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Abstract

We present an algorithm for robust Boolean operations of triangu-
lated solids, which is suitable for real-word industrial applications
involving meshes with large numbers of triangles. In order to avoid
potential robustness problems, which may be caused by (almost)
degenerate triangles or by intersections of nearly co-planar trian-
gles, we use filtered exact arithmetic, based on the libraries CGAL
and GNU Multi Precision Arithmetic Library. The method con-
sists of two major steps: First we compute the exact intersection
of the meshes using a sweep plane algorithm. Second we apply
mesh cleaning methods which allow us to generate output which
can safely be represented using floating point numbers. The perfor-
mance of the method is demonstrated by several examples which
are taken from applications at ECS Magna Powertrain.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

Keywords: Boolean operation, triangulated surfaces

1 Introduction

Triangular meshes are commonly used as representation of geomet-
rical objects in manufacturing. Especially at the later stages of the
product development pipeline, where frequently components pro-
vided by different suppliers have to be combined in the final prod-
uct, these meshes are often the only available description of the
different components.

In order to simulate the manufacturing process, it is essential to be
able to perform basic geometric modeling tasks with triangulated
solids, e.g. CSG operations, cf. [Hubbard 1996]. In particular, we
focus on the problem of Boolean operations of triangulated solids.
For our applications, which are related to the simulation ofvarious
manufacturing processes in the automotive industry, it is essential
that these operations give reliable results for all input meshes, even
if (nearly) tangential intersections are present.

The discussion of Boolean operations for meshes has a long history.
Already in the mid 80s, the first methods working with arbitrary
precision arithmetics appeared. Typically, the method arecharac-
terized by a large number of case distinctions [Laidlaw et al. 1986;
Ayala et al. 1985]. The plane-based representation of meshes, along
with applications to robust modeling operations, was introduced in
[Sugihara and Ira 1989].

In principle, the intersection curve of two triangulated solids can be
computed using a simple triangle-to-triangle intersection test, see
e.g. [Thomas and Prosolvia 1997; Tropp et al. 2006]. In orderto
obtain an efficient algorithm, however, we aim at minimizingthe
number of intersection tests. This can be achieved by using one
of the various bounding volume methods, such as hierarchiesof
bounding volumes, octrees, etc. See [Jimenez et al. 2001; Chang
et al. 2010] and the references cited therein.
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Another intersection technique for meshes has been described by
[Teschner et al. 2003]. In a recent paper dealing with the inter-
section of triangular meshes, [Park 2004] uses a combination of
a space-partitioning method with visibility information for find-
ing the self-intersections of a triangular mesh. The intersection of
quadrilateral meshes is considered in [Lo and Wang 2003]. Gener-
ally these polygonal algorithm suffer from numerical errors.

Even in the case of NURBS surface, the robust and efficient compu-
tation of the intersection is still a challenging task. Using methods
of approximate algebraic geometry, it has recently been studied in
the frame of the European GAIA II project, see [Dokken 2008].

For real-world applications involving triangular meshes,we need
an algorithm which produces a valid result for all input meshes.
In a manufacturing environment, robustness and high reliability is
required. The associated geometrical computations lead toa great
variety of non-trivial problems. On the one hand, this is dueto
intersections of almost coplanar triangles, which have to be com-
puted robustly. On the other hand, the intersection of two triangular
meshes sometimes leads to triangles with one ore more extremely
short edges, which cannot be represented correctly using floating
point arithmetic.

In his classical textbook, [Hoffmann 2005] presents an algorithm
for Boolean operations on boundary representation. In particular,
he addresses the need for robust and error-free geometric opera-
tions. We use these ideas in our work and apply them in the context
of industrial applications.

In a recent paper, [Pavic et al. 2010] present a hybrid methodfor ro-
bustly representing and computing the intersection of triangulated
solids. The authors use a local volumetric model and generate a
new mesh – which preserves the features of the intersection curve –
along the intersection. The method generates an error in themodels,
which can be controlled by the resolution of the octree-based volu-
metric model. The size of the examples presented in the paperdo
not reach the scale needed for our applications, where meshes with
millions of triangles occur frequently. The authors did notprovide
information about memory requirements.

The powerful library [CGAL 2009] provides a package [Hachen-
berger and Kettner 2005] which implements a B-rep data structure
that is closed under Boolean operations. This method relieson
exact arithmetic to avoid the well known problems with floating-
point arithmetic. The underlying data structure - which is based on
Nef polyhedra – is not memory efficient and hence not suitablefor
Boolean operations involving large meshes. Nevertheless,this im-
plementation of exact operations for triangulated solids is currently
considered as a standard reference.

[Bernstein and Fussel 2009] used the concepts of plane based
geometry representation and BSP (binary space partitioning,
[Thibault 1987; Thibault and Naylor 1987]) in order to construct
exact and robust Boolean operators with low algorithmic complex-
ity. This approach has recently been used for intersecting polygonal
meshes [Campen and Kobbelt 2010]. The method described in the
latter paper performs an exact intersection of two triangulated ob-
jects in BSP representation, and generates an exact output in this
representation. It does not address the exact conversion ofthe re-
sult into a triangular mesh in detail.

One approach to overcome limitations in numerical accuracyis the



use of multiple precision libraries, and our method is basedon it.
Our goal is to modify the input geometry as little as possible, since
it is the only available geometric information at this stageof the de-
sign process. Our method consists of two steps: First, we convert
the given vertices of the meshes to points having rational coordi-
nates and we compute the intersection of the meshes using a sweep
plane algorithm. Second, we apply a mesh cleaning procedurethat
allows us to generate output which can safely be representedusing
floating point numbers.

The remainder of this paper is organized as follows. First wede-
scribe the details of the problem and give an outline of our ap-
proach. The following section describes the details of the algo-
rithm. Section 4 is devoted to the implementation of the method us-
ing filtered exact arithmetic. Finally, in Section 5, we use several re-
alistic examples as well as an artificial example to compare the im-
plementation of our approach with an implementation which uses
the ’join’ operation of CGAL’s NEF Polyhedron package [Hachen-
berger and Kettner 2005].

2 Problem description and outline

In this section we define the problem and provide an overview of
our method. The details will be in the following section.

2.1 The problem

We consider two solid objectsA andB in three-dimensional space,
A,B ⊂ R3. Both are given by their boundary representations, where
the boundary surfaces∂A and∂B are described by oriented trian-
gular meshesA and B. In our applications, the input typically
consists of car parts, where the numbers of faces is in the range
between 103 and 1010.

We assume that both solids are different. Consequently, thein-
tersection of any two triangles△ ∈ A and △′ ∈ B is either
empty, a point, a line segment, or a planar polygon. Each trian-
gle△ = (v1,v2,v3) ∈ A (and analogously forB) is described by
an ordered list of vertices. The orientation of the triangles is cho-
sen such that the normal vectors(v2−v1)× (v3−v1) (at any inner
point of the triangle) point outwards.

Mathematically, we will considerA andB as sets of oriented tri-
angles. In the implementation, we use the half-edge data structure
representation of CGAL [CGAL 2009]. We assume that the given
triangular meshes are bothclean in the following sense.

1. Both meshes are assumed to be valid boundary surfaces of
three-dimensional solid objects. Thus, the meshes do not
contain holes or boundary edges.

2. Every edge of any triangle ofA or of B belongs to exactly
two triangles. Consequently, the meshes do not possess any
hanging nodes or degenerate triangles.

3. The meshes are assumed to be robust with respect to small
perturbations of the coordinates of the vertices. More pre-
cisely, if we replace the verticesvi by new verticesv′i, such
that||vi −v′i|| ≤ ε, whereε is the accuracy of the chosen geo-
metric representation, then we obtain again a valid boundary
representation of a three-dimensional solid.

The last property is needed when using floating point numbersfor
representing the coordinates of the vertices, since these coordinates
are then only known with limited accuracy. The accuracy depends
on the size of the bounding box, which includes both the origin

of the chosen coordinate system and the two objects, and on the
number of significant digits.

We discuss a method for Boolean operations of union (which is
often called merging in our applications), intersection and differ-
ence of the two solid objects. For instance for the union operation,
the boundary representationM of the unionM = A∪B of the two
solids satisfies

∂M = (∂A∪∂B)\M◦
, (1)

whereM◦ denotes the interior of the setM ⊂ R3.

The other two Boolean operations intersection and difference can
be obtained from the same equation by first inverting the orienta-
tion of the faces of the solids (hence replacingA or B with R3\A orR3 \B, respectively), and secondly inverting the result of the oper-
ation. Since the Boolean operations of union, intersectionand dif-
ference essentially require the same computation, except for some
pre- and postprocessing steps, we will only consider the union op-
eration in the remainder of this paper. Moreover, since it iscommon
in the automotive industry to denote the union operation asmerge
operation, we will use this notation from now on.

2.2 The intersection curve of triangular meshes

In order to find the boundary representation of the Boolean opera-
tions, we need to analyze the intersection curveC = ∂A∩∂B of the
two boundary surfaces. The intersection curve is a piecewise lin-
ear object, which may be a collection of curves. For simplicity, we
will call it “the” intersection curve, even if it may consistof several
components.

In the generic situation, this curve is simply a collection of closed
curves. In special cases, however, it might also contain open curves
and two-dimensional components. Open curves occur if the solids
just touch each other along these curves . Two-dimensional com-
ponents would be present if the solids touch each other in oneor
several faces.

We represent the intersection curveC by a setC of line segments
which form at least one polyline. More precisely, we use the fol-
lowing conventions.

1. Each closed curve is represented as a closed polyline, which
may contain planar loops.

2. Each open curve is represented as a degenerate polyline,
where each edge is repeated twice with opposite orientations.

3. Two-dimensional components are represented by their bound-
ary curves, and points are represented as degenerate curves.

Clearly, it may happen that open and closed curves, as well astwo-
dimensional components, meet in common vertices.

2.3 Outline of the algorithm

In order to generate a boundary representation of the union (merge)
operation, we propose the following algorithm.

1. Compute the line segments which form the intersection
curve(s)C .

2. Refine the triangular meshesA andB such that all edges in
C are contained in the adapted meshesA ∗ andB∗. Collect
the line segments which form the intersection curve(s) to
polylines which match the orientation of the facets of the
given meshes.



Figure 1: Example 1: The two intersecting surfacesA (blue) and
B (green). A clipping plane has been used in order to show the
interior parts of both objects.

3. Find the output meshM by deleting the setsA ∗ ∩B◦ and
B∗ ∩ A◦ of triangles which are contained in the interiorA◦

and B◦ of the other objectA and B, respectively, from the
unionA ∗∪B∗.

4. (Optional:) If the mesh is to be exported with limited accu-
racy (floating point coordinates), then it is cleaned up before
exporting. The cleaned mesh is denoted withM c.

The computations in steps 1-3 are done with filtered exact arith-
metic. Consequently, these computations are numerically robust
and produce a valid mesh, as no numerical errors are present.The
optional cleaning step - which is needed in order to produce floating
point numbers - gives an approximationM c of the exact boundary
representationM of the merged objectM = A∪B.

Example 1 We use a simple example to describe our algorithm.
The two solid objects are shown in Figure 1. The first object (shown
in blue) has been constructed as the set-theoretic difference of a
triangulated ball and a triangulated cone. The second object (shown
in green) is simply a ball.

3 Details

Step 1: Computation of the intersection curve C

Let us assume that the meshesA and B consist ofa and b tri-
angles. Obviously, it does not make sense to perform intersection
tests for allab pairs of triangles. We use axis–aligned bounding
boxes, a sweep plane algorithm and dynamical R-trees [Guttman
1984; Manolopoulos et al. 1989] in order to obtain a more efficient
algorithm. A sweep plane algorithm provides a sequential pro-
cessing and therefore a low memory usage. The R-tree increases
the efficiency of intersection tests. This is a reasonable compro-
mise between computational efficiency and ease of implementation.
Clearly more sophisticated techniques exist and could be used in-
stead, see e.g. [Teschner et al. 2003].

Axis Aligned Bounding Boxes and Preprocessing. We use
two- and three-dimensional axis-aligned bounding boxes. First, we
denote withH(X) the three-dimensional axis-aligned bounding box
of a setX ⊂ R3, whereX is either a single triangle or a set of trian-
gles. Second, we denote withR(X) the projection of this bounding
box into thexy-plane, which is simultaneously the two-dimensional
bounding box of the projection ofX .

We use the bounding boxes ofA andB for a simple preprocessing
step. Obviously, it suffices to consider only the triangles△ in A

andB having a bounding boxH(△) which possesses a non-empty

Figure 2: Example 2: The intersection of the two bounding boxes
H(A )∩H(B) (left) and the triangles contained in the submeshes
A + and B+ which are potentially relevant for the intersection
curveC (right).

intersection with the intersection of the two bounding boxes,

H(△)∩ [H(A )∩H(B)] 6= /0. (2)

We denote these sets of triangles withA + andB+, respectively.

Example 2 We continue the first example, by restricting both tri-
angular meshes to triangles whose bounding boxes interferewith
the intersection of the two global bounding boxes. The resulting
subsets of the triangular meshesA andB are shown in Figure 2.

Sweep Plane Algorithm and Dynamic R-tree. In order to
further restrict the pairs of triangles inA andB which we need
to consider for mutual intersection, we use a sweep plane algo-
rithm, which takes the two setsA + andB+ as input. We con-
sider a sweep plane, which is parallel to thexy-plane, and moves
from the smallest to the largestz–coordinate of the vertices in
A + ∪B+. The algorithm generates a list containing all pairs of
triangles(△,△′) ∈ A + ×B+ with a non-empty intersection.

Theevents of the sweep plane algorithm are thexy-parallel faces of
the bounding boxesH(△), △∈ A +∪B+, sorted according to the
value of theirz-coordinates. If two events have the samez-value,
then the lower faces (which we callzmin-values of bounding boxes)
are considered first, followed by upper faces (calledzmax-values).
The events are stored in an event queue.

Thestatus consists of twosets of rectangles KA andKB , both con-
taining the two-dimensional axis-aligned bounding boxesR(△) of
all triangles△ ∈ A+ and△ ∈ B+, which possess a non-empty in-
tersection with the sweep plane. We use a dynamical binaryR-tree
for representing the status information.

The leafs of theR-tree store sets of rectangles from both setsKA

andKB , where each rectangle has a pointer to the associated trian-
gle in A + or B+. In addition, each leaf and each node of the tree
stores the minimum bounding rectangle of all rectangles associated
with it or with the leafs of the corresponding subtree. The bounding
rectangles at the two children of a node are not always disjoint.

During the execution of the algorithm, the rectangles fromKA and
KB are dynamically inserted into and deleted from theR-tree. Each
newly inserted rectangle is inserted into the leaf where it causes the
smallest possible enlargement of the bounding rectangle.

If the number of boxes, which are associated with a leaf, exceeds
a certain threshold (which is 30 in our implementation), then the
rectangle is subdivided into two smaller rectangles. Similarly, leafs
are dynamically re-combined, if the number of boxes associated
with them falls below a certain threshold.



Figure 3: Example 3: The sweep plane algorithm (left) detects all
pairs of triangles (right) which contribute to the intersection of both
meshes.

The two types of events are faces of three-dimensional bounding
boxes with maximal and minimalz-values, which are handled as
follows.

• Event minimal z-value: We assume that the event is the lower
face of a bounding boxH(△) with △ ∈ A +. The case of
△ ∈ B+ is dealt with in an analogous way. We insert the
rectangleR(△) into the setKA . Simultaneously we check
if it possesses a non-empty intersection with any of the
rectanglesR(△′) in KB . If this is the case, then we report the
intersection△∩△′, provided that it is non-empty.

• Event maximal z-value: The bounding rectangleR(△) is
deleted from the setKA or KB .

Example 3 We apply the sweep plane algorithm to the two trian-
gular meshes of Example 1. It finds all pairs of triangles which
contribute to the intersection of the two meshes. Note that the first
object (shown in blue) is given by a rather coarse triangulation in
the conical part, hence the algorithm detects virtually alltriangles.

Intersection of the triangles. First we convert all coordinates
of all triangles which have an intersection, to rational coordinates.
The intersection of two triangles may consist of a point, a line seg-
ment or a planar polygon with at most 6 vertices. We compute it
using filtered exact arithmetic. The coordinates of the vertices of
the intersection curve have again rational coordinates.

Note that the expression swell (i.e. the number digits needed for
representing the rational coordinates) is bounded, since the trian-
gles which have to be intersected are already contained in the orig-
inal meshesA andB; no further computations with the obtained
coordinates of intersection points are needed in this step.See Sec-
tion 4 for more information on filtered exact arithmetic.

Planar triangle intersections do not need to be computed. The
neighboring triangles generate the necessary intersection points of
two-dimensional parts of the intersection. We modified our algo-
rithm so that it computes only the boundary curves of the overlap-
ping parts of both meshes if such parts are present. Summing up,
the sweep plane algorithm generates pairs of triangles, along with
the line segments which form the intersections.

Step 2: Mesh adaptation and assembly of C

Mesh adaptation. Each triangle of the meshesA andB, which
contains a vertex of the intersection curve(s), is further split into
smaller triangles, such as the edges of the intersection curve(s) are
also edges of the triangulation. In order to obtain triangles which
are as regular as possible, we use a constrained Delaunay triangu-
lation within each triangle. However every triangulation algorithm
can also be used instead.

Figure 4: The boundary of the merged solids (left) and the deleted
parts of the boundary surfaces (right). Once again, a clipping plane
has been used in order to show the interior parts of both objects.

The refined meshes, which are now adapted to the intersection
curve(s)C , are denoted withA ∗ andB∗.

Assembling the intersection curve(s). Finally, for each trian-
gular meshA andB, we assemble the computed line segments to
obtain the intersection curve(s)C . The orientation is chosen such
that it matches the orientation of the facets of the meshes for all
facets which contribute to the boundary of the unionM = A∪B.

The correct orientation can be decided locally, based on thenormal
vectors of the intersecting triangles. Note that each component of
the intersection curve is obtained twice, once as a curve lying onA ,
and once as a curve lying onB. If we have planar triangle intersec-
tions planar loops on the intersection curve arise. The orientation
of each intersection curve determines which part of the planar loop
belongs to the curve onA , andB respectively. By definition, the
left-hand side (with respect to the orientation of the triangles) of
the intersection curve on the considered solid is part of themerged
surface. By traversing the oriented intersection curve andarriving
the planar loops, we move around on the left side of the loop.

The areas within the planar loops and the triangles within two-
dimensional parts of the intersection need a special treatment. If
all their normal vectors point into the same direction, theyare part
of the intersection. Otherwise they are discarded.

Step 3: Mesh merging

Finally, we remove from both meshesA ∗ and B∗ the triangles
which lie on the right-hand side of the closed intersection curves.
In addition, we connect the two meshes along the intersection
curve(s), obtaining the single meshM which bounds the union of
the two objects.

Example 4 After applying Steps 2 and 3 of the algorithm, we ob-
tain the mesh which is shown in Figure 4, left. In addition, the
deleted parts of both meshes are also shown.

Step 4: Mesh cleaning

The mesh cleaning problem is also known as ”geometric rounding”
or ”3D snap rounding” problem. The probably best (theoretical)
solution which is available so far [Fortune 1998], is still considered
to be rather impractical and inefficient by the author.

At this stage, the result of our mesh merging algorithm is still given
in exact arithmetic. In order to convert the coordinates back into
floating point numbers, we need to perform a mesh cleaning step. In
this cleaning step we eliminate small triangles (almost degenerate



triangles) which may be present inM . Otherwise, the conversion
to floating point numbers may destroy the correctness of the result,
creating degenerate triangles and possibly even local and global self
intersections.

We denote with

Nε (P) = {x ∈ R3 : ∃y ∈ P : ‖x−y‖ ≤ ε} (3)

theε-neighborhood of a point set P. The mesh cleaning is based on
the following simple observation.

Consider a regular triangular meshM which does not possess self-
intersections. We assume thatM satisfies the following three con-
ditions.

(i) The ε–neighborhoodsNε (v) and Nε(w) of any two distinct
verticesv,w are disjoint.

(ii) The ε–neighborhoodsNε(v) and Nε (e) of any vertexv and
any edgee not containingv are disjoint.

(iii) The ε–neighborhoodNε (△) of any triangle△ of M does
not intersect theε–neighborhoodNε (e) of any edgee of M ,
provided thate and△ are disjoint.

Any meshM ′ which is obtained by replacing each vertexv of M
by a new vertexv′ satisfying‖v− v′‖ ≤ ε, consists only of regular
triangles and does not possess any self-intersections.

The first condition guarantees that the modified mesh does notpos-
sess any triangle with edges that collapse into a point and that
any two triangles are different. The second condition ensures that
the modified mesh does not possess any degenerate triangles with
collinear edges. Thus, all triangles are regular. The thirdcondition
implies that the modified mesh does not possess self-intersections.

For most meshes, it is possible to infer the first two conditions from
the third one. However, this is not always true. For instance, if M
represents a tetrahedron, then the third conditions is always satisfied
and therefore not useful for certifying the robustness.

We are currently implementing a collection of mesh cleaningoper-
ations in order to guarantee that the three conditions are satisfied.
In practice, it is sufficient to check the newly created regions of the
meshM , which were not yet contained in eitherA or B, since the
original meshes are assumed to be clean, as described in Section
2.1. In fact, even if a vertexv of A might be closer thanε to a
faceNε(△) of B in a region whereA andB do not intersect. The
merged result mesh violates the conditions ofv and△. The vertexv
however will never intersect△, since the vertices representation of
v and of△ have never been modified by any computation through
the algorithm. Since we treated the input meshes as exact, wewill
not have a rounding error inv and△. Thus, in this situation, we
do not get any problems, even though the conditions (i)-(iii) are
violated.

We choose the constantε as an upper bound of the rounding er-
ror which is created by converting the exact rational numbers into
an inexact number type. We identify all edges and triangles in M

which do not satisfy the first assumption and flag them assmall tri-
angles andshort edges. The following well-known mesh cleaning
operations are currently performed automatically:

1. Collapsing small triangles: If all edges have a length less
than 2ε, then the triangle is collapsed into a point, located at
its barycenter, and the three triangles which share edges with
it are collapsed into edges. However, it may happen that the
triangles which are adjacent after this step have more than
one common edge. If this is the case, then this small triangle
is not removed by this approach.

Figure 5: The merged mesh (left) contains a short edge, whichis
collapsed into a point. The adjacent triangles shrink into edges. The
right two figures shows a close-up view.

2. Collapsing short edges: If the length of an edge is below
2ε, then it is shrunk to a point and the two neighboring
triangles are collapsed to edges. Again, it may happen that
the triangles which are adjacent after this step have more than
one common edge. If this is the case, then this small edge is
not removed.

3. Enlarging short edges and small triangles: If the previous
two operations fail, then we try to enlarge the remaining
small triangles, either by enlarging edges (in the case of small
edges) on both ends, or by moving the vertices away from the
center of gravity. In order to avoid infinite loops, the number
of modifications per vertex is limited.

4. Flip edge: The apex angle is almost 180◦. If the neighboring
triangle of the longest edge is not a small triangle, we flip the
longest edge. Now the flipped edge is tested by the method
“collapsing short edges”.

In our experiments, which we performed with real data sets repre-
senting industrial objects (see Section 5), these four simple mesh
cleaning operations were sufficient to produce meshes whichcould
safely be exported using floating point numbers. We are currently
working on the extension to more complex mesh-cleaning opera-
tions, which are based on the full set of constraints (i)-(iii).

Finally the result mesh is tested for self-intersections. This is done
by trying to merge the result mesh with itself. In all our exam-
ples, no intersections of non-neighboring triangles in themesh were
found, which guarantees that the mesh is free of self-intersections.

Example 5 We apply the mesh cleaning example to the example
shown in Figure 4. The algorithm detects a number of short edges
and small triangles which automatically removed, see Fig. 5.

4 Using filtered exact arithmetic

We aim at achieving a robust implementation that computes topo-
logically correct results. Floating point arithmetic withlimited pre-
cision data types such as the built-in data typedouble in C++ is
afflicted with numerical errors. While tiny geometric inaccuracies
introduced by these errors might be acceptable, topological changes
are not. Moreover, implementations of geometric algorithms are



prone to fail if they rely on predicates, that are evaluated using in-
exact arithmetic, because a wrong result can lead a program into a
wrong state.

In fact, our first attempt for computing Boolean operations of trian-
gulated solids used double precision floating point arithmetic. Very
quickly we arrived at numerical problems which forced us to aban-
don this approach.

To achieve both, robustness of our implementation and correctness
of its output, we use a so calledkernel from CGAL [CGAL 2009].
In CGAL, a kernel consists of a collection of basic geometricob-
jects like points, lines, triangles etc., construction operations like
the intersection of two objects, and predicates like, e.g.,orientation
tests. CGAL follows the generic programming paradigm, and thus
the used number type can be chosen according to the needs of a
specific problem.

We use two different CGAL kernels for our implementation, and
their behavior is determined by a nested chain of parametrizations,
see Listing 1.

Listing 1: Parametrization of CGAL Kernels

typedef Filtered_kernel < Simple_Cartesian <double> >

Exact_predicates_inexact_constructions_kernel;

typedef Lazy_kernel <Simple_Cartesian <Gmpq > >

Exact_predicates_exact_constructions_kernel;

Concerning theExact predicates inexact constructions kernel, the
part which consists of the template classSimple Cartesian,
parametrized by the C++ number typedouble, denotes already a
simple CGAL kernel. But this kernel uses cheap (and inexact)dou-
ble precision floating point arithmetic for both, evaluation of predi-
cates and representation of objects by Cartesian coordinates.

In order to achieve exact evaluation of predicates, one could
parametrize this kernel with a slow multi-precision numbertype
instead ofdouble. But there is a more efficient way to achieve ro-
bustness, which is called arithmetic filtering: The inexactkernel
Simple Cartesian<double> is plugged into aFiltered kernel [Fabri
and S.Pion 2006], which uses interval arithmetic [Brönnimann et al.
2001] to detect if a predicate, evaluated with the inexact number
type, is possibly incorrect.

In cases where the arithmetic filter fails, the predicate is re-
evaluated with arbitrary-precision rational arithmetic.Thus, the
filtered kernel provides exact predicates although it uses com-
putationally expensive multi-precision arithmetic (hopefully) only
rarely. The major drawback of theExact predicates inexact cons-
tructions kernel is that its constructions are computed with inexact
arithmetic, such that even exact predicates will possibly fail if they
involve constructed objects, such as in the example shown inList-
ing 2.

Listing 2: Provoking an error in spite of exact predicates

typedef CGAL::

Exact_predicates_inexact_constructions_kernel K;

typedef K::Point_2 Point;

typedef K::Line_2 Line;

Line line1(Point(0,0),Point (1 ,2));

Line line2(Point(0,1),Point (1 ,0));

Point p;

assign(p,intersection(line1 ,line2));

assert(line1.has_on(p) && line2.has_on(p));

Figure 6: Example 6: The figures in the top row show a nut (left)
with a metal sheet (center), merged in a model with 2,304 triangles
(Figure below). The last row Figures show a sliced view with aver-
tical slicing plane of a detail before (left) and after (right) merging
the solids.

Therefore, we use theExact predicates exact constructions kernel
in cases where exact constructions are necessary in order tomake
our implementation robust. The parametrization is also shown in
Listing 1. For this kernel, the template classSimple Cartesian is
parametrized differently, namely by the classGmpq, which pro-
vides an arbitrary precision rational number type based on the GNU
Multiple Precision Arithmetic Library [GMP ].

AlthoughSimple Cartesian<Gmpq> denotes already an exact ker-
nel, it is, for performance considerations, not used directly. Instead,
this kernel is plugged into aLazy kernel which tentatively uses in-
terval arithmetic for constructions. If later a filter fails, i.e. a pred-
icate, applied to an object, cannot be evaluated safely, then exact
rational coordinates are used. The additional cost of this kernel is
an increased memory usage as the history of all constructionsteps
for the inexactly evaluated objects has to be stored.

5 Examples

We present several examples which demonstrate the perfor-
mance of our method. The models are taken from the
database at ECS and represent real industrial objects. None
of the following examples can be solved with our algorithm
by exchangingExact predicates exact constructions kernel by Ex-
act predicates inexact constructions kernel.

Example 6 This example, which is shown in Figure 6, consists of
a box with a hole, representing a nut, which is to be merged with
a deep-drawn metal sheet. The two given objects are represented
by 112 and 1,976 triangles respectively, and the merged solid is de-
scribed by a mesh with 2,304 triangles. The computation took0.25



Figure 7: Example 7: Merging of the underbody and panel solids
(top row) and sliced views of a detail before (bottom left) and after
(bottom right) merging the two solids. In the sliced views, two-
dimensional components of the intersections are visible.

seconds CPU time on a Dell PrecisionTM 490 Workstation with 64-
bit quad-core Intel Xeon processors and 8 GB RAM.

Example 7 This example (see Figure 7) consists of a underbody
of a car and a panel, which is to be attached to it. The two given
objects are represented by 45,234 and 540 triangles respectively,
and the merged solid is described by a mesh with 45,774 triangles.
The computation took 0.1 seconds CPU time.

Example 8 The next example (Figures 8 and 9) consists of a door
of a car and a hinge. The two given objects are represented by
121,829 and 89,166 triangles respectively, and the merged solid is
described by a mesh with 217,522 triangles. The computationtook
12 seconds CPU time. In order to obtain this result, the thickness of
the hinge has to exceed the thickness of the corresponding part of
the door (see sliced view). This is achieved by applying a offsetting
operation with a small distance to the relevant part of the hinge.

Example 9 Finally we compare the Nef polyhedron-based method
in CGAL [CGAL 2009; Hachenberger and Kettner 2005] with our
algorithm. We consider again the two solids of Example 1 and ap-
proximate them by triangular meshes with a different numberof
facets. Clearly, the computation time grows with the numberof tri-
angles. The running time of our approach depends on the number
of triangles of the input object as well as the complexity of the in-
tersection. In Figure 10, the red graph refers shows the computation
times needed when using Nef polyhedra, while the blue graph cor-
responds to our algorithm. The chart shows that the running time
of NEF is linear and our runtime - which is much lower - behaves
almost linearly.

However, the memory requirements are dramatically different, see
Figure 11. Even though we used a computer with 8 GB main mem-
ory, we did not have enough memory to compute the next example,
where the resulting mesh would have had about 400K triangles,
using Nef polyhedra. Using our algorithm it is possible to merge
meshes consisting of millions of triangles. Note that the results
generated using Nef polyhedra have a different number of triangles,
since a remeshing is performed.

Figure 8: Example 8: Merging of the door (green) and hinge (red)
with an enlarged section of sliced view (below). Meshes courtesy
of Adam Opel GmbH

Figure 9: Example 8: Merged mesh (blue) with an enlarged section
of sliced view (below).

6 Conclusions & Future Work

We used filtered exact geometric computation in order to formulate
and to implement an algorithm for the robust merging of triangu-
lated solids. With the help of suitable libraries from CGAL we
were able to implement this algorithm such that data sets arising
in real-world applications can be handled within reasonable com-
putation times. The test for self-intersections - which is needed for
certifying the result - is still relatively slow and should be improved.
However, in practice this is only needed for testing the correctness
of the algorithm.

Future work will be devoted to the enhancement of the mesh clean-
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Figure 10: Computation time (vertical axis, in seconds) formerging
triangle meshes of various sizes (horizontal axis) representing the
two solids in Example 1. The red and the blue graph show the
results for NEF polyhedra and using our algorithm.
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Figure 11: Maximal memory consumption (vertical axis, in GByte)
for merging triangle meshes of various sizes (horizontal axis) rep-
resenting the two solids in Example 1. The red and the blue graph
show the results for NEF polyhedra and using our algorithm.

ing procedure, in particular to the remaining conditions which guar-
antee the absence of self-intersections.
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