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Abstract. We discuss piecewise rational motions with first order gedmeontinuity. In addition
we describe an interpolation scheme generating ratiotimlesmotions of degree four matching
given positions which are partially complemented by asgedi tangent information. As the main
advantage of using geometric interpolation, it makes isjiabs to deal successfully with the un-
equal distribution of degrees of freedom between the trajpof the origin and the rotation part
of the motion.

Key words: motion design, geometric interpolation, rational splinetion, geometric continuity

1 Introduction

Geometric interpolation techniques [1] generate splingesifrom given geomet-
ric data, such as points, tangents, and perhaps even cagmafarmation. As an
advantage, they generally require lower polynomial degjtiean standard methods.
For instance, a polynomial cubic in the plane can match twntpavith associated
tangents and curvatures [2], while the interpolation of paints with associated
first and second derivatives needs curves of degree five.

Geometric interpolation techniques are closely relatetiéaoncept of geomet-
ric continuity, which generalizes the notion of derivata@ntinuity by eliminating
the influence of the parameterization [3]. The present paperduces the new no-
tion of geometrically continuous rational spline motiomslalescribes a first geo-
metric interpolation method for motion design using pieisevguartic motions.

Bennett biarcs, which form another subset of the class oftiguational spline
motions, have recently been used for geometrically infetpa two positions with
associated tangent information [4]. It was observed tractttlisions between fixed
planes and moving points (and similar for fixed points and imgpyplanes) can be
detected simply by solving quartic polynomials. Howeveraadisadvantage, the
class of motions described by Bennett biarcs cannot hanatmns with changing
chirality (i.e., orientation of the instantaneous screwiones).
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The method described in this paper uses two segments afi@atjoartic motions
for interpolating three positions, two of which are compéatted by associated tan-
gent information. Compared to Bennett biarcs, they can leasrie additional posi-
tion, and no problems with the chirality of the motion aregenet. Still, the collision
between moving points and fixed planes leads simply to qupeolynomials, while
this is no longer true for collisions between moving planes fixed points.

The remainder of this paper is organized as follows. In $ac geometrically
continuous rational spline motions are presented. Thesgetion introduces the in-
terpolation problem for quartic rational spline motiongé®ection 4 provides its ex-
plicit construction together with some numerical exampldge paper is concluded
by some ideas for the future work.

2 Geometrically continuous rational spline motions

A rigid body motion is described by the trajectorft) = (va(t),va(t),v3(t))" of the
origin of the moving system and by thex3 rotation matrixXR(t). Using quaternions
q = (do,q1,02,03) ', the rotation matri>R can be represented by

05+ — 05— 03 2(qaG2—Gods)  2(0aCz+ Coh)
2(h02+GoGs) G5— 03+ 05— 03 2(0203 — Goth) |
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see [5]. The trajectory of an arbitrary pojmbf the moving system is
p(t) =Vv(t) + R(t)p. 1)

In particular we are interested irational spline motions which are obtained by
choosing rational spline (i.e., piecewise rational) fimresg; (t) andv;(t) represent-
ing the coordinates of the quaternion and of the trajectory.

Rational motions can be classified by the degree of theiedtajies, which is
called thedegree of the motion, see [6, 7]. In particular, by considering ouaid
polynomialsg;(t) one obtains rational motions of degree four or higher. Ireotd
obtain rational motions of degree four, the three functigrehould be chosen as

Wi

Vi=—————>5>; = 17 27 37 (2)
R R

wherew; are quartic polynomials.

Note that there is a remarkable discrepancy in the numbezgregs of freedom
(i.e., free coefficients) which can be used for specifying thtation matrix and
the trajectory of the origin. The rotation matrix of a quantiotion of this type is
controlled by 11 free parameters (4 (numbenQfx3 (number of coefficients per
quadratic polynomiadj) —1 (normalization)). On the other hand, the trajectory of
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the origin possessesdb = 15 degrees of freedom. Consequently, the trajectory of
the origin is far more flexible than the rotation part.

This discrepancy becomes even larger for motions of higlegrek. In order
to obtain a motion of degreed? the quaternion can be chosen as a polynomial
of degreed with 4(d + 1) coefficients (where one of them can be eliminated by
a normalization). The trajectory of the origin, constractecording to (2), then
provides 32d + 1) = 6d + 3 degrees of freedom.

Consider a rational spline curygt) with domainl = [0,M], whereM is the
number of segments of the curve, and knots (i.e., segmemtants) at the integers.
This curve is said to be geometrically smooth of first ordisg(aalledG! or tangent
continuous) if it is continuous®) and satisfies

Vsel® 3JA(s)>0: limp'(t)=A(s)limp'(t),
tls tTs
wherel° denotes the interior of the parameter intervdh other words, the curve
has a well-defined unit tangent vector everywhere. The ptmpality factorA is
equal to 1 everywhere, except for the knots, where it is assitmbe positive.

We say that a rational spline motion@ smooth if all its trajectories (1) a®*
continuous, where additionally the proportionality fastd are independent dd.
This is the case if and only if the curve in 12-dimensionalkcgpahich is defined
by the components of(t) andR(t) is G* continuous. This curve can be considered
as the image of the motion under the kinematic mapping studi¢8]. All point
trajectories are obtained as images of this curve undeeafi@ppings.

3 Interpolation problem

In the remainder of this paper we consider the following gewit interpolation
problem in motion design. Fom2+ 1 given positions, each of which is represented
by the coordinate€; of the origin of the coordinate system along with a normal-
ized quaternio®; (considered as fourdimensional vectgr}: 0,...2m, find aG!
smooth rational spline motion which interpolates thesaétjpos. Moreover, we as-
sume that every second position (with an even ingleis complemented by as-
sociated derivative informatioty for the motion of the origin and by; for the
guaternions. This additional derivative information ither specified by the user or
it can be estimated from the data, e.g., using the methodsided in [9].

Note that each rotation can be represented by two normajzatkrnions, which
differ by the sign of their components. We choose the signisatdhe standard inner
productQ| Qj1 in R* s positive.

More precisely, we are looking for seven continuous rati@mdine functions
v = (v1,V2,v3) " andq = (qo,q1,02,0q3) ' with domainl = [0,2m] which satisfy the
position interpolation conditions
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the tangent interpolation conditions

limv'(t) = ot limd'(t) = g u k=0,....m 4
t)2k () k L2k, tl2kq () kp2k 2k ) s 1 ( )

where fort = 2mthe limits from the left must be used, and B& conditions

., ., L, L, .
ltl?j“/ (t) = Aj Im)v (t), It|[rj1q (t) = Aj Igrl)q t), j=1,....2m-1. (5
The scaling factorpj, g andAj are unknown and should all be positive.

It should be noted that th&! conditions are sufficient, but not necessary for
the motion to be smooth. Indeed, they guarantee that theiguan curveq(t) is
G, but also certain no!-smooth quaternion curves may give tangent continuous
rational motions. Currently we are not aware of any sensibéeof these additional
degrees of freedom, and we therefore decided not to use them.

4 Construction of quartic rational spline motions

In this section, the technique of parabolic geometric méation inRR3 will be
used to construct quartic rational spline motions, see &@ [11] for the related
discussion in the space of curves. Since geometric intatipolschemes depend on
the dimension of the space, the quaternion data will be foamed to a particular
three-dimensional subspace, without changing the geame#raning.

Consider first the case with only two segments, nes 1. We start with the
construction of the spherical part of the motion. Recall gfraportional quaternions
represent the same rotation. We chopge- p, = 1. By the QR decomposition

[Uo, Q2—Qo, Up] =FU, F:= [y, f, f3] e R¥3, U e R¥3,

whereF 'F = | andU is an upper triangular matrix, we obtain an orthonormalasi
{fi}2_, of the threedimensional hyperplaé spanned byig, Q2 — Qo andu,.

In order to work in this threedimensional hyperplane, wethahsosep; so that
P1Q1— Qo € Z too. If Q1 — Qg is already in¥, thenp; = 1, otherwise

— det(fla f27f37 QO)
det(fy,f2,f3,Q1)°

Obviouslyp; will be positive if and only if both determinants in (6) haveetsame
sign.

In the next step, we construct a parabdalié polynomial splineq with knots
0,1, 2 satisfying

(6)

P1

a(2j) =Qzj, d'(2j)=ojuz, j=0,1, (7)

and
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1) = , limd'(t) = A1limd'(t). 8
q(1) =p1Q1 mq() 1”101() (8)

Clearly, the standard parabolic interpolation schenigdmloes not provide enough
freedom to solve this problem, thus the geometric intetpmiaechnique must be
applied (for general geometric methods see e.g. [1])giet qj ;1. ] = 0,1, be
the quadratic polynomial pieces qf(segments of parabolas). They can be written
in Bernstein-Bézier form as

do(t) := QoB2,o (t) +Qo1B2,1 () +P1Q1B22 (1), 9
qu(t) :=p1Q1B2o(t — 1)+ Q12B21 (t —1) + Q2B2 (t — 1), (10)

whereBn(t) = (1)t (1—t)"" are the Bernstein basis polynomials of degreBasic
properties of Bézier curves (see e.g. [3]) imply

d0(0) =2(Qo1—Qo), 01(2) =2(Q2—Q12).

Now (9) and (10), along with the interpolation condition}, (ad to

1 1
Qo1=Qo+500Uo, Q12=Q2— 502U2. (11)
TheG! condition (8) can be rewritten as

Q12— P1Q1=2A1(p1Q1—Qo1)

and (11) finally gives the nonlinear system

1 1
—E)\laouo +MAQo+ 502Uz = AQ,

for 0p, 01,A1, whereAQq := p1 Q1 — Qp andAQ; := Q2 — p1 Q1. Fortunately, this
system can be transformed into to the linear form

A100
FT I:_:_ZLu07 AQOa :_ZLUZ:I )\l - FTAQl)
02
and Cramer’s rule yields
D, D4 D,
0=25, %2=25., M=g, (12)

whereD :=F " [ug, AQo, AQ1, Uz], andD; is the determinant of the submatrix of
D with i-th column omitted.

The sufficient and necessary conditionsdgr g, andA; to be positive is that all
determinant®;, i = 1,2, 3,4, have the same sign.

There is also a simple geometric interpretation of thistsmiu(see Figure 1). Let
2o be the plane spanned lpy Q1 and the linefg throughQg in the direction ofug.
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Further, let>; be another plane defined lpy Q; and the linef; throughQ- in the
direction ofu,. This two planes determine the line which interségtand/ in Qo1
andQq», respectively. The solution is admissible if this two is&etions lie on the
proper sides of the poin@@g andQ>.

Fig. 1 Geometric construction of control poin@; andQ12 given by (11).

We are now left to construct the trajectoryf the origin of the moving coordi-
nate system. Let be composed of two quartic rational spline curves

w
Vii=Vljjty, V= [ rj=|ajll>, j=0,1,
wherewp, wy are the unknown polynomial curves of degreet, andqp,q; are
obtained from the interpolation of the rotational part. &ldbhat the parameters
0p,01,A1 are already fixed by (12). The interpolation conditions (&), and (5)
clearly do not provide sufficiently many equations to unigubeterminewg, w;.
One way to use the additional freedom is to to restsicto a cubic polynomial and
prescribe also the tangent directiinat C;. Then a standard cubic interpolation
scheme can be applied to determing j = 0, 1, that satisfy

wj(k) =rj(K)Cx, k=j,j+1, j=0,1,
and

Wo(0) = ro(0) doto+ rp(0) Co,  Wo(1) =ro(1)t1+ro(1)Cy,
W&(l) = )\1I’1(1)t1—|— I’g_(l) Cq, W&(Z) =02 r1(2) to+ I'S_(Z) Co.
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Fig. 3 Motion of a cube with seven interpolated positions (left)l &ine trajectories of corners of
one side of the cube (right).

The presented scheme for= 1 is clearly entirely local. Consequently, for> 1,
it can be applied on consecutive pairs of segments. Thisgi@ rational quartic
spline motion.

Let us demonstrate the performance of the presented indtiggo scheme by
some numerical examples.

Figure 2 shows the motion of a cube with seven interpolatsitipas. The input
data were the positions of the center and the unit quatesnidrich corresponds
to the rotations. The directiorts were estimated using local parabolas (Bessel
scheme), and the quaternion directianswere obtained as proposed in [9]. Fig-
ure 3 show another motion of a cube together with the trajgabcorners of one
side of the cube.

5 Conclusion

This paper was devoted to piecewise rational motions witt érder geometric
continuity. As an application of these motions we descrérethterpolation scheme
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which generates rational spline motions of degree four feosequence of given
positions, some of which are complemented by associatggtarinformation. As
demonstrated by the results, the use of geometric inteipolmakes it possible to
deal successfully with the uneven distribution of the degref freedom between
the trajectory of the origin and the rotation part of theaaél motions.

Future work will focus on the asymptotic behaviour of theeipblation scheme,
where we plan to analyze the relation between the samplingitye(i.e., the dis-
tance between the positions which are to be interpolated)tlam behaviour and
existence of the interpolating motion, and on the extensfdhese concepts to mo-
tions with higher order of smoothness.
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