.5, 1, 1}.

Because of the simpel shape of the domain Ω = [0, 1]2 the geometry function is
the identity – but to work here analogously to the other examples we construct
the identity as a T-spline using the control points in Table A.1. The weights
wi are all 1.

i Pi,1 Pi,2 Pi,3

1 (0, 0) (0, 0.5) (0, 1)

2 (0.5, 0) (0.5, 0.5) (0.5, 1)

3 (1, 0) (1, 0.5) (1, 1)
Table A.1
Mesh of the control points for the unity square

A.2 Stationary Heat Conduction: L-Domain

For the first example of chapter 5 we used p1 = p2 = 2,

Ξ1 = {0, 0, 0, 0.5, 0.5, 1, 1, 1} and

Ξ2 = {0, 0, 0, 1, 1, 1}.

Note that the double knot in Ξ1 at 0.5 leads to a reduction of the regular-
ity: The basis functions with 0.5 twice in their support (and with them the
geometry function) are only continuous at the line ξ1 = 0.5 but not differen-
tiable with respect to the first coordinate. This statement holds also after p-
or h-refinement.
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The L-domain is then constructed from the control points in table A.2 and
again constant weights wi = 1, for all i = 1, . . . , 15. Hence the denominator of
the NURBS is also constant and we have polynomial functions – B-splines.
Because the denominator remains unchanged through refinement, also all T-
spline functions are polynomials in this example.

i Pi,1 Pi,2 Pi,3

1 (−1, 1) (−0.6, 1) (0, 1)

2 (−1, 0) (−0.55, 0) (0, 0.5)

3 (−1,−1) (−0.5,−0.5) (0, 0)

4 (0,−1) (0,−0.55) (0.5, 0)

5 (1,−1) (1,−0.6) (1, 0)
Table A.2
Mesh of the control points for the L-domain

A.3 Linear Elasticity: Plate with a Circular Hole

Although this example is from [14], we do not use the data given therein
because the modelling with a double knot in the upper lefthand corner leads
to a singularity and problems for the numerical quadrature. Thus we use
p1 = p2 = 2,

Ξ1 = {0, 0, 0, 0.5, 0.5, 1, 1, 1} and

Ξ2 = {0, 0, 0, 1, 1, 1}.

Again, the corresponding basis functions and the geometry function are only
continuous at ξ1 = 0.5. The mesh of the control points as well as the weights
are displayed in Table A.3.

i Pi,1 Pi,2 Pi,3 wi,1 wi,2 wi,3

1 (−1, 0) (−2.5, 0) (−4, 0) 1 1 1

2 (−1,
√

2− 1) (−2.5, 0.75) (−4, 2) (1 + 1/
√

2)/2 1 1

3 (1/
√

2, 1/
√

2) (−1.5, 1.5) (−4, 4) (1 + 1/
√

2)/2 1 1

4 (1−
√

2, 1) (−0.75, 2.5) (−2, 4) (1 + 1/
√

2)/2 1 1

5 (0, 1) (0, 2.5) (0, 4) 1 1 1
Table A.3
Mesh of the control points and weights for the plate with circular hole
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A.4 Fluid Analysis: Advection Dominated Advection-Diffusion Problem

The data used here also differs from [14] in order to cope better with the
discontinuous Dirichlet boundary condition at (0, 0.2). More precisely, we have
p1 = p2 = 1 and

Ξ1 = {0, 0, 1, 1} and

Ξ2 = {0, 0, 0.2, 1, 1}.

Here the functions are not differentiable at ξ2 = 0.2.
This example has again the simple domain of the unit square and we choose
again the identity as geometry function. The control points for this example
are shown in Table A.4, the weights are again all 1.

i Pi,1 Pi,2 Pi,3

1 (0, 0) (0, 0.2) (0, 1)

2 (1, 0) (1, 0.2) (1, 1)
Table A.4
Mesh of the control points and weights for the advection-diffusion problem
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