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Abstract

In many applications it is required to have a curvature-dependent surface sampling,

based on a local shape analysis. In this work we show how this can be achieved by using

the support function (SF) representation of a surface. This representation, a classical

tool in Convex Geometry, has been recently considered in CAD problems for computing

surface offsets and for analyzing curvatures. Starting from the observation that triangu-

lar Bézier spline surfaces have quite simple support functions, we approximate any given

free-form surface by a quadratic triangular Bézier spline surface. Then the correspond-

ing approximate SF representation can be efficiently exploited to produce a curvature

dependent sampling of the approximated surface.

Keywords: Support function, triangular Bézier surfaces, quadratic

patches, data sampling.

1. Introduction

One of the main tasks of Computer Aided Geometric Design is to rep-
resent curves and surfaces, satisfying some interpolations or approximation
conditions, in a way which allows an easy manipulation for further ap-
plications (see for instance [6]). The most important performed operations
are usually offsetting, convolution computations, feature lines computations
and extraction of information on curvatures and other geometric quantities.

Among all representations, NURBS (Non Uniform Rational B-Spline)
are widely used and therefore a big deal of research has been done, for
example, in order to detect subsets of NURBS closed under offsetting or
the more general convolution operation, or to characterize specific tools for
defining the geometric features of the curves and surfaces.
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In this context quite recently it was noted that a simple approach to
deal with offsets and convolutions is to use the support function (SF) repre-
sentation of surfaces. The support function representation is a classical tool
in the field of Convex Geometry (see e.g. [3], [8]); it consists in describing a
surface by the distance of its tangent planes to the origin of the coordinate
system, and such a distance is seen as a function on the unit sphere. The
surface can be then recovered from its support function by computing the
envelope of the tangent planes.

The application of support function representation to problems from
Computer Aided Design was noted for the first time in [14], but only re-
cently has been investigated effectively, [9,16,17]. In these papers the shapes
(curves and surfaces) which can be described by particular types of sup-
port functions -polynomial, rational, or piecewise linear- are considered
and their geometric properties are discussed. In particular it is shown that
the class of curves and surfaces with (piecewise) polynomial support func-
tions is closed under convolutions, offsetting, rotations and translations.
Indeed these operations correspond to simple algebraic operations of the
corresponding support functions. Moreover we can see that the SF repre-
sentation leads also to particularly simple expressions for quantities and
mappings governing the differential geometry of the surfaces.

In this paper the approximation of a free-form surface with a quadratic
triangular Bézier spline is considered. Such an approximation is done, fol-
lowing [7], by considering a C1 quadratic spline quasi-interpolant. This
implies the approximation of the corresponding support function. We see
that each quadratic Bézier triangular patch has support function given by
a rational function defined over a spherical triangle whose boundaries are
conic sections. Therefore the support function of a triangular Bézier spline is
given by a, possibly multi-valued, rational function defined over a partition
of spherical triangles on the unit sphere.

The support function of a free-form surface is then approximated by
the support function of the corresponding triangular Bézier spline approx-
imation. In this way we can exploit this last SF representation to extract
geometric information of the surface and to manipulate it for further mod-
elling.

As an interesting application we show how to determine a curvature de-

pendent surface sampling. The key idea is given by observing that a uniform
point set on the unit sphere can be mapped through the envelope operator

(defined from the SF) to a curvature dependent point set on the surface.
The remainder of the paper is divided into four sections. In the next

section we review the main definitions and properties of support function
representation of a surface. In Sect. 3 the approximation of general surfaces
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by quadratic ones is studied and the computation of the corresponding
piecewise support functions is considered. Then Sect. 4 will be devoted to
the computation of curvature-adaptive sampling points: the method is first
presented in the univariate case and then the surface case is considered.
Section 5 concludes the paper.

2. Preliminaries

Given a surface x(u, v) : Ω → R
3 : (u, v) 7→ x(u, v), each point has an

associated unit normal

(1) N : Ω → S
2 : (u, v) 7→ N(u, v) ,

where S
2 is the unit sphere. The mapping N, which depends smoothly on

u, v and defines an orientation of the surface, is bijective provided that the
surface does not have parabolic or singular points.

Let us consider now the distance between the tangent plane and the
origin

(2) H : Ω → R : (u, v) 7→ N(u, v) · x(u, v) .

Then the support function is defined as the composition of the inverse map
of N with the above function H

(3) h : S
2 → R : h = (N)−1 ◦ H .

The support function assigns to each unit normal the distance between the
corresponding tangent plane and the origin of the coordinate system.

Fig. 1. A graphical scheme of the definition of the support function.

If a support function h : D → R is given, where D ⊆ S
2, then the

associated surface is obtained by computing the envelope of the tangent
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planes

(4) {p : h(n) = n · p}, n ∈ D .

More precisely, for any n ∈ D we can compute the point on the envelope
surface as

(5) xh : n 7→ xh(n) = h(n)n + (∇S2h)(n),

where with ∇S2 we indicate the embedded intrinsic gradient with respect
to the unit sphere. If h∗ is the extension of h defined over all R

3 then the
intrinsic gradient can be obtained by projecting the usual gradient into the
tangent plane of the sphere,

(6) (∇S2h)(n) = (∇h∗)(n) − [(∇h∗)(n) · n]n .

In conclusion we can define the envelope operator E which associates a
surface xh to a support function h,

(7) E : C1(S2, R) → C(S2, R3) : h 7→ xh.

We may note that the envelope operator E is a linear mapping and defines
an isomorphism between the linear spaces C1(D, R) and its images, where
the addition in the image space is given by the so called convolution of the
surfaces (for more details see [15,9]).

3. Approximation of surfaces and their support functions

In general, given a quadratic surface patch

(8) p(u, v) =
1

2
a20u

2 + a11uv +
1

2
a02v

2 + a10u + a01v + a00,

its support function can be found by eliminating u, v from the following
system of equations:

(9)
h(n) = n · p(u, v),

n · pu(u, v) = 0, n · pv(u, v) = 0

The last two equations are linear in u, v, then we can make these parameters
explicit with respect to n = (n1, n2, n3) and substitute the result into in the
first equation, finding the expression of the support function of the surface.
By straightforward computation it is easy to see that we obtain a rational
expression for h, which is given as the quotient of a cubic and a quadratic
homogeneous polynomial.
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In particular our attention will be focused on quadratic triangular Bézier
surface patches
(10)

x(u, v,w) =
∑

i+j+k=2

B2
i,j,k(u, v,w)bi,j,k, u, v, w ≥ 0, u + v + w = 1 .

where (u, v,w) are barycentric coordinates with respect to some domain
triangle ∆ ⊂ R

2, the basis functions 2
i!j!k!u

ivjwk are the bivariate Bernstein
polynomials of degree 2 and the coefficient vectors bi,j,k are called control

points. This representation is very common in CAD applications for its
simplicity and many useful geometric properties, for instance the surface
patch is contained in the convex hull defined by the control points. An
example is given in Fig. 2. For more details see for instance [6].
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Fig. 2. An example of a quadratic triangular Bézier patch.

Recently it was found out that quadratic triangular Bézier splines also
belong to the class of surfaces with odd rational support functions and
therefore it can be proved that they belong to the family of surfaces
which can be equipped with a linear field of normal vectors. This nice fea-
ture allows the exact computation of a rational parameterization of offsets
and convolution surfaces, [10,11,12,15]. A Bézier patch, by construction, is
uniquely defined once its control points are assigned. A triangular quadratic
patch is defined by 6 control points: the three vertices of the triangle and
one additional point for each side (we have no inner control points in the
quadratic case). Considering the patch of Fig. 2, its control points are given
by

(11)
b2,0,0 = (2, 0, 0)T ,b0,2,0 = (0, 2, 0)T ,b0,0,2 = (0, 0, 2)T ,

b1,1,0 = (3
2 , 0, 0)T ,b1,0,1 = (0, 3

2 , 0)T ,b0,1,1 = (0, 0, 3
2)T ,
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then the expression of the support function is given by
(12)

h(n) =
5(n3

1+n3
2+n3

3)+4(n2
1n2+n2

1n3+n1n
2
2+n1n

2
3+n3n

2
2+n2

3n2)+13n1n2n3

2(n1
2 + 3n1n2 + n2

2 + 3n1n3 + 3n2n3 + n3
2)

.

In the next paragraph we present a method to approximate general
free-form surfaces by quadratic triangular Bézier splines.

3.1. Quadratic spline approximation

Given a free-form parametric surface we want to build a quadratic tri-
angular Bézier spline of the form (10), which approximates it.

The construction is done component by component. For each component
we may consider the C1 quadratic spline quasi-interpolant described in
[4,7]. For the sake of completeness we report briefly the basic steps of the
construction.

In the parameter domain Ω, that without loss of generality can be as-
sumed equal to [0, 1]2, we consider a rectangular grid given by a set of
mn isoparametric lines and then we endow it with the so-called criss-
cross triangulation constructed taking all the diagonals of each subrectangle
Ωi,j = [ i

n
, i+1

n
] × [ j

m
j+1
m

], i = 0 . . . n − 1, j = 0, . . . ,m − 1.
Given a function f defined in Ω, we then consider the C1 quadratic

spline quasi-interpolant defined by

Qf =

n∑

i=0

m∑

j=0

µij(f)Bij

where Bij are the classical C1 quadratic box splines obtained as translates
of the Zwart-Powell element (see [5]), and µij(f) are appropriate linear
combinations of vertex values and/or centre values of adjacent subrectangles
( [4,7]). We note that various choices for the coefficients µij(f) are possible,
giving rise to different quasi-interpolants, sharing optimal properties.

We can see that these quasi-interpolant operators reproduce exactly the
space of bivariate polynomials and produce optimal approximation order
for smooth functions and their derivatives. More precisely, denoting with
k = max{ 1

n
, 1

m
}, with ‖ · ‖∞,Ω = ‖ · ‖∞ = the supremum norm over Ω, and

with Dβ = ∂|β|

∂uβ1∂vβ2
, |β| = β1 + β2, we have ( [4,7])

(13) ‖f − Qf‖∞ ≤ C0k
3, ‖Dβ(f − Qf)‖∞ ≤ C1k

2 with |β| = 1.

where the constants Ci depends solely on the function f.
In the case of parametric surfaces, we can obtain the above bounds for

each component and taking the maximum norm we can conclude that the
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maximum difference between a surface x(u, v) and its approximant p(u, v)
can be bounded by C̃k3.

3.2. Support function approximation

Given a quadratic triangular Bézier spline, let us study now its support
function.

Let us consider first a single triangular patch. In order to construct its
support function we have to determine the region on the unit sphere which
is the domain of the support function, that is the image of the mapping
N introduced in (1). We should assume that the Bézier triangle does not
contain any parabolic points. In [1] it was noted that the parabolic points
of quadratic Bézier triangles determine curves which are images of straight
lines in the parameter domain. Therefore in these cases it is sufficient to
split the triangle along these lines, in order to exclude parabolic points.

Now, considering the points on the surface, the domain of the support
function can be also seen as the image of the Gaussian map of the patch.

(14) G : M ∈ R
3 → S

2 : p 7→ np

With the help of a computer algebra system it is easy to see that the Gaus-
sian image of a quadratic triangular patch is a spherical triangle with curved
boundaries (conic sections). Such curves are obtained by the intersection of
the sphere with three quadratic cones. If one of these cones is singular the
spherical triangle may degenerate into a biangle. The support function will

Fig. 3. A quadratic triangular patch and the domain of its support function on the unit
sphere.

be then given eliminating u, v in (9) and solving them with respect to n.
In the case of a quadratic spline the support function will be obtained

collecting the support functions of all triangular patches constituting the
spline. The resulting support function will be given by a, possibly multi-
valued, piecewise C0 rational function on the unit sphere, defined over a
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collection of curved spherical triangles.

Remark 3.1. As we have said in the previous section, in order to have
a well defined support function, we have to exclude singular points and
parabolic ones. The last case can be checked considering for each triangular
patch the sign of the principal curvatures. In particular we check the sign
of the Gaussian curvature (achieved by computing the first and the second
fundamental forms) and we classify the patches in elliptic and hyperbolic
ones according to their curvature sign. Then we can treat them separately.
The patches with some points of zero curvature can be subdivided till small
(up to a fixed tolerance) regions containing isolated points or curves of
parabolic points are detected According to the various applications these
region will be handled differently.

Regarding the approximation order, from the error estimates (13), we
can prove that the distance between the SF of a given surface hx and that
of its approximant hp can be bounded by Ĉk3.

4. Curvature-dependent sampling

In Computer Aided Geometric Design (CAGD), curves and surfaces
have two standard representations: parametric and implicit. The paramet-
ric representation offers a number of advantages, e.g., simple techniques for
display and for analyzing the geometric properties as well as fast generation
of point meshes, fast visualization and interactive modelling. On the other
hand, implicitly defined surfaces are better suited in many applications,
for instance for the possibility of defining solids. Indeed the representa-
tion of geometric objects based on volumetric data structures guarantee
e.g., fast surface interrogation or Boolean operations such as intersection
and union. However, surface based algorithms like shape optimization (fair-
ing) or freeform modelling often need a topological manifold representation
where neighborhood information within the surface is explicitly available.
Consequently, it is necessary to find effective conversion algorithms to gener-
ate explicit surface descriptions for the geometry which is implicitly defined
by a volumetric data set. Since volume data is usually sampled on a regu-
lar grid with a given step width, we often observe severe alias artifacts at
sharp features on the extracted surfaces. Then it is crucial to have a surface
sampling which is feature sensitive and thus reduces these alias effects.

Surface sampling is used in many other applications such as Computer
Graphics and Visualization (e.g.in biomedical problems), as well as subdi-
vision and surface reconstruction (see for instance [2,13]).

The aim of this section is to present a simple method to determine a
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surface sampling which is based on a local shape analysis. The main tool
to achieve this is to use the support function representation of a surface.

4.1. The curve case

It is convenient to illustrate to idea first in the curve case. Given a
quadratic spline it is always defined the corresponding support function. In
this case the domain will be the unit circle. If we take a uniform set of points
in the unit circle and we map back through the envelope operator defined
by (7), we obtain a set of sampling points of the curve which is curvature
dependent. This is basically due to the fact that the support function, being

Fig. 4. A uniform point set on the unit circle is mapped in a curvature-dependent
sampling on the curve.

defined in the Gaussian circle, by construction contains information about
the curvature, see Fig. 4-5.

Fig. 5. Curve sampling. Left: the polygonal line connecting a uniformly sampled set of
points in the curve. Right: the polygonal line connecting the curvature-dependent set.

The idea of sampling planar curves using an approach which takes into
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account curvature information was first investigated in [18], where the mag-
nitude of the curvature signature function was studied.

4.2. The surface case

In the surface case we start from a uniformly distributed set of points
into the unit sphere, for instance we can take the points coming from a
uniform refinement of an icosahedron. In more detail having the quadratic
triangular spline approximating a given surface, as we have seen in Sect. 3,
the SF is given by a piecewise function defined over a partition of the unit
sphere. Taking a point on the unit sphere if it belongs to the domain of the
SF, it will be mapped by the envelope operator into a point of the surface.
The number of sampling points depends by the number of points on the
unit sphere. Figures 6-7 show two examples, where in the first one two sets
of sampling points are constructed.

Fig. 6. Example of a part of an ellipsoid surface. Centre: a resulting sampling set. Right:
a finer sampling.

Fig. 7. Example of a non convex surface. Right: a resulting sampling set along with the
approximating surface.
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5. Conclusion

In this paper we have shown how the support function representation
can be used effectively to construct a sampling set of a surface which is
curvature dependent and therefore preserves its main features.

In general the SF may be not explicitly available for generic surfaces
and therefore, as an intermediate step, a method to efficiently approximate
a given surface with a triangular Bézier spline is presented. In this way
we can use the SF of quadratic triangular splines which can be explicitly
computed.
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