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Abstract

We present an algorithm for robust Boolean operations ahgyi-
lated solids, which is suitable for real-word industriaphgations
involving meshes with large numbers of triangles. In ordeatoid
potential robustness problems, which may be caused by &ymo
degenerate triangles or by intersections of nearly cogplatman-
gles, we use filtered exact arithmetic, based on the lis&iBAL
and GNU Multi Precision Arithmetic Library. The method con-
sists of two major steps: First we compute the exact intéisec
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Another intersection technique for meshes has been deschip
[Teschner et al. 2003]. In a recent paper dealing with therint
section of triangular meshes, [Park 2004] uses a combimatfo
a space-partitioning method with visibility informationrffind-
ing the self-intersections of a triangular mesh. The irgetion of
quadrilateral meshes is considered in [Lo and Wang 2003heGe
ally these polygonal algorithm suffer from numerical estor

Even in the case of NURBS surface, the robust and efficienpcem
tation of the intersection is still a challenging task. Wsimethods
of approximate algebraic geometry, it has recently beediestiuin

of the meshes using a sweep plane algorithm. Second we applythe frame of the European GAIA |l project, see [Dokken 2008].

mesh cleaning methods which allow us to generate outputhwhic
can safely be represented using floating point numbers. &tierp
mance of the method is demonstrated by several example$whic
are taken from applications at ECS Magna Powertrain.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

Keywords: Boolean operation, triangulated surfaces

1 Introduction

Triangular meshes are commonly used as representatiooofeie
rical objects in manufacturing. Especially at the lategstaof the
product development pipeline, where frequently companeno-
vided by different suppliers have to be combined in the fimatlp
uct, these meshes are often the only available descripfidgheo
different components.

In order to simulate the manufacturing process, it is essdntbe

able to perform basic geometric modeling tasks with tridaigual

solids, e.g. CSG operations, cf. [Hubbard 1996]. In palkiicwve

focus on the problem of Boolean operations of triangulat#ids.

For our applications, which are related to the simulatiomasfous

manufacturing processes in the automotive industry, issestial
that these operations give reliable results for all inpusies, even
if (nearly) tangential intersections are present.

The discussion of Boolean operations for meshes has a lstaryi
Already in the mid 80s, the first methods working with arbigra
precision arithmetics appeared. Typically, the methodcharac-
terized by a large number of case distinctions [Laidlaw £1886;
Ayala et al. 1985]. The plane-based representation of nsesleng
with applications to robust modeling operations, was ihticed in
[Sugihara and Ira 1989].

In principle, the intersection curve of two triangulatedid®can be
computed using a simple triangle-to-triangle intersectiest, see
e.g. [Thomas and Prosolvia 1997; Tropp et al. 2006]. In otder
obtain an efficient algorithm, however, we aim at minimizihg
number of intersection tests. This can be achieved by usieg o
of the various bounding volume methods, such as hieraraifies
bounding volumes, octrees, etc. See [Jimenez et al. 2004ndCh
et al. 2010] and the references cited therein.
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For real-world applications involving triangular mesheg& need
an algorithm which produces a valid result for all input nesh
In a manufacturing environment, robustness and high riétials
required. The associated geometrical computations leadgteat
variety of non-trivial problems. On the one hand, this is doe
intersections of almost coplanar triangles, which haveea@dm-
puted robustly. On the other hand, the intersection of tiemgular
meshes sometimes leads to triangles with one ore more esfirem
short edges, which cannot be represented correctly usiagnitp
point arithmetic.

In his classical textbook, [Hoffmann 2005] presents an rigm
for Boolean operations on boundary representation. Iriquéat,
he addresses the need for robust and error-free geometia-op
tions. We use these ideas in our work and apply them in theegbnt
of industrial applications.

In arecent paper, [Pavic et al. 2010] present a hybrid mefivaa-
bustly representing and computing the intersection ohgrigated
solids. The authors use a local volumetric model and gemerat
new mesh —which preserves the features of the interseative e
along the intersection. The method generates an error mdaels,
which can be controlled by the resolution of the octree-tasdu-
metric model. The size of the examples presented in the mhper
not reach the scale needed for our applications, where m&gtie
millions of triangles occur frequently. The authors did poavide
information about memory requirements.

The powerful library [CGAL 2009] provides a package [Hachen
berger and Kettner 2005] which implements a B-rep data tireic
that is closed under Boolean operations. This method reles
exact arithmetic to avoid the well known problems with flogti
point arithmetic. The underlying data structure - whichaséd on
Nef polyhedra — is not memory efficient and hence not suittdsle
Boolean operations involving large meshes. Neverthethssim-
plementation of exact operations for triangulated sokdsurrently
considered as a standard reference.

[Bernstein and Fussel 2009] used the concepts of plane based
geometry representation and BSP (binary space partitipnin
[Thibault 1987; Thibault and Naylor 1987]) in order to counst
exact and robust Boolean operators with low algorithmic giex:

ity. This approach has recently been used for intersecthgpnal
meshes [Campen and Kobbelt 2010]. The method describea in th
latter paper performs an exact intersection of two triaatgpad ob-
jects in BSP representation, and generates an exact outplisi
representation. It does not address the exact conversitire ak-

sult into a triangular mesh in detail.

One approach to overcome limitations in numerical accuisitye



use of multiple precision libraries, and our method is basedt.
Our goal is to modify the input geometry as little as possibiece
itis the only available geometric information at this stafi¢he de-
sign process. Our method consists of two steps: First, weectbn
the given vertices of the meshes to points having rationatdio
nates and we compute the intersection of the meshes usingepsw
plane algorithm. Second, we apply a mesh cleaning procetate
allows us to generate output which can safely be represeisiag
floating point numbers.

The remainder of this paper is organized as follows. Firstee
scribe the details of the problem and give an outline of our ap
proach. The following section describes the details of tige-a
rithm. Section 4 is devoted to the implementation of the roetins-
ing filtered exact arithmetic. Finally, in Section 5, we useesal re-
alistic examples as well as an artificial example to comgagerh-
plementation of our approach with an implementation whisbsu
the ’join’ operation of CGAL's NEF Polyhedron package [Haoh
berger and Kettner 2005].

2 Problem description and outline

In this section we define the problem and provide an overview o
our method. The details will be in the following section.

2.1 The problem

We consider two solid objec#s andB in three-dimensional space,
A,B C R3. Both are given by their boundary representations, where
the boundary surface®A anddB are described by oriented trian-
gular meshesy and 4. In our applications, the input typically
consists of car parts, where the numbers of faces is in thgeran
between 18 and 16°.

We assume that both solids are different. Consequentlyjnthe
tersection of any two triangled\ € & and A’ € # is either
empty, a point, a line segment, or a planar polygon. Each-tria
gle A = (v1,Vv2,v3) € &7 (and analogously fag8) is described by
an ordered list of vertices. The orientation of the triasgiecho-
sen such that the normal vectdrs — v1) x (v3 —Vv1) (at any inner
point of the triangle) point outwards.

Mathematically, we will considery and % as sets of oriented tri-
angles. In the implementation, we use the half-edge datatste
representation of CGAL [CGAL 2009]. We assume that the given
triangular meshes are bottean in the following sense.

of the chosen coordinate system and the two objects, andeon th
number of significant digits.

We discuss a method for Boolean operations of union (which is
often called merging in our applications), intersection aliffer-
ence of the two solid objects. For instance for the union afjm,

the boundary representatio#’ of the unionM = AU B of the two
solids satisfies

oM = (JAUIB) \M°, 1)

whereM® denotes the interior of the skt ¢ R3.

The other two Boolean operations intersection and diffezeran
be obtained from the same equation by first inverting thentaie
tion of the faces of the solids (hence replachgr B with R3\ A or
R3\ B, respectively), and secondly inverting the result of therep
ation. Since the Boolean operations of union, interseciwh dif-
ference essentially require the same computation, exoebime
pre- and postprocessing steps, we will only consider theruap-
eration in the remainder of this paper. Moreover, sincedoi®mon
in the automotive industry to denote the union operatiomergie
operation, we will use this notation from now on.

2.2 The intersection curve of triangular meshes

In order to find the boundary representation of the Booleartap
tions, we need to analyze the intersection ci@ve dAN JB of the
two boundary surfaces. The intersection curve is a pieeeliis
ear object, which may be a collection of curves. For simplicive
will call it “the” intersection curve, even if it may consisf several
components.

In the generic situation, this curve is simply a collectidrciosed
curves. In special cases, however, it might also contain opeves
and two-dimensional components. Open curves occur if thesso
just touch each other along these curves . Two-dimensiamal ¢
ponents would be present if the solids touch each other inoone
several faces.

We represent the intersection cu@ey a set#” of line segments
which form at least one polyline. More precisely, we use thle f
lowing conventions.

1. Each closed curve is represented as a closed polylinehwhi
may contain planar loops.

2. Each open curve is represented as a degenerate polyline,
where each edge is repeated twice with opposite orientation

3. Two-dimensional components are represented by theirdsou
ary curves, and points are represented as degenerate.curves

1. Both meshes are assumed to be valid boundary surfaces of _
three-dimensional solid objects. Thus, the meshes do not Clearly, it may happen that open and closed curves, as wellas

contain holes or boundary edges.
. Every edge of any triangle a¥ or of 2 belongs to exactly

dimensional components, meet in common vertices.

two triangles. Consequently, the meshes do not possess any

hanging nodes or degenerate triangles.

perturbations of the coordinates of the vertices. More pre-
cisely, if we replace the verticag by new vertices/{, such
that||v; — v{|| < €, wheree is the accuracy of the chosen geo-
metric representation, then we obtain again a valid boyndar
representation of a three-dimensional solid.

The last property is needed when using floating point numtoers
representing the coordinates of the vertices, since tteseinates
are then only known with limited accuracy. The accuracy dedpe
on the size of the bounding box, which includes both the origi

2.3 Outline of the algorithm

. The meshes are assumed to be robust with respect to small

In order to generate a boundary representation of the unienge)
operation, we propose the following algorithm.

1. Compute the line segments which form the intersection
curve(s)s.

2. Refine the triangular mesheg and % such that all edges in
¢ are contained in the adapted meshgs and #*. Collect
the line segments which form the intersection curve(s) to
polylines which match the orientation of the facets of the
given meshes.



Figure 1: Example 1: The two intersecting surfacégblue) and

Figure 2: Example 2: The intersection of the two boundingesox

% (green). A clipping plane has been used in order to show the (/) H(2) (left) and the triangles contained in the submeshes

interior parts of both objects.

3. Find the output mesh# by deleting the setsy* NB° and
2* N A° of triangles which are contained in the interiat
and B° of the other objectA and B, respectively, from the
union <" U #*.

4. (Optional:) If the mesh is to be exported with limited accu
racy (floating point coordinates), then it is cleaned up teefo
exporting. The cleaned mesh is denoted wifff.

The computations in steps 1-3 are done with filtered exatt-ari
metic. Consequently, these computations are numericabyst
and produce a valid mesh, as no numerical errors are preBeat.
optional cleaning step - which is needed in order to prodwaifig
point numbers - gives an approximatio#© of the exact boundary
representationZ of the merged objedl = AUB.

Example1l We use a simple example to describe our algorithm.
The two solid objects are shown in Figure 1. The first objenb\im

in blue) has been constructed as the set-theoretic differefi a
triangulated ball and a triangulated cone. The second bfgkown

in green) is simply a ball.

3 Details

Step 1: Computation of the intersection curve ¢

Let us assume that the meshesand % consist ofa and b tri-
angles. Obviously, it does not make sense to perform ircgose
tests for allab pairs of triangles. We use axis—aligned bounding
boxes, a sweep plane algorithm and dynamical R-trees [@uttm
1984; Manolopoulos et al. 1989] in order to obtain a more ieffic
algorithm. A sweep plane algorithm provides a sequentiat pr
cessing and therefore a low memory usage. The R-tree imgeas
the efficiency of intersection tests. This is a reasonabtepco-
mise between computational efficiency and ease of impleatient
Clearly more sophisticated techniques exist and could bd irs
stead, see e.g. [Teschner et al. 2003].

Axis Aligned Bounding Boxes and Preprocessing. We use
two- and three-dimensional axis-aligned bounding boxést,Rve
denote withH (X) the three-dimensional axis-aligned bounding box
of a setX ¢ R3, whereX is either a single triangle or a set of trian-
gles. Second, we denote wi{X) the projection of this bounding
box into thexy-plane, which is simultaneously the two-dimensional
bounding box of the projection of.

We use the bounding boxes.ef and# for a simple preprocessing
step. Obviously, it suffices to consider only the trianglesn .o/
and%Z having a bounding bok (A) which possesses a non-empty

o/ and £ which are potentially relevant for the intersection
curve? (right).

intersection with the intersection of the two bounding mxe

H(A)N[H (/) NH(B)] # 0. )

We denote these sets of triangles with™ and %™, respectively.

Example2 We continue the first example, by restricting both tri-
angular meshes to triangles whose bounding boxes interfithe
the intersection of the two global bounding boxes. The tesyl
subsets of the triangular meshesand# are shown in Figure 2.

Sweep Plane Algorithm and Dynamic R-tree. In order to
further restrict the pairs of triangles i and % which we need

to consider for mutual intersection, we use a sweep plane- alg
rithm, which takes the two sets’™ and 4" as input. We con-
sider a sweep plane, which is parallel to tyeplane, and moves
from the smallest to the largegt-coordinate of the vertices in
/T UZPT. The algorithm generates a list containing all pairs of
triangles(A\, A') € &/ x %™ with a non-empty intersection.

Theevents of the sweep plane algorithm are theparallel faces of
the bounding boxell (A), A € &7+ U %™, sorted according to the
value of theirz-coordinates. If two events have the samealue,
then the lower faces (which we caj}i,-values of bounding boxes)
are considered first, followed by upper faces (caliggk-values).
The events are stored in an event queue.

Thestatus consists of twasets of rectangles K, andK 4, both con-
taining the two-dimensional axis-aligned bounding boiRe4) of
all triangles/A € AT and A € BY, which possess a non-empty in-
tersection with the sweep plane. We use a dynamical biRarge
for representing the status information.

The leafs of theR-tree store sets of rectangles from both $€ts
andK 4, where each rectangle has a pointer to the associated trian-
gle in.e7™ or #*. In addition, each leaf and each node of the tree
stores the minimum bounding rectangle of all rectanglesaated
with it or with the leafs of the corresponding subtree. Therabng
rectangles at the two children of a node are not always disjoi

During the execution of the algorithm, the rectangles fiom and
K4 are dynamically inserted into and deleted fromRatee. Each
newly inserted rectangle is inserted into the leaf wherauses the
smallest possible enlargement of the bounding rectangle.

If the number of boxes, which are associated with a leaf, edse
a certain threshold (which is 30 in our implementation),nttiee
rectangle is subdivided into two smaller rectangles. irtyi) leafs
are dynamically re-combined, if the number of boxes assedia
with them falls below a certain threshold.



Figure 3: Example 3: The sweep plane algorithm (left) detadt
pairs of triangles (right) which contribute to the intersea of both
meshes.

The two types of events are faces of three-dimensional bognd
boxes with maximal and minimatvalues, which are handled as
follows.

e Event minimal z-value: We assume that the event is the lower
face of a bounding boxi(A) with A € &/*. The case of
A € #7* is dealt with in an analogous way. We insert the
rectangleR(A) into the setk,,. Simultaneously we check
if it possesses a non-empty intersection with any of the
rectangleR(A’) in K. If this is the case, then we report the
intersection’A N A/, provided that it is non-empty.

e Event maximal zvalue: The bounding rectangl®(A) is
deleted from the sé€,, or K.

Example 3 We apply the sweep plane algorithm to the two trian-
gular meshes of Example 1. It finds all pairs of triangles Wwhic
contribute to the intersection of the two meshes. Note tiefitst
object (shown in blue) is given by a rather coarse triangian
the conical part, hence the algorithm detects virtuallyradhgles.

Intersection of the triangles. First we convert all coordinates
of all triangles which have an intersection, to rationalrciiwates.
The intersection of two triangles may consist of a pointpa beg-
ment or a planar polygon with at most 6 vertices. We compute it
using filtered exact arithmetic. The coordinates of theivest of

the intersection curve have again rational coordinates.

Note that the expression swell (i.e. the number digits neédde
representing the rational coordinates) is bounded, simedrian-
gles which have to be intersected are already containectiorib-
inal meshesz and #; no further computations with the obtained
coordinates of intersection points are needed in this Sep. Sec-
tion 4 for more information on filtered exact arithmetic.

Planar triangle intersections do not need to be computede Th
neighboring triangles generate the necessary interseptimts of
two-dimensional parts of the intersection. We modified dgpa
rithm so that it computes only the boundary curves of thelaper
ping parts of both meshes if such parts are present. Summing u
the sweep plane algorithm generates pairs of triangleagaidth

the line segments which form the intersections.

Step 2: Mesh adaptation and assembly of ¥

Mesh adaptation. Each triangle of the mesheg and %, which

contains a vertex of the intersection curve(s), is furttgit into

smaller triangles, such as the edges of the intersectioe(s)rare
also edges of the triangulation. In order to obtain triasgidich
are as regular as possible, we use a constrained Delauaagufi
lation within each triangle. However every triangulatidgaithm

can also be used instead.

Figure 4: The boundary of the merged solids (left) and thetddl
parts of the boundary surfaces (right). Once again, a cigpplane
has been used in order to show the interior parts of both tshjec

The refined meshes, which are now adapted to the intersection
curve(s)#’, are denoted withy* andB*.

Assembling the intersection curve(s). Finally, for each trian-
gular mesheZ and %, we assemble the computed line segments to
obtain the intersection curve(gj. The orientation is chosen such
that it matches the orientation of the facets of the meshesalfo
facets which contribute to the boundary of the unbr= AUB.

The correct orientation can be decided locally, based ondhmal
vectors of the intersecting triangles. Note that each comapbof
the intersection curve is obtained twice, once as a curng lgn.c/,
and once as a curve lying a4. If we have planar triangle intersec-
tions planar loops on the intersection curve arise. Thentai®n
of each intersection curve determines which part of thegyléoop
belongs to the curve o/, and % respectively. By definition, the
left-hand side (with respect to the orientation of the wias) of
the intersection curve on the considered solid is part ofribeged
surface. By traversing the oriented intersection curveamiging
the planar loops, we move around on the left side of the loop.

The areas within the planar loops and the triangles withio-tw
dimensional parts of the intersection need a special treatmif
all their normal vectors point into the same direction, they part
of the intersection. Otherwise they are discarded.

Step 3: Mesh merging

Finally, we remove from both mesheg™ and B* the triangles
which lie on the right-hand side of the closed intersectiorves.

In addition, we connect the two meshes along the intersectio
curve(s), obtaining the single mes# which bounds the union of
the two objects.

Example 4 After applying Steps 2 and 3 of the algorithm, we ob-
tain the mesh which is shown in Figure 4, left. In additiorg th
deleted parts of both meshes are also shown.

Step 4: Mesh cleaning

The mesh cleaning problem is also known as "geometric rawyidi
or "3D snap rounding” problem. The probably best (theoed}ic
solution which is available so far [Fortune 1998], is stdhsidered

to be rather impractical and inefficient by the author.

At this stage, the result of our mesh merging algorithm Isgitien
in exact arithmetic. In order to convert the coordinateskhato
floating point numbers, we need to perform a mesh cleanipgy kte
this cleaning step we eliminate small triangles (almosiedegate



triangles) which may be present.iw¥’. Otherwise, the conversion
to floating point numbers may destroy the correctness ofebelt,
creating degenerate triangles and possibly even locallabdlgself
intersections.

We denote with

Ne(P)={xeR®: JyeP: |x—y|| <&} ©)
the e-neighborhood of a point set P. The mesh cleaning is based on
the following simple observation.

Consider a regular triangular mes#f which does not possess self-
intersections. We assume that satisfies the following three con-
ditions.

(i) The e—neighborhoods\¢(v) and Ng(w) of any two distinct
verticesv,w are disjoint.

(i) The e—neighborhooddNg(v) and Ng(e) of any vertexv and
any edgee not containingv are disjoint.

(iii) The e—neighborhood\¢(A) of any triangleA of .# does
not intersect the—neighborhood\¢ (e) of any edgee of .#,
provided thae andA are disjoint.

Any mesh.#’ which is obtained by replacing each vertexf M
by a new vertex/ satisfying|lv— V|| < ¢, consists only of regular
triangles and does not possess any self-intersections.

The first condition guarantees that the modified mesh dogsaset
sess any triangle with edges that collapse into a point aat th
any two triangles are different. The second condition esstinat
the modified mesh does not possess any degenerate triarigies w
collinear edges. Thus, all triangles are regular. The tbandition
implies that the modified mesh does not possess self-intéyas.

For most meshes, it is possible to infer the first two condgifsom
the third one. However, this is not always true. For instaifcil
represents a tetrahedron, then the third conditions isyalaatisfied
and therefore not useful for certifying the robustness.

We are currently implementing a collection of mesh cleamipgr-
ations in order to guarantee that the three conditions disfisd.

In practice, it is sufficient to check the newly created regiof the
mesh.#, which were not yet contained in eithef or 4, since the
original meshes are assumed to be clean, as described inrSect
2.1. In fact, even if a vertex of &/ might be closer tham to a
faceNg(A) of Z in a region where# and.%Z do not intersect. The
merged result mesh violates the conditions ahdA. The vertex
however will never intersech, since the vertices representation of
v and of A have never been modified by any computation through
the algorithm. Since we treated the input meshes as exaatjlive
not have a rounding error mand A. Thus, in this situation, we
do not get any problems, even though the conditions (i)-§iie
violated.

We choose the constaatas an upper bound of the rounding er-
ror which is created by converting the exact rational nurslbeto
an inexact number type. We identify all edges and triangle#i
which do not satisfy the first assumption and flag thersna| tri-
angles andshort edges. The following well-known mesh cleaning
operations are currently performed automatically:

1. Collapsing small triangles: If all edges have a length less
than Z, then the triangle is collapsed into a point, located at
its barycenter, and the three triangles which share edgés wi
it are collapsed into edges. However, it may happen that the
triangles which are adjacent after this step have more than
one common edge. If this is the case, then this small triangle
is not removed by this approach.

Figure 5: The merged mesh (left) contains a short edge, wkich
collapsed into a point. The adjacent triangles shrink idiges. The
right two figures shows a close-up view.

2. Collapsing short edges: If the length of an edge is below
2¢, then it is shrunk to a point and the two neighboring
triangles are collapsed to edges. Again, it may happen that
the triangles which are adjacent after this step have mare th
one common edge. If this is the case, then this small edge is
not removed.

Enlarging short edges and small triangles: If the previous
two operations fail, then we try to enlarge the remaining
small triangles, either by enlarging edges (in the case aflsm
edges) on both ends, or by moving the vertices away from the
center of gravity. In order to avoid infinite loops, the numbe
of modifications per vertex is limited.

. Flipedge: The apex angle is almost 180If the neighboring
triangle of the longest edge is not a small triangle, we flg th
longest edge. Now the flipped edge is tested by the method
“collapsing short edges”.

3.

In our experiments, which we performed with real data sqisere
senting industrial objects (see Section 5), these four Isinmesh
cleaning operations were sufficient to produce meshes vduald
safely be exported using floating point numbers. We are ntiyre
working on the extension to more complex mesh-cleaningaper
tions, which are based on the full set of constraints (i)-(ii

Finally the result mesh is tested for self-intersectiornsisTs done
by trying to merge the result mesh with itself. In all our exam
ples, no intersections of non-neighboring triangles imtiesh were
found, which guarantees that the mesh is free of self-iattiens.

Example5 We apply the mesh cleaning example to the example
shown in Figure 4. The algorithm detects a number of shorégdg
and small triangles which automatically removed, see Fig. 5

4 Using filtered exact arithmetic

We aim at achieving a robust implementation that computes-to
logically correct results. Floating point arithmetic withnited pre-
cision data types such as the built-in data tyjoeble in C++ is
afflicted with numerical errors. While tiny geometric inacacies

introduced by these errors might be acceptable, topolbdizanges
are not. Moreover, implementations of geometric algorghame



prone to fail if they rely on predicates, that are evaluatsidgiin-
exact arithmetic, because a wrong result can lead a programa.i
wrong state.

In fact, our first attempt for computing Boolean operatiofgian-
gulated solids used double precision floating point aritien&ery
quickly we arrived at numerical problems which forced ushiara
don this approach.

To achieve both, robustness of our implementation and cimress
of its output, we use a so callédrnel from CGAL [CGAL 2009].
In CGAL, a kernel consists of a collection of basic geomentie
jects like points, lines, triangles etc., constructionragiens like
the intersection of two objects, and predicates like, erggntation
tests. CGAL follows the generic programming paradigm, dmct

the used number type can be chosen according to the needs of a

specific problem.

We use two different CGAL kernels for our implementationdan
their behavior is determined by a nested chain of paranagimizs,
see Listing 1.

Listing 1: Parametrization of CGAL Kernels

typedef Filtered_kernel< Simple_Cartesian <double> >
Exact_predicates_inexact_constructions_kernel;
typedef Lazy_kernel<Simple_Cartesian <Gmpg> >

Exact_predicates_exact_constructions_kernel;

Concerning théexact_predicates_inexact_constructions_kernel, the
part which consists of the template classmple_Cartesian,
parametrized by the C++ number typeuble, denotes already a
simple CGAL kernel. But this kernel uses cheap (and inexduai}
ble precision floating point arithmetic for both, evaluatiaf predi-
cates and representation of objects by Cartesian cooedinat

In order to achieve exact evaluation of predicates, onedcoul
parametrize this kernel with a slow multi-precision nhumbgre
instead ofdouble. But there is a more efficient way to achieve ro-
bustness, which is called arithmetic filtering: The inexestnel
Smple_Cartesian<double> is plugged into diltered_kernel [Fabri
and S.Pion 2006], which uses interval arithmetic [Brorenim et al.
2001] to detect if a predicate, evaluated with the inexachimer
type, is possibly incorrect.

In cases where the arithmetic filter fails, the predicate es r
evaluated with arbitrary-precision rational arithmeti€hus, the
filtered kernel provides exact predicates although it usas-c
putationally expensive multi-precision arithmetic (hfuply) only
rarely. The major drawback of tHexact_predicates_inexact_cons-
tructions_kernel is that its constructions are computed with inexact
arithmetic, such that even exact predicates will possiailyifithey
involve constructed objects, such as in the example showusth
ing 2.

Listing 2: Provoking an error in spite of exact predicates

typedef CGAL::
Exact_predicates_inexact_constructions_kernel K;

typedef K::Point_2 Point;

typedef K::Line_2 Line;

Line linel (Point (0,0),Point(1,2));

Line line2(Point (0,1),Point (1,0));

Point p;
assign(p,intersection(linel,line2));
assert(linel.has_on(p) && line2.has_on(p));

Figure 6: Example 6: The figures in the top row show a nut (left)
with a metal sheet (center), merged in a model with 2,30Adti&s
(Figure below). The last row Figures show a sliced view witlea
tical slicing plane of a detail before (left) and after (rfigmerging
the solids.

Therefore, we use thexact_predicates_exact_constructions_kernel

in cases where exact constructions are necessary in ordeske
our implementation robust. The parametrization is alsavshim

Listing 1. For this kernel, the template claSsnple_Cartesian is
parametrized differently, namely by the claGspg, which pro-
vides an arbitrary precision rational number type basetheGiNU
Multiple Precision Arithmetic Library [GMP ].

AlthoughSmple_Cartesian<Gmpg> denotes already an exact ker-
nel, itis, for performance considerations, not used diyebistead,
this kernel is plugged into bazy_kernel which tentatively uses in-
terval arithmetic for constructions. If later a filter failse. a pred-
icate, applied to an object, cannot be evaluated safely, éact
rational coordinates are used. The additional cost of thigd{ is
an increased memory usage as the history of all construsteps
for the inexactly evaluated objects has to be stored.

5 Examples

We present several examples which demonstrate the perfor-
mance of our method. The models are taken from the
database at ECS and represent real industrial objects. None
of the following examples can be solved with our algorithm
by exchangindexact_predicates_exact_constructions_kernel by Ex-
act_predicates_inexact_constructions_kernel.

Example 6 This example, which is shown in Figure 6, consists of
a box with a hole, representing a nut, which is to be mergell wit
a deep-drawn metal sheet. The two given objects are repiegsen
by 112 and 1,976 triangles respectively, and the merged sotie-
scribed by a mesh with 2,304 triangles. The computation €2k



Figure 7: Example 7: Merging of the underbody and panel solid Figure 8: Example 8: Merging of the door (green) and hingd)(re
(top row) and sliced views of a detail before (bottom leftji after with an enlarged section of sliced view (below). Meshes tEmyr
(bottom right) merging the two solids. In the sliced viewspt of Adam Opel GmbH

dimensional components of the intersections are visible.

seconds CPU time on a Dell PrecisI&h490 Workstation with 64-
bit quad-core Intel Xeon processors and 8 GB RAM.

Example7 This example (see Figure 7) consists of a underbody
of a car and a panel, which is to be attached to it. The two given
objects are represented by 45,234 and 540 triangles résggct
and the merged solid is described by a mesh with 45,774 téang
The computation took 0.1 seconds CPU time.

Example 8 The next example (Figures 8 and 9) consists of a door
of a car and a hinge. The two given objects are represented by
121,829 and 89,166 triangles respectively, and the memgjatlis
described by a mesh with 217,522 triangles. The computédiok

12 seconds CPU time. In order to obtain this result, the tiesk of
the hinge has to exceed the thickness of the correspondim@fpa 7

the door (see sliced view). This is achieved by applying setfing

operation with a small distance to the relevant part of tingi D
Example9 Finally we compare the Nef polyhedron-based method
in CGAL [CGAL 2009; Hachenberger and Kettner 2005] with our
algorithm. We consider again the two solids of Example 1 gnd a
proximate them by triangular meshes with a different nurndfer
facets. Clearly, the computation time grows with the nundferi-
angles. The running time of our approach depends on the numbe
of triangles of the input object as well as the complexityhaf in-
tersection. In Figure 10, the red graph refers shows the atatipn .
times needed when using Nef polyhedra, while the blue graph ¢ 6 Conclusions & Future Work
responds to our algorithm. The chart shows that the running t
of NEF is linear and our runtime - which is much lower - behaves
almost linearly.

Figure 9: Example 8: Merged mesh (blue) with an enlargedsect
of sliced view (below).

We used filtered exact geometric computation in order to toaite
and to implement an algorithm for the robust merging of gian
lated solids. With the help of suitable libraries from CGAlew
were able to implement this algorithm such that data sessnari
in real-world applications can be handled within reasoaatam-
putation times. The test for self-intersections - whicheeahed for
certifying the result - is still relatively slow and should improved.
However, in practice this is only needed for testing the ectrress
of the algorithm.

However, the memory requirements are dramatically differeee
Figure 11. Even though we used a computer with 8 GB main mem-
ory, we did not have enough memory to compute the next example
where the resulting mesh would have had about 400K triangles
using Nef polyhedra. Using our algorithm it is possible torgee
meshes consisting of millions of triangles. Note that theuits
generated using Nef polyhedra have a different numberanigies,

since a remeshing is performed. Future work will be devoted to the enhancement of the mesmele
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Figure 10: Computation time (vertical axis, in secondsyfierging
triangle meshes of various sizes (horizontal axis) reptasg the
two solids in Example 1. The red and the blue graph show the

results for NEF polyhedra and using our algorithm.
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Figure 11: Maximal memory consumption (vertical axis, iny&8
for merging triangle meshes of various sizes (horizontéd)aep-
resenting the two solids in Example 1. The red and the blughgra
show the results for NEF polyhedra and using our algorithm.

ing procedure, in particular to the remaining conditionsolifguar-
antee the absence of self-intersections.
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